{ "metadata": { "name": "", "signature": "sha256:be254bf95838dd01a87a63582117a886c3167a80cf387f9901b2e2de7a990b8e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "13: Dielectric Properties of Materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.1, Page number 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "epsilon_0 = 8.85*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "R = 0.52; #Radius of hydrogen atom(A)\n", "n = 9.7*10**26; #Number density of hydrogen(per metre cube)\n", "\n", "#Calculation\n", "R = R*10**-10; #Radius of hydrogen atom(m)\n", "alpha_e = 4*math.pi*epsilon_0*R**3; #Electronic polarizability of hydrogen atom(Fm**2)\n", "\n", "#Result\n", "print \"The electronic polarizability of hydrogen atom is\", alpha_e, \"Fm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarizability of hydrogen atom is 1.56373503182e-41 Fm**2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.2, Page number 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "A = 100; #Area of a plate of parallel plate capacitor(cm**2)\n", "d = 1; #Distance between the plates of the capacitor(cm)\n", "V = 100; #Potential applied to the plates of the capacitor(V)\n", "\n", "#Calculation\n", "A= A*10**-4; #Area of a plate of parallel plate capacitor(m**2)\n", "d = d*10**-2; #Distance between the plates of the capacitor(m)\n", "C = epsilon_0*A/d; #Capacitance of parallel plate capacitor(F)\n", "Q = C*V; #Charge on the plates of the capacitor(C)\n", "\n", "#Result\n", "print \"The capacitance of parallel plate capacitor is\",C, \"F\"\n", "print \"The charge on the plates of the capacitor is\",Q, \"C\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance of parallel plate capacitor is 8.854e-12 F\n", "The charge on the plates of the capacitor is 8.854e-10 C\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.3, Page number 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "epsilon_r = 5.0; #Dielectric constant of the material between the plates of capacitor\n", "V = 15; #Potential difference applied between the plates of the capacitor(V)\n", "d = 1.5; #Separation between the plates of the capacitor(mm)\n", "\n", "#Calculation\n", "d = d*10**-3; #Separation between the plates of the capacitor(m)\n", "#Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n", "D = epsilon_0*epsilon_r*V/d; #Dielectric displacement(C/m**2)\n", "\n", "#Result\n", "print \"The dielectric displacement is\",D, \"C/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dielectric displacement is 4.427e-07 C/m**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.4, Page number 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "N = 3*10**28; #Number density of solid elemental dielectric(atoms/metre cube)\n", "alpha_e = 10**-40; #Electronic polarizability(Fm**2)\n", "\n", "#Calculation\n", "epsilon_r = 1 + (N*alpha_e/epsilon_0); #Relative dielectric constant of the material\n", "epsilon_r = math.ceil(epsilon_r*10**3)/10**3; #rounding off the value of epsilon_r to 3 decimals\n", "\n", "#Result\n", "print \"The Relative dielectric constant of the material is\",epsilon_r\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Relative dielectric constant of the material is 1.339\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.5, Page number 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N_A = 6.02*10**23; #Avogadro's number(per mole)\n", "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "epsilon_r = 3.75; #Relative dielectric constant\n", "d = 2050; #Density of sulphur(kg/metre cube)\n", "y = 1/3; #Internal field constant\n", "M = 32; #Atomic weight of sulphur(g/mol)\n", "\n", "#Calculation\n", "N = N_A*10**3*d/M; #Number density of atoms of sulphur(per metre cube)\n", "#Lorentz relation for local fields give E_local = E + P/(3*epsilon_0) which gives\n", "#(epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", "alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; #Electronic polarizability of sulphur(Fm**2)\n", "\n", "#Result\n", "print \"The electronic polarizability of sulphur is\",alpha_e, \"Fm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarizability of sulphur is 3.2940125351e-40 Fm**2\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.6, Page number 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N = 3*10**28; #Number density of atoms of dielectric material(per metre cube)\n", "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", "n = 1.6; #Refractive index of dielectric material\n", "\n", "#Calculation\n", "#As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", "alpha_e = (n**2 - 1)/(n**2 + 2)*3*epsilon_0/N; #Electronic polarizability of dielectric material(Fm**2)\n", "\n", "#Result\n", "print \"The electronic polarizability of dielectric material is\",alpha_e, \"Fm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarizability of dielectric material is 3.029e-40 Fm**2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 13.7, Page number 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon_r = 4.9; #Absolute relative dielectric constant of material(F/m)\n", "n = 1.6; #Refractive index of dielectric material\n", "\n", "#Calculation\n", "#As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2)\n", "#let alpha_ratio = alpha_i/alpha_e\n", "alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n**2 + 2)/(n**2 - 1) - 1)**(-1); #Ratio of electronic polarizability to ionic polarizability\n", "alpha_ratio = math.ceil(alpha_ratio*10**3)/10**3; #rounding off the value of alpha_ratio to 3 decimals\n", "\n", "#Result\n", "print \"The ratio of electronic polarizability to ionic polarizability is\",alpha_ratio" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of electronic polarizability to ionic polarizability is 1.534\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }