{ "metadata": { "name": "chapter 18.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 18:Work,Power And Energy " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.1,Page No.673" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=500 #N #Weight of Body\n", "S=5 #m #Distance\n", "P=250 #N #Force\n", "P2=200 #N #Force 2\n", "theta=30 #Degrees #Angle made by Force with Horizontal\n", "\n", "#Calculation\n", "\n", "#Part-1\n", "\n", "#Work Done\n", "w=P*S #N*m\n", "\n", "#Work Done\n", "w2=P2*cos(theta*pi*180**-1)*S #N*m\n", "\n", "#Result\n", "print\"Work Done when Force 250 N is applied\",round(w,2),\"N*m\"\n", "print\"Work Done when Force 200 N is applied\",round(w2,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done when Force 250 N is applied 1250.0 N*m\n", "Work Done when Force 200 N is applied 866.03 N*m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.2,Page No.673" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=1500 #N #Weight of Body\n", "S=500 #m #Distance\n", "P=15 #N #Force\n", "\n", "#Calculation\n", "\n", "#Work Done by Resistance \n", "w=P*S #N*m\n", "\n", "#Result\n", "print\"Work Done on body by Resistance is\",round(w,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done on body by Resistance is 7500.0 N*m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.3,Page No.673" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=800 #N #Weight of Body\n", "theta=30 #Degrees #angle made by Force\n", "S=5 #Distance\n", "\n", "#Calculation\n", "\n", "#Force apllied on Block\n", "P=W*sin(theta*pi*180**-1) #N\n", "\n", "#Work done on body\n", "w=P*S #N*m\n", "\n", "#Result\n", "print\"Work Done in Pulling up the Body is\",round(w,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done in Pulling up the Body is 2000.0 N*m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.4,Page No.674" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "mu=0.3 #coefficient of Friction\n", "S=5 #m #Distance\n", "W=800 #N #weight of Body\n", "theta=30 #Degrees #Angle made by Weight\n", "\n", "#Calculation\n", "\n", "#reaction Force \n", "R=W*cos(theta*pi*180**-1) #N\n", "\n", "#Force of friction\n", "F=mu*R\n", "\n", "#Forces along plane\n", "P=W*sin(theta*pi*180**-1)+F #N*m\n", "\n", "#Work done\n", "w=P*S #N*m\n", "\n", "#Result\n", "print\"Work done in pullint the Body\",round(w,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done in pullint the Body 3039.23 N*m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.5,Page No.674" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "L=50.5 #m #Total Length of chain\n", "R=0.16 #m #Radius of pulley\n", "L_AC=40 #m #Length of chain between A and C\n", "W=505 #N #Weight of chain\n", "w=10 #N #weight of chain per metre length\n", "\n", "#Calculation\n", "\n", "#Length of BD\n", "L_BD=L-2*pi*R*2**-1-L_AC #m\n", "\n", "#Weight of chain \n", "W_AC=w*L_AC #N\n", "\n", "#Weight of chain BD\n", "W_BD=w*L_BD #N\n", "\n", "#Force applied at D\n", "P=W_AC-W_BD #N\n", "\n", "#Length of chain\n", "l=(L_AC-w)*2**-1\n", "\n", "#Work Done\n", "W=P*l*2**-1 #N\n", "\n", "#Result\n", "print\"Work Done by the man\",round(W,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done by the man 2250.2 N\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.6,Page No.675" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=2000 #N #Weight of Body\n", "P_o=750 #N #Initial Force\n", "x_o=0 #Initial Force,distance moved is zero\n", "S=25 #m #Distance Moved\n", "\n", "#Calculation\n", "\n", "#Force after a distance of 25 m\n", "P=P_o+10*S #N\n", "\n", "#Work Done\n", "w=(P_o+P)*2**-1*S #N*m\n", "\n", "#Result\n", "print\"Work Done by applied Force\",round(w,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done by applied Force 21875.0 N*m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.7,Page No.676" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from scipy.integrate import * \n", "\n", "#Initilization of Variables\n", "\n", "L=10 #m #Length of free cable\n", "W=50 #N #weight of cable per m length\n", "\n", "#Calculation\n", "\n", "#Weight of element \n", "#X=50*dx\n", "\n", "#work done on the elemnt\n", "#dw=500-50*x*dx\n", "\n", "def f(x) :\n", " return 500-50*x\n", "\n", "I,err = quad(f,0,10)\n", "\n", "#Result\n", "print\"Work done by Electric Motor is\",round(I,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done by Electric Motor is 2500.0 N*m\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.8,Page No.677" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=2000 #KN #Weight of train\n", "v=10 #m/s #speed of train\n", "F=20000 #N #Resistance due to friction\n", "p=F #Net Force in Direction of motion\n", "\n", "#Calculation\n", "\n", "#Power\n", "P=p*v*10**-3 #KW\n", "\n", "#Result\n", "print\"Power of the Engine\",P,\"KW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power of the Engine 200.0 KW\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.9,Page No.677" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=2000 #KN #Weight of train\n", "F=20000 #N #Resistance Force\n", "v=10 #m/s #Velocity\n", "a=0.5 #m/s**2 #Acceleration\n", "g=9.81 #m/s**2 #acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Mass of train\n", "m=W*10**3*g**-1 #Kg\n", "\n", "#Net Force\n", "F=m*a+F #N\n", "\n", "#Power of the engine \n", "P=F*v*10**-3 #KW\n", "\n", "#Result\n", "print\"Power of the Engine is\",round(P,2),\"KW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power of the Engine is 1219.37 KW\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.10,Page No.678" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=1500*1000 #N #Weight of train \n", "v=10 #m/s #speed\n", "F=7500 #N #Force exerted by engine\n", "#sin(theta)=1*100**-1 \n", "\n", "#Calculation\n", "\n", "#from equation of Net Force\n", "#p=W*sin(theta*pi*180**-1)+F\n", "#After sub values and further simplifying we get\n", "p=15000+7500 #N\n", "\n", "#Power Exerted by Engine\n", "P=p*v*10**-3 #KW\n", "\n", "\n", "#Result\n", "print\"Power Exerted by the Engine is\",round(P,2),\"KW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power Exerted by the Engine is 225.0 KW\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.11,Page No.678" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=2*10**6 #N\n", "v=5 #m/s velocity\n", "P=35*10**3 #W\n", "\n", "#Calculation\n", "\n", "#After simplifying Net Force acting on engine in direction of motion, we get\n", "#F=13333.3-F+P ................1\n", "\n", "#Power\n", "P2=P*v**-1\n", "\n", "#Sub value in equation 1 we get\n", "F=13333.3+P2 #N\n", "\n", "#case-2\n", "\n", "#frpm Net force in direction of motion after simplifying we get,value of \n", "F2=W*150**-1+F #N\n", "\n", "#Power developed by engine \n", "P3=F2*v*10**-3 #KW\n", "\n", "\n", "#Result\n", "print\"Power required to pull the train is\",round(P3,2),\"KW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power required to pull the train is 168.33 KW\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.12,Page No.680" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "P=1800 #N #Force\n", "D=0.01 #m #Diameter\n", "R=0.005 #m #Radius\n", "theta=2*pi #Radians\n", "\n", "#Calculation\n", "\n", "#Torque\n", "T=P*R #N*m\n", "\n", "#Work done\n", "W=T*theta #N*m\n", "\n", "#Result\n", "print\"Work Done is\",round(W,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work Done is 56.55 N*m\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.13,Page No.681" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "F=1800 #N #Force\n", "R=0.005 #m #Radius\n", "T=9 #N*m #Torque\n", "N=200 #r.p.m\n", "\n", "#Calculation\n", "\n", "#Power of the shaft\n", "P=2*pi*N*T*60**-1 #W\n", "\n", "#Result\n", "print\"Power of the shaft is\",round(P,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power of the shaft is 188.5 N*m\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.14,Page No.683" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "M=2 #Kg #Mass\n", "v=50 #m/s**2 #Velocity\n", "\n", "#Calculation\n", "\n", "#Let K.E be E\n", "E=1*2**-1*M*v**2 #N*m\n", "\n", "#Result\n", "print\"Kinetic Energy is\",round(E,2),\"N*m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic Energy is 2500.0 N*m\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.15,Page No.683" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m=0.081 #Kg\n", "u=300 #m/s #Initial Velocity of bullet\n", "\n", "#Calculation\n", "\n", "#Part-1\n", "\n", "S=0.1 #m #Penetration of bullet\n", "v=0 #Final Velocity of bullet\n", "\n", "#Kinetic Energy of bullet\n", "KE=(m*v**2-m*u**2)*2**-1 #N*m\n", "\n", "#Force of Resistance\n", "P=-KE*S**-1 #N\n", "\n", "#Part-2\n", "\n", "#Depth of penetration\n", "S2=0.05 #m\n", "\n", "#work Done by force of Resistance\n", "W2=-P*S2 #N*m\n", "\n", "#velocity of bullet after 5cm penetration\n", "v1=((W2+(m*u**2*2**-1))*2*m**-1)**0.5\n", "\n", "#Result\n", "print\"Force of Resistance is\",round(P,2),\"N\"\n", "print\"Velocity with which bullet will emerge is\",round(v1,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force of Resistance is 36450.0 N\n", "Velocity with which bullet will emerge is 212.13 m/s\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.15(A),Page No.684" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m=0.01 #Kg \n", "u=1000 #m/s #Velocity\n", "t=0.002 #s #time taken b bullet to travel\n", "v=0 #Final Velocity\n", "g=9.81 #acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Kinetic energy of bullet\n", "KE=m*u**2*2**-1 #N*m\n", "\n", "#acceleration\n", "a=-(v-u)*t**-1 #m/s**2\n", "\n", "#Frictional Force\n", "F=m*a #N\n", "\n", "#Distance travelled by bullet\n", "S=F*KE**-1 #m\n", "\n", "#Part-2\n", "\n", "#Probable speed of the car just before brakes are applied \n", "V=(30*2*g)**0.5*1000**-1*3600 #m/s\n", "\n", "#Result\n", "print\"Average Force acted on the bullet is\",round(F,2),\"N\"\n", "print\"Distance penetrated by it\",round(S,2),\"m\" \n", "print\"Probable speed of the car just before brakes are applied\",round(V,2),\"km/hr\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average Force acted on the bullet is 5000.0 N\n", "Distance penetrated by it 1.0 m\n", "Probable speed of the car just before brakes are applied 87.34 km/hr\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.16,Page No.686" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=20*10**3 #N #Weight of Truck\n", "u=45*10**3*(3600)**-1 #speed of truck #m/s\n", "v=0 #Final Velocity of truck\n", "g=9.81 #Acceleration due to gravity\n", "m=W*g**-1 #mass of truck\n", "S=20 #m #DIstance\n", "\n", "#Calculation\n", "\n", "#Kinetic energy of Truck\n", "KE=-m*(v**2-u**2)*2**-1 #N*m\n", "\n", "#Average Force of Resisting acting on the truck\n", "P=KE*S**-1 #N\n", "\n", "#Result\n", "print\"Average Force of Resisting acting on the truck\",round(P,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average Force of Resisting acting on the truck 7963.81 N\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.17,Page No.687" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=9810 #N #Weight of train\n", "m=1000 #Kg #Mass of car\n", "u=0 #m/s #Intial Velocity\n", "v=12.5 #m/s #Final by car\n", "S=50 #m #Distance\n", "P=100 #N #Resistance\n", "\n", "#Calculation\n", "\n", "#Change in Kinetic Energy\n", "KE=m*(v**2-u**2)*2**-1 #N*m\n", "\n", "#Average driving Force exerted by engine\n", "P2=KE*S**-1+P #N\n", "\n", "#Power Developed by Engine\n", "P3=P2*v*10**-3 #KW\n", "\n", "#Result\n", "print\"Average driving Force exerted by engine\",round(P2,2),\"N\"\n", "print\"Power Developed by Engine\",round(P3,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average driving Force exerted by engine 1662.5 N\n", "Power Developed by Engine 20.78 N\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.18,Page No.688" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=196.2 #N #Weight of train\n", "m=20 #Kg #Mass\n", "P=300 #N #force\n", "theta=30 #Degrees #Angle of inclination\n", "mu=0.2 #Coefficient of friction\n", "u=0 #initial Velocity\n", "t=4 #seconds\n", "\n", "#Calculation\n", "\n", "R=W*cos(theta*pi*180**-1) #N\n", "\n", "#Net Force in Direction of motion\n", "F=P-W*sin(theta*pi*180**-1)-mu*R #N\n", "\n", "#Acceleration\n", "a=F*m**-1 #m/s**2\n", "\n", "#Distance travelled in four seconds\n", "s=u*t+a*t**2*2**-1\n", "\n", "#Velocity after 4 seconds\n", "v=u+a*t #m/s\n", "\n", "#Kinetic Energy after 4 seconds\n", "KE=m*v**2*2**-1 #N*m\n", "\n", "#Work Done on Body\n", "W2=F*s #N*m\n", "\n", "#Momentum of the body after four seconds\n", "e=m*v #Kg*m/s\n", "\n", "#Impulse applied in four seconds\n", "I=F*t #N*s\n", "\n", "#Result\n", "print\"Acceleration of Body\",round(a,2),\"m/s**2\"\n", "print\"Distance travelled in four seconds\",round(s,2),\"m\"\n", "print\"Velocity after 4 seconds\",round(v,2),\"m/s\"\n", "print\"Kinetic Energy after 4 seconds\",round(KE,2),\"N*m\"\n", "print\"Work Done on Body\",round(W2,2),\"N*m\"\n", "print\"Momentum of the body after four seconds\",round(e,2),\"Kg*m/s\"\n", "print\"Impulse applied in four seconds\",round(I,2),\"N*s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceleration of Body 8.4 m/s**2\n", "Distance travelled in four seconds 67.17 m\n", "Velocity after 4 seconds 33.58 m/s\n", "Kinetic Energy after 4 seconds 11278.47 N*m\n", "Work Done on Body 11278.47 N*m\n", "Momentum of the body after four seconds 671.67 Kg*m/s\n", "Impulse applied in four seconds 671.67 N*s\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.19,Page No.689" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "W=20 #N #Weight \n", "theta=20 #Degrees #Angle\n", "u=12 #m/s #Initial Velocity\n", "mu=0.15 #Coefficient of friction\n", "g=9.81 #acceleration due to gravity\n", "m=W*g**-1 #Kg\n", "\n", "#Calculation\n", "\n", "#PArt-1\n", "\n", "v=0 #Final Velocity\n", "R=W*cos(theta*pi*180**-1)\n", "F=mu*R\n", "\n", "#Net Force\n", "F2=W*sin(theta*pi*180**-1)+mu*R #N\n", "\n", "#Change in Kinetic Energy\n", "KE=m*(v**2-u**2)*2**-1 #N*m\n", "\n", "S=KE*F2**-1 #Max Distance\n", "\n", "#PArt-2\n", "\n", "#Net Force in direction of motion is\n", "F3=W*sin(theta*pi*180**-1)-mu*R #N\n", "\n", "#Work Done on the body \n", "W2=F3*S #N*m\n", "\n", "#Velocity of the body\n", "V1=(-W2*2*g*W**-1)**0.5\n", "\n", "#Result\n", "print\"MAx Distance that the bodt will move up the inclined plane\",round(S,2),\"m\"\n", "print\"Velocity of the body\",round(V1,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "MAx Distance that the bodt will move up the inclined plane -15.2 m\n", "Velocity of the body 7.74 m/s\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.20,Page No.691" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m1=0.025 #Kg #Mass of bullet\n", "u1=600 #m/s #Initial Veloctiy of Bullet\n", "m2=5 #Kg #Mass of Wooden Block\n", "u2=0 #m/s #Final Velocity of bullet\n", "S=0.9 #m #Distance travelled by block and bullet\n", "g=9.81 #Acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Total mass of bullet\n", "M=m1+m2 #Kg\n", "\n", "#common Velocityof bullet and block after impact\n", "V=(m1*u1+m2*u2)*M**-1 #m/s\n", "\n", "#Average resistance between block and horizontal surface\n", "\n", "#Initial Velocity of Block And Bullet\n", "Vi=V #m/s\n", "\n", "#Final Velocity\n", "Vf=0 #m/s\n", "\n", "#Change of KE of bullet and Block\n", "KE=M*(Vf**2-Vi**2)*2**-1 #N*m\n", "\n", "#Frictional resistance \n", "P=-KE*S**-1 #N\n", "\n", "#Coefficient of Friction \n", "\n", "W=M*g #N\n", "R=W #N \n", "\n", "mu=P*R**-1 \n", "\n", "#Result\n", "print\"Average Resistance between Block and horizontal surface\",round(P,2),\"N\"\n", "print\"Coefficient of friction is\",round(mu,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average Resistance between Block and horizontal surface 24.88 N\n", "Coefficient of friction is 0.5\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.21,Page No.692" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m1=0.01 #Kg #mass of bullet\n", "m2=1 #Kg #Mass of Block\n", "S=1 #m #Distance travelled by block and bullet\n", "mu=0.2 #coefficient of friction\n", "g=9.81 #Acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#total mass of buulet and wooden block\n", "M=m1+m2 #Kg\n", "\n", "#Friction Force\n", "F=mu*M*g #N\n", "\n", "#Work Done by force of friction\n", "W=F*S #N\n", "\n", "#Velocity of bullet\n", "u1=(W*2*M**-1)**0.5*M*m1**-1 #m/s\n", "\n", "#Result\n", "print\"Velocity of bullet is\",round(u1,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of bullet is 200.07 m/s\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.22,Page No.694" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "M=1500 #Kg #Mass of Hammer\n", "h=0.6 #m #Height from which hammer drops\n", "m=750 #kg #Mass of pile\n", "S=0.05 #m #Depth of penetration\n", "g=9.81 #Acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Velocity of hammer after falling through height of 0.6 m from rest\n", "v=(2*g*h)**0.5 #m/s\n", "\n", "#Total momentum of hammer and pile just before impact\n", "p=M*v #Kg*m/s\n", "\n", "#Common Velocity\n", "V=p*(M+m)**-1 #m/s\n", "\n", "#Part-2\n", "\n", "#K.E of system\n", "KE=(M+m)*round(V,2)**2*2**-1 #N*m\n", "\n", "#Loss of P.E of system\n", "PE=(M+m)*g*S #N*m\n", "\n", "#Total Energy loss\n", "E=KE+PE #N*m\n", "\n", "#Resistance of ground\n", "R=E*S**-1 #N\n", "\n", "#Result\n", "print\"Common Velocity after impact\",round(V,2),\"m/s\"\n", "print\"Average Resistance of the ground\",round(R,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Common Velocity after impact 2.29 m/s\n", "Average Resistance of the ground 140064.75 N\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.23,Page No.695" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "M=750 #Kg #MAss of hammer\n", "h=1.2 #m #Height through which hammer drops\n", "m=200 #kg #mass of pile\n", "R=79*10**3 #N #Average resistance of ground\n", "g=9.81 #Acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Velocity of hammer after falling through height of 0.6 m from rest\n", "v=(2*g*h)**0.5 #m/s\n", "\n", "#Total momentum of hammer and pile just before impact\n", "p=M*v #Kg*m/s\n", "\n", "#Common Velocity\n", "V=p*(M+m)**-1 #m/s\n", "\n", "#Part-2\n", "\n", "#K.E of system\n", "KE=(M+m)*round(V,2)**2*2**-1 #N*m\n", "\n", "#Depth of penetration into the ground\n", "S=KE*(R-(M+m)*g)**-1\n", "\n", "#Result\n", "print\"Depth of penetration into the ground\",round(S,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Depth of penetration into the ground 0.1 m\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.24,Page No.696" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "M=400 #Kg #Mass of Hammer\n", "h=3 #m #Height from which hammer drops\n", "m=0 #kg #Mass of pile\n", "S=1 #m #Depth of penetration\n", "g=9.81 #Acceleration due to gravity\n", "\n", "\n", "#Calculation\n", "\n", "#Velocity of hammer after falling through height of 0.6 m from rest\n", "v=(2*g*h)**0.5 #m/s\n", "\n", "#Total momentum of hammer and pile just before impact\n", "p=M*v #Kg*m/s\n", "\n", "#Common Velocity\n", "V=p*(M+m)**-1 #m/s\n", "\n", "#Part-2\n", "\n", "#K.E of system\n", "KE=(M+m)*V**2*2**-1 #N*m\n", "\n", "#Loss of P.E of system\n", "PE=(M+m)*g*S #N*m\n", "\n", "#Total Energy loss\n", "E=KE+PE #N*m\n", "\n", "#Resistance of ground\n", "R=E*S**-1 #N\n", "\n", "\n", "#Result\n", "print\"Resistance of ground for penetration is\",round(R,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance of ground for penetration is 15696.0 N\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.25,Page No.697" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "M=10 #Kg #Mass of Body\n", "k=100 #N/cm #stiffnes\n", "h=2 #cm #Height through which mass 10 kg is dropped \n", " \n", "#Calculation\n", "\n", "#For Position 1\n", "#PE+KE=M*g*(x+h) ............1\n", "\n", "#For Position 2\n", "#PE of spring=50*x**2 .............2\n", "\n", "#Equating equations 1 and 2 we get\n", "#5x**2-9.81*x-19.62=0\n", "\n", "a=5\n", "b=-9.81\n", "c=-19.62\n", "\n", "X=b**2-4*a*c\n", "\n", "#Max Displacement of spring\n", "x1=(-b+X**0.5)*(2*a)**-1\n", "x2=(-b-X**0.5)*(2*a)**-1\n", "\n", "#Result\n", "print\"Max Displacement of spring\",round(x1,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Max Displacement of spring 3.19 m\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.26,Page No.698" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m=0.01 #kg #Mass of bullet\n", "M=1 #kg #Mass of body\n", "L=1 #m #Length of string\n", "theta=18.2 #degrees\n", "g=9.81 #acceleration due to gravity\n", "L_OA=1 #m #Length of OA\n", "L_OB=1 #m #Length of OB\n", "\n", "#Calculation\n", "\n", "#From Geometry of figure\n", "h=L_OA-L_OB*cos(theta*pi*180**-1) #m\n", "\n", "#Potential Energy of body and bullet at B\n", "PE=(M+m)*g*h\n", "\n", "#from Kinetic Energy of body and bullet after impact\n", "V=(PE*2*(M+m)**-1)**0.5 #m/s #Velocity of body and bullet\n", "\n", "#Velocity of bullet\n", "u=(M+m)*V*m**-1\n", "\n", "#Result\n", "print\"Velocity of Bullet is\",round(u,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of Bullet is 100.06 m/s\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.27,Page No.700" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m=0.03 #kg #Mass of bullet\n", "u=483 #m/s #Velocity of bullet\n", "M=10 #kg #MAss of body\n", "L=0.8 #m #Length of string\n", "\n", "#Calculation\n", "\n", "#Momentum of bullet and body before impact\n", "p=m*u #Kg*m/s\n", "\n", "#from Momentum of bullet and body after impact\n", "V=p*(M+m)**-1 #m/s\n", "\n", "#K.E of the bullet and body after impact\n", "KE=(M+m)*V**2*2**-1 #N*m\n", "\n", "#Angle through which body swings\n", "theta=arccos(-((KE*((M+m)*g)**-1)-L)*L**-1)*(pi**-1*180) #Degrees\n", "\n", "#Result\n", "print\"Angle through which body swings is\",round(theta,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle through which body swings is 29.88 Degrees\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.28,Page No.701" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "m=0.03 #kg #mass of bullet\n", "u=483 #m/s #velocity of bullet\n", "M=10 #Kg #Mass of body\n", "L=0.8 #m #Length of string\n", "v=96.5 #m/s #Velocity of body\n", "g=9.81 #acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Velocity of Body after impact\n", "V=(m*u-m*v)*M**-1 #m/s\n", "\n", "#Height \n", "h=V**2*(2*g)**-1 #m\n", "\n", "#from geometry\n", "theta=arccos((L-h)*L**-1)*(pi**-1*180)\n", "\n", "#Result\n", "print\"Angle through which the body will swing\",round(theta,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle through which the body will swing 23.89 Degrees\n" ] } ], "prompt_number": 31 } ], "metadata": {} } ] }