{ "metadata": { "name": "", "signature": "sha256:f3ccf4fb6d13add26a342446f0908b75d3a6a82c442b340e601708c15ec3ca4f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2:Axial strains and Deformations in bars " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1 page number 77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "l_ob = 2000 #mm - length of rod ob\n", "l_bc = 1000 #mm - length of rod bc\n", "l_cd = 1500 #mm - length of rod cd\n", "p_ob = 100 #kN - Force in rods \n", "p_bc = -150 #KN\n", "p_cd = 50 #KN \n", "A_ob = 1000 #mm2 - Area of rod ob\n", "A_bc = 2000 #mm2 - Area of rod bc \n", "A_cd = 1000 #mm2 - Area of rod cd\n", "E = 200.0 #GPA \n", "# the total deflection is algebraic sums of `deflection in each module \n", "e_1 = p_ob*l_ob/(A_ob*E)\n", "e_2 = p_bc*l_bc/(A_bc*E)\n", "e_3 = p_cd*l_cd/(A_cd*E)\n", "#All units are satisfied \n", "e_total = e_1+ e_2 + e_3\n", "print \"The total deflection is :\",round(e_total,3) ,\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total deflection is : 1.0 mm\n" ] } ], "prompt_number": 77 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4 page number 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "p_app = 3 #Kips - applied force \n", "P_A = 2.23 #Kips \n", "p_B = -2.83 #kips - compressive force\n", "l_ab = 6.71 #inch\n", "l_bc = 8.29 #inch\n", "s_ab = 17.8 #ksi - tensile stress\n", "s_bc = -12.9 #ksi - compressive stress\n", "E = 10.6 * pow(10,3) #ksi -youngs modulus \n", "e_ab = s_ab*l_ab/E\n", "\n", "e_bc = s_bc*l_bc/E\n", "x = e_ab/e_bc #the Ratio of cosines of the deflected angles \n", "# t_1 and t_2 be deflected angles \n", "#t_2 = 180-45-26.6-t_1 the sum of angles is 360\n", "#t_1 = 52.2 degress\n", "import math\n", "e = e_ab/math.acos(math.radians(52.2)) #inch\n", "k = p_app/e # kips/in vertical stiffness of the combination\n", "print \"The vertical stiffness of the combination is\",round(k,3),\"kips/inch\"\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.0112677358491\n", "The vertical stiffness of the combination is 113.14 kips/inch\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6 page number 83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "dia = 50 #mm - diameter of aluminium \n", "p = 100 # KN - instant force applid\n", "dia_c = 0.1215 #mm- change in diameter \n", "l_c = 0.219 #mm - change in length\n", "l = 300 #mm - length \n", "strain_dia = dia_c/dia # lateral strain \n", "strain_l = l_c/l #longitudinal strain \n", "po = strain_dia/strain_l # poission ratio \n", "area = 3.14*dia*dia/4 #mm2 area\n", "E = p*l/(area*l_c) #N/mm2 youngs modulus \n", "print \"The lateral strain is:\",strain_dia,\"no units\"\n", "print \"The longitudinal strain is:\",strain_l,\"no units\"\n", "print \"The poissions ratio is:\",po,\"no units\"\n", "print \"Youngs modulus:\",round(E,2),\"N/mm2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lateral strain is: 0.00243 no units\n", "The longitudinal strain is: 0.00073 no units\n", "The poissions ratio is: 3.32876712329 no units\n", "Youngs modulus: 69.8 N/mm2\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7 page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "T = 12.9*pow(10,-6) #/F\n", "t = 100.00 # F \n", "e_ab = T*t*l_ab #in-elongation \n", "e_bc = T*t*l_bc #in-elongation\n", "k = e_ab/e_bc # ratio of cosines of deflected angles \n", "# t_1 and t_2 be deflected angles \n", "#t_2 = 180-45-26.6-t_1 the sum of angles is 360\n", "t_1 = 26.6\n", "import math\n", "e = e_ab/math.acos(math.radians(26.6))\n", "print \"The displacement in point B is :\",e ,\"in\"\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The displacement in point B is : 0.00795578950395 in\n" ] } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.11 page number " ] }, { "cell_type": "code", "collapsed": false, "input": [ "mass = 4 #kg \n", "dist = 1 #mt freely falling distance\n", "l = 1500 #mm length of rod\n", "d = 15 #mm diameter\n", "E = 200 #GPA youngs modulus \n", "k = 4.5 # N/mm stiffness costant\n", "F = mass*9.81# The force applying\n", "Area = 3.14*(d**2)/4 \n", "# Two cases \n", "#youngs modulus \n", "e_y = F*l/(Area*E*pow(10,3))\n", "# stiffness\n", "e_f = F/k \n", "#total\n", "e = e_y +e_f\n", "k = 1+(2/(e*pow(10,-3)))\n", "stress_max_1 = F*(1+pow(k,0.5))/Area\n", "print \"The maximum stress is:\",stress_max_1,\"Mpa\"\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum stress is: 3.59377281766 Mpa\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.12 page number 103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "flex_a = 1#f\n", "flex_b = 2#f\n", "#removing lower support and solving FBD\n", "e = -2 -(2+1)#fp\n", "#e_1 = (2+1+1)*R\n", "#e_1 = -e Making the elongations zero since the both ends are fixed\n", "R = e/(2+1+1.0) #p\n", "print \"The reactions at bottom is\",R,\"p\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reactions at bottom is -1.25 p\n" ] } ], "prompt_number": 75 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.19 page number 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "l = 30 #in - The length of the rod\n", "p_1 = 80 #kips - The Force on the end\n", "p_2 = 125 #kips - The force on the other end\n", "A_s = 0.5 #in2 - The crossection of the steel rod\n", "A_a = 0.5 #in2 - The crossection of the aluminium \n", "E_a = 10*(10**6) #psi - The youngs modulus of the aluminium \n", "E_s = 30*(10**6) #psi - The youngs modulus of the steel\n", "#Internally stastically indeterminant \n", "p_a = p_1/4 #From solving we get p_s = 3*P_a\n", "#From material properties point of view \n", "#stress_steel = stress_aluminium\n", "e = p_a*l*(10**3)/(A_a*E_a) #The end deflection \n", "print \"The end deflection is\",e,\"in\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The end deflection is 0.12 in\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }