{ "metadata": { "name": "", "signature": "sha256:2693d83b10c8e62fc8d3ef78c9959c4d8327c36ed1f7884372585d33796bcbc3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "2: Electromagnetic Theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.1, Page number 46" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "from __future__ import division\n", "from sympy import *\n", "import math\n", "\n", "#Variable declaration\n", "C = 10; #Capacitance of the capacitor(pF)\n", "#given V=0.2*sin(120*math.pi*t) in volts\n", "\n", "#Calculation\n", "C=C*10**-12; #Capacitance of the capacitor(F)\n", "x, y, z, t = symbols('x y z t')\n", "k, m, n = symbols('k m n', integer=True)\n", "f, g, h = symbols('f g h', cls=Function)\n", "#I = C*dV/dt\n", "#let dV/dt be a\n", "a=diff(0.2*sin(120*math.pi*t),t) #dV/dt\n", "#value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n", "#for cosine function peak value occurs when 120*math.pi*t = 0\n", "#therefore value of dV/dt becomes d = 75.398223686155\n", "d = 75.398223686155; #value of dV/dt \n", "I=C*d; #displacement current(A)\n", "\n", "#Result\n", "print \"value of dV/dt is\",a\n", "print \"displacement current is\",I, \"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n", "displacement current is 7.53982236862e-10 A\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.2, Page number 46" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "from __future__ import division\n", "from sympy import *\n", "import math\n", "\n", "#Variable declaration\n", "epsilon_r = 1; #Relative electrical permittivity of free space\n", "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "#given E=sin(120*math.pi*t) in volts\n", "\n", "#Calculation\n", "x, y, z, t = symbols('x y z t')\n", "k, m, n = symbols('k m n', integer=True)\n", "f, g, h = symbols('f g h', cls=Function)\n", "#J2 = epsilon*dE/dt\n", "epsilon=epsilon_0*epsilon_r;\n", "#let dE/dt be a\n", "a=diff(sin(120*math.pi*t),t) #dE/dt\n", "#value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n", "#for cosine function peak value occurs when 120*math.pi*t = 0\n", "#therefore value of dE/dt becomes d = 376.991118430775\n", "d = 376.991118430775; #value of dE/dt\n", "J2=epsilon*d; #displacement current density(A/m**2)\n", "\n", "#Result\n", "print \"value of dE/dt is\",a\n", "print \"The peak value of displacement current density is\",J2, \"A/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n", "The peak value of displacement current density is 3.33787936259e-09 A/m**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.3, Page number 47 (Theoritical proof)" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.4, Page number 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "from __future__ import division\n", "import math\n", "\n", "#Variable declaration\n", "p = 60; #Power rating of bulb(W)\n", "d = 0.5; #Distance from the bulb(m)\n", "\n", "#Calculation\n", "A=4*math.pi*d**2; #area(m**2)\n", "P = p/A; #Value of Poynting vector(W/m**2)\n", "P = math.ceil(P*100)/100; #rounding off value of P to 1 decimal\n", "\n", "#Result\n", "print \"The value of Poynting vector is\",P, \"W/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Poynting vector is 19.1 W/m**2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.5, Page number 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "from __future__ import division\n", "import math\n", "\n", "#Variable declaration\n", "E_peak = 6; #Peak value of electric field intensity(V/m)\n", "c = 3*10**8; #Speed of electromagnetic wave in free space(m/s)\n", "mew_0 = 4*math.pi*10**-7; #Absolute permeability of free space(Tm/A)\n", "epsilon_0 = 8.854*10**-12; #Absolute permittivity of free space(F/m)\n", "mew_r = 1; #Relative permeability of medium\n", "epsilon_r = 3; #Relative permittivity of the medium\n", "\n", "#Calculation\n", "v = c/math.sqrt(mew_r*epsilon_r); #Wave velocity(m/s)\n", "v = v/10**8;\n", "v = math.ceil(v*10**4)/10**4; #rounding off the value of v to 4 decimals\n", "eta = math.sqrt((mew_0/epsilon_0)*(mew_r/epsilon_r)); #Intrinsic impedance of the medium(ohm)\n", "eta = math.ceil(eta*10)/10; #rounding off the value of v to 1 decimal\n", "H_P = E_peak/eta; #Peak value of the magnetic intensity(A/m)\n", "H_P = H_P*10**2;\n", "H_P = math.ceil(H_P*10**2)/10**2; #rounding off the value of v to 2 decimals\n", "\n", "#Result\n", "print \"The wave velocity is\",v,\"*10**8 m/s\"\n", "print \"The intrinsic impedance of the medium is\",eta, \"ohm\"\n", "print \"The peak value of the magnetic intensity is\",H_P,\"*10**-2 A/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wave velocity is 1.7321 *10**8 m/s\n", "The intrinsic impedance of the medium is 217.6 ohm\n", "The peak value of the magnetic intensity is 2.76 *10**-2 A/m\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }