{ "metadata": { "name": "chapter02.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2:Concurrent Forces in A Plane" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-1, Page No:10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "P=50 #N\n", "Q=100 #N\n", "beta=150 #degree # angle between P & the horizontal\n", "\n", "#Calculations\n", "\n", "R=(P**2+Q**2-(2*P*Q*cos(beta*(pi/180))))**0.5 # using the Trignometric solution\n", "Alpha=(arcsin(((sin(beta*(pi/180))*Q)/R)))*(180/pi)+15 #Angle in degrees\n", "\n", "#Result\n", "print \"The magnitude of resultant is\",round(R,2),\"N\"\n", "print \"The direction of resultant is\",round(Alpha,2),\"degrees\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnitude of resultant is 145.47 N\n", "The direction of resultant is 35.1 degrees\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-2,Page No:16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "P=50 #N\n", "Q=100 #N\n", "beta=15 #degree # angle between P& the horizontal\n", "theta=45 #degree # angle between the resultant (R) & the horizontal\n", "\n", "#Calculations\n", "\n", "Rx=P*cos(beta*(pi/180))+Q*cos(theta*(pi/180)) #N\n", "Ry=P*sin(beta*(pi/180))+Q*sin(theta*(pi/180)) #N\n", "R=((Rx**2)+(Ry**2))**0.5 #N\n", "alpha=arctan(Ry/Rx)*(180/pi) #degree\n", "\n", "#Results\n", "\n", "print\"The magnitude of the resultant is \",round(R,2),\"N\"\n", "print\"The ange of the resultant with x-axis is\",round(alpha,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnitude of the resultant is 145.47 N\n", "The ange of the resultant with x-axis is 35.1 degrees\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-4,Page No:19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "Tac=3.5 #kN\n", "Tbc=3.5 #kN\n", "alpha=20 #degree #angle made by Tac with -ve X axis\n", "beta=50 #degree #angle made by Tbc with +ve X axis\n", "\n", "#Calculations\n", "\n", "theta=(arctan(((Tac*sin(alpha*(pi/180)))+(Tbc*sin(beta*(pi/180))))/((Tac*cos(alpha*(pi/180)))-(Tbc*cos(beta*(pi/180))))))*(180/pi) #degree\n", "P=Tac*(cos(alpha*(pi/180))-cos(beta*(pi/180)))/(cos(theta*(pi/180))) #kN # from eq'n 1\n", "\n", "#Results\n", "\n", "print\"The maximum force that can be applied is \",round(P,1),\"kN\"\n", "print\"The direction of applied force is \",round(theta,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum force that can be applied is 4.0 kN\n", "The direction of applied force is 75.0 degrees\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-8,Page No:25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "lAB=0.4 #m\n", "lBC=0.3 #m\n", "\n", "#Calculations\n", "\n", "alpha=arctan(lAB/lBC)*(180/pi) #degree\n", "\n", "#Results\n", "\n", "print\"The angle which the force should make with the horizontal to keep the edge AB of the body vertical is \",round(alpha,2),\"degrees\" #here alpha=theta" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle which the force should make with the horizontal to keep the edge AB of the body vertical is 53.13 degrees\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-9,Page No:28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "F=1000 #N\n", "lAB=0.5 #m\n", "lDC=0.25 #m #length of the perpendicular drawn from point C to AB\n", "\n", "#Calculations\n", "\n", "lAC=((0.3)**2+(0.25)**2)**0.5 #m\n", "lBC=((0.20)**2+(0.25)**2)**0.5 #m\n", "Sac=(lAC*F)*(lAB)**-1 #N #by law of concurrent forces\n", "Sbc=(lBC*F)/(lAB) #N #by law of concurrent forces\n", "\n", "#Results\n", "\n", "print\"The axial force in the bar AC(by aw of concurrent forces) is \",round(Sac),\"N\" #the answer in textbook is wrong by 1 N \n", "print\"The axial force in the bar BC(by aw of concurrent forces) is \",round(Sbc),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The axial force in the bar AC(by aw of concurrent forces) is 781.0 N\n", "The axial force in the bar BC(by aw of concurrent forces) is 640.0 N\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-10,Page No:30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Initilization of variables\n", "\n", "F3=500 #N\n", "alpha=60 #degree #angle made by F3 with F2\n", "beta=40 #degree #angle made by F1 with F3\n", "theta=80 #degree #angle made by F1 with F2\n", "\n", "#Calculations\n", "\n", "# Solving by using law of sines\n", "\n", "F1=(F3*sin(alpha*(pi/180))/sin(theta*(pi/180))) #N #by law of sines\n", "F2=(F3*sin(beta*(pi/180))/sin(theta*(pi/180))) #N #by law of sines\n", "\n", "#Resuts\n", "\n", "print\"The force F1 is \",round(F1,1),\"N\"\n", "print\"The force F2 is \",round(F2,1),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The force F1 is 439.7 N\n", "The force F2 is 326.4 N\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-11,Page No:31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "P=5000 #N\n", "lAB=5 #m\n", "lOB=1.443 # m\n", "alpha=30 #degree #angle made by force P with the beam\n", "\n", "#Calculations\n", "\n", "theta=arctan(lOB/lAB)*(180/pi) #degree # eq'n 1\n", "Xa=(P*cos(alpha*(pi/180))) #N #using eq'n 4\n", "Ya=Xa*tan(theta*(pi/180)) #N #from eq'n 3 & 4\n", "Rb=(P*sin(alpha*(pi/180)))-Ya # N # substuting value of Ya in eq'n 5\n", "Ra=((Xa**2)+(Ya**2))**0.5 #N\n", "\n", "#Results\n", "\n", "print\"The reaction at support A is \",round(Ra,1),\"N\"\n", "print\"The reaction at support B is \",round(Rb),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reaction at support A is 4506.8 N\n", "The reaction at support B is 1250.0 N\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-12,Page No:32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "W=1000 #N\n", "OD=0.4 #m\n", "AD=0.3 #m\n", "AO=0.5 #m #AO=sqrt((0.4)^2+(0.3)^2)\n", "\n", "#Calculations\n", "\n", "Ra=W*AO/OD #N\n", "Rc=W*AD/OD #N\n", "alpha=arctan(OD/AD)*(180/pi) #degree\n", "\n", "#Results\n", "\n", "print\"The reaction at support A is \",round(Ra),\"N\" # answer in textbook is wrong by 50 N\n", "print\"The reaction at support B is \",round(Rc),\"N\"\n", "print\"The angle that Rc makes with horizontal \",round(alpha,1),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reaction at support A is 1250.0 N\n", "The reaction at support B is 750.0 N\n", "The angle that Rc makes with horizontal 53.1 degrees\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-13,Page No:33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "W=2500 #N #This load acts at point B and C.\n", "alpha=30 #degree # angle made by T1 with +ve y-axis & T2 with +ve x-axis\n", "\n", "#Calculations\n", "\n", "T2=W-(((cos(alpha*(pi/180)))**2/(sin(alpha*(pi/180))))-(sin(alpha*(pi/180)))) # N # substuting eq'n 1 in 2\n", "T1=(T2*cos(30*(pi/180)))/(sin(30*(pi/180)))#N # using eq'n 1\n", "T3=T2 #N # By equilibrium eq'n at point C(sumFx=0)\n", "\n", "#Results\n", "\n", "print\"Tension in portion AB is \",round(T1),\"N\" #due to decimal variance the answer varies by 2.0 N\n", "print\"Tension in portion BC is \",round(T2),\"N\" #due to decimal variance the answer varies by 1.0 N\n", "print\"Tension in portion CD is \",round(T3),\"N\" #due to decimal variance the answer varies by 1.0 N" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tension in portion AB is 4328.0 N\n", "Tension in portion BC is 2499.0 N\n", "Tension in portion CD is 2499.0 N\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-15,Page No:35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "d=0.6 #m #diameter of the wheel\n", "r=0.3 #m #radius of the wheel\n", "W=1000 #N #weight of the wheel\n", "h=0.15 #m #height of rectangular block\n", "\n", "#Calculations\n", "\n", "theta=arctan(((h)**0.5)/((d-h)**0.5))\n", "P=(W*tan(theta)) #N # dividing eq'n 1 & 2\n", "\n", "#Resuts\n", "\n", "print\"The force P so that the wheel is just to roll over the block is \",round(P),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The force P so that the wheel is just to roll over the block is 577.0 N\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-16,Page No:36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "Soa=1000 #N (tension)\n", "alpha=45 #degree #where alpha=(360/8)\n", "theta=67.5 #degree #angle made by bar AO with AB &AH\n", "\n", "#Calcultions\n", "\n", "Sab=Soa*(sin(theta*(pi/180))/sin(alpha*(pi/180))) # N # Using law of sines\n", "Sah=Sab #N\n", "Sob=(Sab*sin((180-2*(theta))*(pi/180)))/sin(theta*(pi/180)) #N\n", "\n", "#Results\n", "\n", "print\"The axial force in the bar AB is \",round(Sab,1),\"N\" #Compression\n", "print\"The axial force in the bar OB is \",round(Sob),\"N\" #Tension" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The axial force in the bar AB is 1306.6 N\n", "The axial force in the bar OB is 1000.0 N\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-17,Page No:37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "W=500 #N #weight of cylinder\n", "alpha=25 #degree #angle made by OA with horizontal\n", "beta=65 #degree #angle made by OB with horizontal\n", "theta=90 #degree # theta=(alpha+beta)\n", "\n", "#Calculations\n", "\n", "Ra=(W*sin(beta*(pi/180)))/sin(theta*(pi/180)) #N #from equilibrium eq'n\n", "Rb=(W*sin(alpha*(pi/180)))/sin(theta*(pi/180)) #N #from equilibrium eqn's\n", "\n", "#Results\n", "\n", "print\"The reaction at A is \",round(Ra,1),\"N\"\n", "print\"The reaction at B is \",round(Rb,1),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reaction at A is 453.2 N\n", "The reaction at B is 211.3 N\n" ] } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-18,Page No:38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "Wa=1000 #N #weight of sphere A\n", "Wb=400 #N #weight of sphere B\n", "Ra=0.09 #m #radius of sphere A\n", "Rb=0.05 #m #radius of sphere B\n", "theta=33.86 #degree #angle made by Rq with Wb\n", "alpha=60 #degree #angle made by Rl with horizontal\n", "\n", "#Calculations\n", "\n", "Rq=Wb/cos(theta*(pi/180)) #N #using sum Fy=0 for sphere B\n", "Rp=Rq*sin(theta*(pi/180)) #N #using sum Fx=0 for sphere B\n", "Rl=(Rq*sin(theta*(pi/180)))/sin(alpha*(pi/180)) #N #using sum Fx=0 for sphere A\n", "Rn=((Wa)+(Rq*cos(theta*(pi/180)))-(Rl*cos(alpha*(pi/180)))) #N\n", "\n", "#Results\n", "\n", "print\"The reaction at point P is \",round(Rp,1),\"N\"\n", "print\"The reaction at point L is \",round(Rl),\"N\"\n", "print\"The reaction at point N is \",round(Rn,1),\"N\" # the answer in textbook is wrong by 3.2 N" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reaction at point P is 268.4 N\n", "The reaction at point L is 310.0 N\n", "The reaction at point N is 1245.0 N\n" ] } ], "prompt_number": 65 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-19,Page No:39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "P=50 #N\n", "Q=100 #N\n", "alpha=30 #degree #angle made by Rq with +ve Y-axis\n", "\n", "#Calculations\n", "\n", "theta_r=arctan((P*((cos(alpha*(pi/180)))/(sin(alpha*(pi/180))))-Q*tan(alpha*(pi/180)))/(P+Q)) #radians\n", "theta=theta_r*(180/pi)\n", "T=Q/(cos(theta*(pi/180))*(cos(alpha*(pi/180)))/(sin(alpha*(pi/180)))-sin(theta*(pi/180))) #N\n", "\n", "#Results\n", "print\"The tension in the string is \",round(T,1),\"N\"\n", "print\"The angle wich the string makes with the horizontal when the system is in equilibrium is \",round(theta,1),\"degrees\" \n", "#Note:The decimal accuracy in python causes discrepancy in answers" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The tension in the string is 66.1 N\n", "The angle wich the string makes with the horizontal when the system is in equilibrium is 10.9 degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-20,Page No:41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "theta1=50.5 #degree #is the angle made between BC & and BE\n", "theta2=36.87 #degree #is te angle ade between BA &BE \n", "g=9.81 #m/s^2\n", "Wa=15*g #N\n", "Wb=40*g #N\n", "Wc=20*g #N\n", "\n", "#Calculations\n", "\n", "R2=Wc/(sin(theta1*(pi/180))) #N #from F.B.D of cylinder C(sum Fy=0)\n", "R4=(Wb+R2*sin(theta1*(pi/180)))/sin(theta2*(pi/180)) #N #from F.B.D of cylinder B(sum Fy=0)\n", "R6=R4*cos(theta2*(pi/180)) #N #from F.B.D of cylinder A(sum Fx=0)\n", "\n", "#Results\n", "\n", "print\"The reaction between the cylinder A and the wall of the channel is \",round(R6,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reaction between the cylinder A and the wall of the channel is 784.8 N\n" ] } ], "prompt_number": 70 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-21,Page No:50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilazation of variables\n", "\n", "F=1000 #N\n", "theta=30 #degree #angle made by the force with the beam AB\n", "Lab=3 #m\n", "Lae=2 #m\n", "Lce=1 #m\n", "\n", "#Calculations\n", "\n", "Re=(F*Lab*sin(theta*(pi/180)))/Lae #N #Taking moment at A\n", "Rd=(Re*Lce)/(Lab*sin(theta*(pi/180))) #N #Taking moment about C\n", "\n", "#Results\n", "\n", "print\"The reaction at D due to force of 1000 N acting at B is \",round(Rd,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reaction at D due to force of 1000 N acting at B is 500.0 N\n" ] } ], "prompt_number": 71 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2-23,Page No:51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "W=1000 #N\n", "r=0.30 #m #radius of the wheel\n", "h=0.15 #m #height of the obstacle\n", "\n", "#Calculations\n", "\n", "theta=arcsin(1)*(180/pi) #degree #P is mini when sin(theta)=1 from eq'n of P\n", "Pmini=(W*((2*r*h)-(h**2))**0.5)/(r*sin(theta*(pi/180))) #N\n", "\n", "#Results\n", "\n", "print\"The least force required to just turn the wheel over the block is \",round(Pmini),\"N\"\n", "print\"The angle wich should be made by Pmini with AC is \",round(theta,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The least force required to just turn the wheel over the block is 866.0 N\n", "The angle wich should be made by Pmini with AC is 90.0 degrees\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }