{ "metadata": { "name": "", "signature": "sha256:366ab969956cd234404db0091b17960805856ec3ff44007e36b0efdbe1414f5e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "3: Interference" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.1, Page number 71" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "from __future__ import division\n", "import math\n", "\n", "#Variable declaration\n", "beta = 0.51; #Fringe width(mm)\n", "d = 2.2; #Distance between the slits(mm)\n", "D = 2; #Distance between the slits and the screen(m)\n", "\n", "#Calculation\n", "beta = beta*10**-1; #Fringe width(cm)\n", "d = d*10**-1; #Distance between the slits(cm)\n", "D=D*10**2; #Distance between the slits and the screen(cm)\n", "lamda = beta*d/D; #Wavelength of light(cm)\n", "lamda = lamda*10**8; #Wavelength of light(A)\n", "\n", "#Result\n", "print \"The wavelength of light is\",lamda, \"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of light is 5610.0 angstrom\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.2, Page number 71" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "from __future__ import division\n", "import math\n", "\n", "#Variable declaration\n", "lambda1 = 4250; #First wavelength emitted by source of light(A)\n", "lambda2 = 5050; #Second wavelength emitted by source of light(A)\n", "D = 1.5; #Distance between the source and the screen(m)\n", "d = 0.025; #Distance between the slits(mm)\n", "n = 3; #Number of fringe from the centre\n", "\n", "#Calculation\n", "lambda1 = lambda1*10**-10; #First wavelength emitted(m)\n", "lambda2 = lambda2*10**-10; #Second wavelength emitted(m)\n", "d = d*10**-3; #Distance between the slits(m)\n", "x3 = n*lambda1*D/d; #Position of third bright fringe due to lambda1(m)\n", "x3_prime = n*lambda2*D/d; #Position of third bright fringe due to lambda2(m)\n", "x = x3_prime-x3; #separation between the third bright fringe(m)\n", "x = x*10**2; #separation between the third bright fringe(cm)\n", "\n", "#Result\n", "print \"The separation between the third bright fringe due to the two wavelengths is\",x, \"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The separation between the third bright fringe due to the two wavelengths is 1.44 cm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.3, Page number 71" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 5.5*10**-5; #Wavelength emitted by source of light(cm)\n", "n = 4; #Number of fringes shifted\n", "t = 3.9*10**-4; #Thickness of the thin glass sheet(cm)\n", "\n", "#Calculation\n", "mew = (n*lamda/t)+1; #Refractive index of the sheet of glass\n", "mew = math.ceil(mew*10**4)/10**4; #rounding off the value of v to 4 decimals\n", "\n", "#Result\n", "print \"The refractive index of the sheet of glass is\",mew" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The refractive index of the sheet of glass is 1.5642\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.4, Page number 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 5893; #Wavelength of monochromatic lihgt used(A)\n", "n = 1; #Number of fringe for the least thickness of the film\n", "cosr = 1; #for normal incidence\n", "mew = 1.42; #refractive index of the soap film\n", "\n", "#Calculation\n", "#As for constructive interference, \n", "#2*mew*t*cos(r) = (2*n-1)*lambda/2, solving for t\n", "t = (2*n-1)*lamda/(4*mew*cosr); #Thickness of the film that appears bright(A)\n", "#As for destructive interference, \n", "#2*mu*t*cos(r) = n*lambda, solving for t\n", "t1 = n*lamda/(2*mew*cosr); #Thickness of the film that appears bright(A)\n", "\n", "#Result\n", "print \"The thickness of the film that appears bright is\",t, \"angstrom\"\n", "print \"The thickness of the film that appears dark is\",t1, \"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the film that appears bright is 1037.5 angstrom\n", "The thickness of the film that appears dark is 2075.0 angstrom\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.5, Page number 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 5893; #Wavelength of monochromatic lihgt used(A)\n", "n = 10; #Number of fringe that are found \n", "d = 1; #Distance of 10 fringes(cm)\n", "\n", "#Calculation\n", "beta = d/n; #Fringe width(cm)\n", "lamda = lamda*10**-8; #Wavelength of monochromatic lihgt used(cm)\n", "theta = lamda/(2*beta); #Angle of the wedge(rad)\n", "theta = theta*10**4;\n", "theta = math.ceil(theta*10**4)/10**4; #rounding off the value of theta to 4 decimals\n", "\n", "#Result\n", "print \"The angle of the wedge is\",theta,\"*10**-4 rad\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle of the wedge is 2.9465 *10**-4 rad\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.6, Page number 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda = 5900; #Wavelength of monochromatic lihgt used(A)\n", "t = 0.010; #Spacer thickness(mm)\n", "l = 10; #Wedge length(cm)\n", "\n", "#Calculation\n", "t = t*10**-1; #Spacer thickness(cm)\n", "theta = t/l; #Angle of the wedge(rad)\n", "lamda = lamda*10**-8; #Wavelength of monochromatic lihgt used(cm)\n", "beta = lamda/(2*theta); #Fringe width(cm)\n", "\n", "#Result\n", "print \"The separation between consecutive bright fringes is\",beta, \"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The separation between consecutive bright fringes is 0.295 cm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.7, Page number 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math\n", "\n", "#Variable declaration\n", "D4 = 0.4; #Diameter of 4th dark ring(cm)\n", "D12 = 0.7; #Diameter of 12th dark ring(cm)\n", "\n", "#Calculation\n", "#We have (dn_plus_k**2)-Dn**2 = 4*k*R*lamda\n", "#D12**2-D4**2 = 32*R*lamda and D20**2-D12**2 = 32*R*lamda for k = 8\n", "#since RHS are equal, by equating the LHS we get D12**2-D4**2 = D20**2-D12**2\n", "D20 = math.sqrt((2*D12**2)-D4**2); #Diameter of 20th dark ring(cm)\n", "D20 = math.ceil(D20*10**4)/10**4; #rounding off the value of D20 to 4 decimals\n", "\n", "#Result\n", "print \"The diameter of 20th dark ring is\",D20, \"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diameter of 20th dark ring is 0.9056 cm\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.8, Page number 73" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Dn = 0.30; #Diameter of nth dark ring with air film(cm)\n", "dn = 0.25; #Diameter of nth dark ring with liquid film(cm)\n", "\n", "#Calculation\n", "mew = (Dn/dn)**2; #Refractive index of the liquid\n", "\n", "#Result\n", "print \"The refractive index of the liquid is\", mew\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The refractive index of the liquid is 1.44\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.9, Page number 73" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "x = 0.002945; #Distance through which movable mirror is shifted(cm)\n", "N = 100; #Number of fringes shifted\n", "\n", "#Calculation\n", "x = x*10**-2; #Distance through which movable mirror is shifted(m)\n", "lamda = 2*x/N; #Wavelength of light(m)\n", "lamda = lamda*10**10; #Wavelength of light(A)\n", "\n", "#Result\n", "print \"The wavelength of light is\",lamda, \"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of light is 5890.0 angstrom\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.10, Page number 73" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math\n", "\n", "#Variable declaration\n", "lambda1 = 5896; #Wavelength of D1 line of sodium(A)\n", "lambda2 = 5890; #Wavelength of D2 line of sodium(A)\n", "\n", "#Calculation\n", "lamda = (lambda1+lambda2)/2;\n", "x = (lamda**2)/(2*(lambda1-lambda2)); #Shift in movable mirror of Michelson Interferometer(A)\n", "x = x*10**-7; #Shift in movable mirror of Michelson Interferometer(mm)\n", "x = math.ceil(x*10**4)/10**4; #rounding off the value of D20 to 4 decimals\n", "\n", "#Result\n", "print \"The shift in movable mirror is\",x, \"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The shift in movable mirror is 0.2894 mm\n" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }