{ "metadata": { "name": "Chapter5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": "5: Polarization" }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example number 5.1, Page number 113" }, { "cell_type": "code", "collapsed": false, "input": "#To calculate the angle of incidence for complete polarization\n\n#importing modules\nfrom __future__ import division\nimport math\n\n#Variable declaration\nmew_g = 1.72; #Refractive index of glass\nmew_w = 4/3; #Refractive index of water\n\n#Calculation\n#For polarization to occur on flint glass, tan(i) = mew_g/mew_w\n#Solving for i\ni_g = math.atan(mew_g/mew_w); #angle of incidence for complete polarization for flint glass(rad)\na = 180/math.pi; #conversion factor from radians to degrees\ni_g = i_g*a; #angle of incidence(degrees)\ni_g = math.ceil(i_g*10**2)/10**2; #rounding off the value of i_g to 2 decimals\n#For polarization to occur on water, tan(i) = mew_w/mew_g\n#Solving for i\ni_w = math.atan(mew_w/mew_g); #angle of incidence for complete polarization for water(rad)\ni_w = i_w*a; #angle of incidence(degrees)\ni_w = math.ceil(i_w*10**3)/10**3; #rounding off the value of i_w to 3 decimals\n\n#Result\nprint \"The angle of incidence for complete polarization to occur on flint glass is\",i_g, \"degrees\"\nprint \"The angle of incidence for complete polarization to occur on water is\",i_w, \"degrees\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The angle of incidence for complete polarization to occur on flint glass is 52.22 degrees\nThe angle of incidence for complete polarization to occur on water is 37.783 degrees\n" } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example number 5.2, Page number 113" }, { "cell_type": "code", "collapsed": false, "input": "#To calculate the percentage transmission of incident light\n\n#importing modules\nfrom __future__ import division\nimport math\n\n#Variable declaration\nI0 = 1; #For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity(W/m**2)\ntheta = 30; #Angle through which the crossed Nicol is rotated(degrees)\n\n#Calculation\ntheeta = 90-theta; #angle between the planes of transmission after rotating through 30 degrees\na = math.pi/180; #conversion factor from degrees to radians\ntheeta = theeta*a; ##angle between the planes of transmission(rad)\nI = I0*math.cos(theeta)**2; #Intensity of the emerging light from second Nicol(W/m**2)\nT = (I/(2*I0))*100; #Percentage transmission of incident light\nT = math.ceil(T*100)/100; #rounding off the value of T to 2 decimals\n\n#Result\nprint \"The percentage transmission of incident light after emerging through the Nicol prism is\",T, \"%\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The percentage transmission of incident light after emerging through the Nicol prism is 12.51 %\n" } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example number 5.3, Page number 113" }, { "cell_type": "code", "collapsed": false, "input": "#To calculate the thickness of Quarter Wave plate\n\n#importing modules\nfrom __future__ import division\nimport math\n\n#Variable declaration\nlamda = 6000; #Wavelength of incident light(A)\nmew_e = 1.55; #Refractive index of extraordinary ray\nmew_o = 1.54; #Refractive index of ordinary ray\n\n#Calculation\nlamda = lamda*10**-8; #Wavelength of incident light(cm)\nt = lamda/(4*(mew_e-mew_o)); #Thickness of Quarter Wave plate of positive crystal(cm)\n\n#Result\nprint \"The thickness of Quarter Wave plate is\",t, \"cm\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The thickness of Quarter Wave plate is 0.0015 cm\n" } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example number 5.4, Page number 114" }, { "cell_type": "code", "collapsed": false, "input": "#To show the behaviour of the plate\n\n#Calculation\n#the thickness of a half wave plate of calcite for wavelength lamda is\n#t = lamda/(2*(mew_e - mew_o)) = (2*lamda)/(4*(mew_e - mew_o))\n\n#Result\nprint \"The half wave plate for lamda will behave as a quarter wave plate for 2*lamda for negligible variation of refractive index with wavelength\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The half wave plate for lamda will behave as a quarter wave plate for 2*lamda for negligible variation of refractive index with wavelength\n" } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example number 5.5, Page number 114" }, { "cell_type": "code", "collapsed": false, "input": "#To calculate the phase retardation\n\n#importing modules\nfrom __future__ import division\nimport math\n\n#Variable declaration\nlamda = 500; #Wavelength of incident light(nm)\nmew_e = 1.5508; #Refractive index of extraordinary ray\nmew_o = 1.5418; #Refractive index of ordinary ray\nt = 0.032; #Thickness of quartz plate(mm)\n\n#Calculation\nlamda = lamda*10**-9; #Wavelength of incident light(m)\nt = t*10**-3; #Thickness of quartz plate(m)\ndx = (mew_e - mew_o)*t; #Path difference between E-ray and O-ray(m)\ndphi = (2*math.pi)/lamda*dx; #Phase retardation for quartz for given wavelength(rad)\ndphi = dphi/math.pi;\n\n#Result\nprint \"The phase retardation for quartz for given wavelength is\",dphi, \"pi rad\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The phase retardation for quartz for given wavelength is 1.152 pi rad\n" } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example number 5.6, Page number 114" }, { "cell_type": "code", "collapsed": false, "input": "#To calculate the Brewster angle at the boundary\n\n#importing modules\nimport math\n\n#Variable declaration\nC = 52; #Critical angle for total internal reflection(degrees)\n\n#Calculation\na = math.pi/180; #conversion factor from degrees to radians\nC = C*a; #Critical angle for total internal reflection(rad)\n#From Brewster's law, math.tan(i_B) = 1_mew_2\n#Also math.sin(C) = 1_mew_2, so that math.tan(i_B) = math.sin(C), solving for i_B\ni_B = math.atan(math.sin(C)); #Brewster angle at the boundary(rad)\nb = 180/math.pi; #conversion factor from radians to degrees\ni_B = i_B*b; #Brewster angle at the boundary(degrees)\n\n#Result\nprint \"The Brewster angle at the boundary between two materials is\",int(i_B), \"degrees\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The Brewster angle at the boundary between two materials is 38 degrees\n" } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": "", "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 } ], "metadata": {} } ] }