{ "metadata": { "name": "", "signature": "sha256:1a88ac8a4ae99a352f7f49d975099441ec02a55d62cfaa2e8c07de364172180d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11:Stability of Equilibrium: columns " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2 page number 589" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "h = 60 #mm - the length of the crossection \n", "b = 100 #mm - the width of hte crossection \n", "E = 200 #Gpa - The youngs modulus\n", "stress_cr = 250 #Mpa - The proportionality limit\n", "#Caliculations \n", "\n", "I = b*(h**3)/12 #mm3 The momentof inertia of the crossection\n", "A = h*b #mm2 - The area of teh crossection \n", "#From Eulier formula\n", "r_min = pow((I/A),0.5) #mm - The radius of the gyration \n", "#(l/r)**2= (pi**2)*E/stress_cr #From Eulier formula\n", "l = (((math.pi**2)*E*(10**3)/stress_cr)**0.5)*r_min #mm - the length after which the beam starts buckling\n", "print \"The length after which the beam starts buckling is \",round(l,0),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The length after which the beam starts buckling is 1539.0 mm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.6 page number 613" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "L = 15 #ft - The length of the each rod\n", "A = 46.7 #in2 - The length of the crossection \n", "r_min = 4 #in - The radius of gyration\n", "stress_yp = 36 #Ksi - the yielding point stress\n", "E = 29*(10**3) #ksi - The youngs modulus\n", "C_c = ((2*(math.pi**2)*E/stress_yp)**0.5) #Slenderness ratio L/R\n", "C_s = L*12/r_min # Slenderness ratio L/R of the present situation \n", "#According to AISC formulas \n", "if C_s 1:\n", " print \"The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",round(k,3),\">1\"\n", "else:\n", " print \"The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",k,\"<1\"\n", " \n", "#trail - 2\n", "#Lets take W10 x 60\n", "A_s = 17.6 #in2 - The area of the section \n", "r_min = 2.57 #in The minimum radius \n", "r_x = 4.39 #in \n", "f_a = P/A_s #Ksi- The computed axial stress\n", "f_b = M_2*B_x/A_s #Computed bending stess\n", "C_c = ((2*(math.pi**2)*E/F_y)**0.5) #Slenderness ratio L/R\n", "C_s = L*12/r_min # Slenderness ratio L/R of the present situation\n", "if C_s 1:\n", " print \"The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",round(k,3),\">1\"\n", "else:\n", " print \"The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",round(k,2),\"<1\"\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum area is 13.71 in2\n", "The following approch is solvable\n", "The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b 1.09 >1\n", "The following approch is solvable\n", "The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b 0.9 <1\n" ] } ], "prompt_number": 67 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }