{ "metadata": { "name": "", "signature": "sha256:3ff449f1ffe03bd2c9931a55b263d24ea75427a65a897e285709531b99dfed25" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Dielectric materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.1, Page number 335" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "A=10*10*10**-6; #area of capacitor in m^2\n", "d=2*10**-3; #distance of seperation in m\n", "C=10**-9; #capacitance in F\n", "\n", "#Calculation\n", "epsilon_r=(C*d)/(epsilon_0*A);\n", "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"dielectric constant of material is\",epsilon_r);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('dielectric constant of material is', 2258.87)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.2, Page number 335" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "epsilon_r=1.0000684; #dielectric constant of He gas\n", "N=2.7*10**25; #concentration of dipoles per m^3\n", "\n", "#Calculation\n", "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n", "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n", "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n", "\n", "#Result\n", "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.3, Page number 336" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "epsilon_r=6; #dielectric constant\n", "E=100; #electric field intensity in V/m\n", "\n", "#Calculation\n", "P=epsilon_0*(epsilon_r-1)*E;\n", "\n", "#Result\n", "print(\"polarization in C/m^2 is\",P);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('polarization in C/m^2 is', 4.426999999999999e-09)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.4, Page number 336" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "R=0.158; #radius of Ne in nm\n", "\n", "#Calculation\n", "R=R*10**-9; #converting nm to m\n", "alpha_e=4*math.pi*epsilon_0*R**3;\n", "\n", "#Result\n", "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.5, Page number 336" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "C=0.02; #capacitance in micro farad\n", "epsilon_r=6; #dielectric constant\n", "t=0.002; #thickness of mica in cm\n", "d=0.002; #thickness of metal sheet in cm\n", "\n", "#Calculation\n", "C=C*10**-6; #converting micro farad to farad\n", "d=d*10**-2; #converting cm to m\n", "A=(C*d)/(epsilon_0*epsilon_r);\n", "A=A*10**3;\n", "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n", "A1=A*10; #converting m**2 to cm**2\n", "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n", "print(\"area of metal sheet in cm^2 is\",A1);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n", "('area of metal sheet in cm^2 is', 75.296)\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.6, Page number 336" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "E=1000; #electric field in V/m\n", "P=4.3*10**-8; #polarization in C/m^2\n", "\n", "#Calculation\n", "epsilon_r=(P/(E*epsilon_0)+1);\n", "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"dielectric constant is\",epsilon_r);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('dielectric constant is', 5.8566)\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.7, Page number 337" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#Variable declaration\n", "epsilon_0=8.854*10**-12;\n", "chi=4.94; #relative susceptibility\n", "N=10**28; #number of dipoles per m^3\n", "\n", "#Calculation\n", "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n", "#epsilon_0*chi*E=N*alpha*E\n", "alpha=(epsilon_0*chi)/N;\n", "\n", "#Result\n", "print(\"polarisability of material in F/m^2 is\",alpha);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('polarisability of material in F/m^2 is', 4.373876e-39)\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }