{ "metadata": { "name": "", "signature": "sha256:761cc333c24ab0bff41cc769407ab239595ed8749ad7bd7c5ee14e4e733b1604" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "6: Crystallography" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.1, Page number 134" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "M = 23+35.5; #Molecular weight of NaCl(kg/k-mole)\n", "d = 2.18*10**3; #Density of rock salt(kg/m**3)\n", "n = 4; #Number of atoms per unit cell for an fcc lattice of NaCl crystal\n", "N = 6.02*10**26; #Avogadro's No., atoms/k-mol\n", "\n", "#Calculation\n", "a = (n*M/(d*N))**(1/3); #Lattice constant of unit cell of NaCl(m)\n", "a = a*10**9; ##Lattice constant of unit cell of NaCl(nm)\n", "a = math.ceil(a*10**3)/10**3; #rounding off the value of a to 3 decimals\n", "\n", "#Result\n", "print \"Lattice parameter for the NaCl crystal is\",a, \"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Lattice parameter for the NaCl crystal is 0.563 nm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.2, Page number 134" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "m = 3;\n", "n = 2; \n", "p = 1; #Coefficients of intercepts along three axes\n", "\n", "#Calculation\n", "#reciprocals of the intercepts are 1/m, 1/n, 1/p i.e 1/3, 1/2, 1\n", "#multiplying by LCM the reciprocals become 2, 3, 6\n", "\n", "#Result\n", "print \"The required miller indices are : (2, 3, 6)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required miller indices are : (2, 3, 6)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.3, Page number 135" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math\n", "\n", "#Variable declaration\n", "m = 2; #Coefficient of intercept along x-axis\n", "#n = infinite Coefficient of intercept along y-axis\n", "p = 3/2; #Coefficient of intercept along z-axis\n", "\n", "#Calculation\n", "#reciprocals of the intercepts are 1/m, 1/n, 1/p i.e 1/2, 0, 2/3\n", "#multiplying by LCM the reciprocals become 3, 0, 4\n", "\n", "#Result\n", "print \"The required miller indices are : (3, 0, 4)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required miller indices are : (3, 0, 4)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.4, Sketching not possible" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.5, Page number 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "#For (110) planes\n", "h1 = 1;\n", "k1 = 1;\n", "l1 = 0; #Miller Indices for planes in a cubic crystal\n", "a1 = 0.43; #Interatomic spacing(nm)\n", "#For (212) planes\n", "h2 = 2; \n", "k2 = 1;\n", "l2 = 2; #Miller Indices for planes in a cubic crystal\n", "a2 = 0.43; #Interatomic spacing(nm)\n", "\n", "#Calculation\n", "d1 = a1/(h1**2+k1**2+l1**2)**(1/2); #The interplanar spacing for cubic crystals(nm)\n", "d1 = math.ceil(d1*10**4)/10**4; #rounding off the value of d1 to 4 decimals\n", "d2 = a2/(h2**2+k2**2+l2**2)**(1/2); #The interplanar spacing for cubic crystals(nm)\n", "d2 = math.ceil(d2*10**4)/10**4; #rounding off the value of d2 to 4 decimals\n", "\n", "#Result\n", "print \"The interplanar spacing between consecutive (110) planes is\",d1, \"nm\";\n", "print \"The interplanar spacing between consecutive (212) planes is\",d2, \"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The interplanar spacing between consecutive (110) planes is 0.3041 nm\n", "The interplanar spacing between consecutive (212) planes is 0.1434 nm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.6, Page number 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h = 2;\n", "k = 3;\n", "l = 1; #Miller Indices for planes in a cubic crystal\n", "r = 0.175; #Atomic radius of fcc lattice(nm)\n", "\n", "#Calculation\n", "a = 2*math.sqrt(2)*r; #Interatomic spacing of fcc lattice(nm)\n", "d = a/(h**2+k**2+l**2)**(1/2); #The interplanar spacing for cubic crystals(nm)\n", "d = math.ceil(d*10**4)/10**4; #rounding off the value of d to 4 decimals\n", "\n", "#Result\n", "print \"The interplanar spacing between consecutive (231) planes is\",d, \"nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The interplanar spacing between consecutive (231) planes is 0.1323 nm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.7, Page number 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda = 1.44; #Wavelength of X-rays(A)\n", "d = 2.8; #Interplanar spacing of rocksalt crystal(A)\n", "n1 = 1; #For 1st Order diffraction\n", "n2 = 2; #For 2nd Order diffraction\n", "\n", "#Calculation\n", "theta1 = math.asin(n1*lamda/(2*d)); #Angle of diffraction(radians)\n", "theeta1 = theta1*57.2957795; #Angle of diffraction(degrees)\n", "theeta1 = math.ceil(theeta1*10**2)/10**2; #rounding off the value of theeta1 to 2 decimals\n", "theta2 = math.asin(n2*lamda/(2*d)); #Angle of diffraction(radians)\n", "theeta2 = theta2*57.2957795; #Angle of diffraction(degrees)\n", "theeta2 = math.ceil(theeta2*10**2)/10**2; #rounding off the value of theeta2 to 2 decimals\n", "\n", "#Result\n", "print \"The angle of diffraction for first order maxima is\",theeta1, \"degrees\"\n", "print \"The angle of diffraction for second order maxima is\",theeta2, \"degrees\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle of diffraction for first order maxima is 14.91 degrees\n", "The angle of diffraction for second order maxima is 30.95 degrees\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.8, Page number 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a = 1; #For convenience, assume interatomic spacing to be unity(m)\n", "\n", "#Calculation\n", "N = 8*(1/8) + 6*(1/2); #total number of spheres in a unit cell\n", "r = a/(2*math.sqrt(2)); #The atomic radius(m)\n", "V_atom = N*(4/3)*math.pi*r**3; #Volume of atoms(m**3)\n", "V_uc = a**3; #Volume of unit cell(m**3)\n", "PV = (V_atom/V_uc)*100; #percentage of actual volume\n", "PV = math.ceil(PV*10)/10; #rounding off the value of PV to 1 decimal\n", "\n", "#Result\n", "print \"The percentage of actual volume occupied by the spheres in fcc structure is\",PV, \"percent\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage of actual volume occupied by the spheres in fcc structure is 74.1 percent\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.9, Page number 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "#For (221) planes\n", "h = 2; \n", "k = 2; \n", "l = 1; #Miller Indices for planes in a cubic crystal\n", "a = 2.68; #Interatomic spacing(A)\n", "n1 = 1; #First Order of diffraction \n", "n2 = 2; #Second order of diffraction\n", "theta1 = 8.5; #Glancing angle at which Bragg's reflection occurs(degrees)\n", "\n", "#Calculation\n", "theta1 = theta1*0.0174532925; #Glancing angle at which Bragg's reflection occurs(radians)\n", "a = a*10**-10; #Interatomic spacing(m)\n", "d = a/(h**2+k**2+l**2)**(1/2); #The interplanar spacing for cubic crystal(m)\n", "lamda = 2*d*math.sin(theta1)/n1; #Bragg's Law for wavelength of X-rays(m)\n", "lamda_A = lamda*10**10; #Bragg's Law for wavelength of X-rays(A)\n", "lamda_A = math.ceil(lamda_A*10**4)/10**4; #rounding off the value of lamda_A to 4 decimals\n", "theta2 = math.asin(n2*lamda/(2*d)); #Angle at which second order Bragg reflection occurs(radians)\n", "theta2 = theta2*57.2957795; #Angle at which second order Bragg reflection occurs(degrees)\n", "theta2 = math.ceil(theta2*10)/10; #rounding off the value of theta2 to 1 decimal\n", "\n", "#Result\n", "print \"The interplanar spacing between consecutive (221) planes is\",d, \"m\"\n", "print \"The wavelength of X-rays is\",lamda_A, \"angstrom\"\n", "print \"The angle at which second order Bragg reflection occurs is\",theta2, \"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The interplanar spacing between consecutive (221) planes is 8.93333333333e-11 m\n", "The wavelength of X-rays is 0.2641 angstrom\n", "The angle at which second order Bragg reflection occurs is 17.2 degrees\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.10, Page number 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h = 1; \n", "k = 1;\n", "l = 0; #Miller Indices for planes in a cubic crystal\n", "n = 1; #First Order of diffraction \n", "theta = 25; #Glancing angle at which Bragg's reflection occurs(degrees)\n", "lamda = 0.7; #Wavelength of X-rays(A)\n", "\n", "#Calculation\n", "theta = theta*0.0174532925; #Glancing angle at which Bragg's reflection occurs(radians)\n", "d = n*lamda/(2*math.sin(theta)); #Interplanar spacing of cubic crystal(A)\n", "a = d*(h**2+k**2+l**2)**(1/2); #The lattice parameter for cubic crystal(A)\n", "a = math.ceil(a*10**3)/10**3; #rounding off the value of a to 3 decimals\n", "\n", "#Result\n", "print \"The lattice parameter for cubic crystal is\",a, \"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lattice parameter for cubic crystal is 1.172 angstrom\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.11, Page number 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d = 0.31; #Interplanar spacing(nm)\n", "n = 1; #First Order of diffraction \n", "theta = 9.25; #Glancing angle at which Bragg's reflection occurs(degrees)\n", "theta_max = 90; #Maximum possible angle at which reflection can occur(degrees)\n", "theta_max = theta_max*0.0174532925; #Maximum possible angle at which reflection can occur(radians)\n", "\n", "#Calculation\n", "theta = theta*0.0174532925; #Glancing angle at which Bragg's reflection occurs(radians)\n", "lamda = 2*d*math.sin(theta)/n; #Wavelength of X-rays(nm) (Bragg's Law)\n", "lamda = math.ceil(lamda*10**5)/10**5; #rounding off the value of lamda to 5 decimals\n", "n = 2*d*math.sin(theta_max)/lamda; #Maximum possible order of diffraction\n", "\n", "#Result\n", "print \"The wavelength of X-rays is\",lamda, \"nm\"\n", "print \"The Maximum possible order of diffraction is\",round(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of X-rays is 0.09967 nm\n", "The Maximum possible order of diffraction is 6.0\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.12, Page number 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "#For (110) planes\n", "h1 = 1;\n", "k1 = 1;\n", "l1 = 0; #Miller indices for (110) planes\n", "d_110 = 0.195; #Interplanar spacing between (110) planes(nm)\n", "#For (210) planes\n", "h2 = 2;\n", "k2 = 1; \n", "l2 = 0; #Miller indices for (110) planes\n", "n = 2; #Second Order of diffraction \n", "lamda = 0.071; #Wavelength of X-rays(nm)\n", "\n", "#Calculation\n", "a = d_110*(h1**2 + k1**2 + l1**2)**(1/2); #Lattice parameter for bcc crystal(nm)\n", "d_210 = a/(h2**2 + k2**2 + l2**2)**(1/2); #Interplanar spacing between (210) planes(nm)\n", "theta = math.asin(n*lamda/(2*d_210)); #Bragg reflection angle for the second order diffraction(radians)\n", "theeta = theta*57.2957795; #Bragg reflection angle for the second order diffraction(degrees)\n", "theeta = math.ceil(theeta*10**3)/10**3; #rounding off the value of theeta to 3 decimals\n", "\n", "#Result\n", "print \"Bragg reflection angle for the second order diffraction is\",theeta, \"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bragg reflection angle for the second order diffraction is 35.149 degrees\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.13, Page number 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d = 2182; #Density of rock salt(kg/m**3)\n", "n = 4; #Number of atoms per unit cell for an fcc lattice of NaCl crystal\n", "N = 6.02*10**26; #Avogadro's number(atoms/k-mol)\n", "\n", "#Calculation\n", "M = 23+35.5; #Molecular weight of NaCl(kg/k-mole)\n", "#V = a^3 = M*n/(N*d)\n", "a = (n*M/(d*N))**(1/3); #Lattice constant of unit cell of NaCl(m)\n", "D = a/2; #distance between nearest neighbours(m)\n", "D = D*10**9; #distance between nearest neighbours(nm)\n", "D = math.ceil(D*10**4)/10**4; #rounding off the value of D to 4 decimals\n", "\n", "#Result\n", "print \"The distance between nearest neighbours of NaCl structure is\",D, \"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between nearest neighbours of NaCl structure is 0.2814 nm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 6.14, Page number 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r1 = 1.258; #Atomic radius of bcc structure of iron(A)\n", "N1 = 2; #Number of atoms per unit cell in bcc structure\n", "#For fcc structure\n", "r2 = 1.292; #Atomic radius of fcc structure of iron(A)\n", "N2 = 4; #Number of atoms per unit cell in fcc structure\n", "\n", "#Calculation\n", "a1 = 4*r1/math.sqrt(3); #Lattice parameter of bcc structure of iron(A)\n", "V1 = a1**3; #Volume of bcc unit cell(A)\n", "V_atom_bcc = V1/N1; #Volume occupied by one atom(A)\n", "a2 = 2*math.sqrt(2)*r2; #Lattice parameter of fcc structure of iron(A)\n", "V2 = a2**3; #Volume of fcc unit cell(A)\n", "V_atom_fcc = V2/N2; #Volume occupied by one atom(A)\n", "delta_V = (V_atom_bcc-V_atom_fcc)/V_atom_bcc*100; #Percentage change in volume due to structural change of iron\n", "delta_V = math.ceil(delta_V*10**3)/10**3; #rounding off the value of delta_V to 3 decimals\n", "\n", "#Result\n", "print \"The percentage change in volume of iron is\",delta_V, \"percent\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage change in volume of iron is 0.494 percent\n" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }