{ "metadata": { "name": "chapter 16.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16:Simple Harmonic Motion And Mechanical Vibrations" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.1,Page No.615" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "t=0.3 #s #Time\n", "r=0.8 #m #Amplitude\n", "T=1.6 #s #Period of oscillations\n", "\n", "#Calculations\n", "\n", "#frequency\n", "f=2*pi*T**-1 #rad/s\n", "\n", "#Velocity\n", "v=round(f,3)*r*sin(round(f,3)*t) #m/s\n", "\n", "#Accleration\n", "a=f**2*r*cos(f*t) #m/s**2\n", "\n", "#Value for acceleration in textbook is incorrect\n", "\n", "#Result\n", "print\"Velocity is\",round(v,2),\"m/s\"\n", "print\"Acceleration is\",round(a,2),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity is 2.9 m/s\n", "Acceleration is 4.72 m/s**2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.2,Page No.615" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "r=1 #m #Amplitude\n", "T=2 #s #Period of oscillations\n", "\n", "#Calculations\n", "\n", "#Time taken by body from mid pos\n", "t=T*5**-1 #s\n", "\n", "#Time taken by body from extreme position to mid position\n", "t2=T*4**-1 #s\n", "\n", "#time taken by body fom extreme position\n", "t3=t2-t #s\n", "\n", "#Angular velocity\n", "f=2*pi*T**-1 #rad/s\n", "\n", "#Velocity\n", "v=-f*r*sin(f*t3) #m/s\n", "\n", "#Value of velocity in book is incorrect in textbook i.e 0.09831\n", "\n", "#Acceleration\n", "a=-f**2*r*cos(pi*t3) #m/s**2\n", "\n", "#Result\n", "print\"Velocity is\",round(v,2),\"m/s\"\n", "print\"Acceleration is\",round(a,2),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity is -0.97 m/s\n", "Acceleration is -9.39 m/s**2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.3,Page No.616" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "t=0.4 #s #Time\n", "r=1 #m #Amplitude\n", "T=2 #s #Period of oscillations\n", "\n", "#Calculations\n", "\n", "#frequency\n", "f=2*pi*T**-1 #rad/s\n", "\n", "#Velocity\n", "v=round(f,3)*r*sin(round(f,3)*t) #m/s\n", "\n", "#Accleration\n", "a=f**2*r*cos(f*t) #m/s**2\n", "\n", "#Value for acceleration in textbook is incorrect\n", "\n", "#Result\n", "print\"Velocity is\",round(v,2),\"m/s\"\n", "print\"Acceleration is\",round(a,2),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity is 2.99 m/s\n", "Acceleration is 3.05 m/s**2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4,Page No.617" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "N=100 #r.p.m #Speed of crank\n", "\n", "#Calculations\n", "\n", "#Angular velocity\n", "f=2*pi*N*60**-1 #rad/s \n", "\n", "#Stroke of piston\n", "n=1.8 #cm\n", "\n", "#Ampiltude\n", "r=n*2**-1 #m\n", "\n", "#Displacement of piston from centre\n", "x=0.6 #m\n", "\n", "\n", "#Let f*t=y\n", "#Displacement\n", "y=arccos(x*r**-1)*(180*pi**-1)\n", "\n", "#Velocity of piston\n", "v=-f*r*sin(y*180**-1*pi)\n", "\n", "#Acceleration of piston\n", "a=-f**2*r*cos(y*180**-1*pi) #m/s**2\n", "\n", "#Result\n", "print\"Velocity is\",round(v,2),\"m/s\"\n", "print\"Acceleration is\",round(a,2),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity is -7.02 m/s\n", "Acceleration is -65.8 m/s**2\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.5,Page No.617" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "#Velocities of Body\n", "v1=8 #m/s\n", "v2=3 #m/s\n", "\n", "#Distance of Body\n", "x1=1.5 #m #When v1=8 #m/s\n", "x2=2.5 #m #When v2=3 #m/s\n", "\n", "#Calculations\n", "\n", "#For 1st velocity\n", "#v1=-f*((r**2-x1**2))**2\n", "#After Substituting values and further simplifying we get\n", "#8=-f*((r**2-1.5**2))**2 ..........................................1\n", "\n", "#For 2nd velocity\n", "#v2=-f*((r**2-x2**2))**2\n", "#After Substituting values and further simplifying we get\n", "#3=-f*((r**2-2.5**2))**2 ..........................................2\n", "\n", "#Dividing equations 1 and 2 and further simplifying we get\n", "#Amplitude\n", "r=(42.19*6.111**-1)**0.5 #m \n", "\n", "#Sub value of r in equation 2 we get\n", "f=v2*(((r**2-x2**2))**0.5)**-1 #rad/s\n", "\n", "#Period\n", "T=2*pi*f**-1 #s\n", "\n", "#Result\n", "print\"Amplitude of Body is\",round(r,2),\"m\"\n", "print\"Period of Body is\",round(T,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Amplitude of Body is 2.63 m\n", "Period of Body is 1.69 s\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.6,Page No.618" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "#Velocities of Body\n", "v1=12 #m/s\n", "v2=3 #m/s\n", "\n", "#Distance of Body\n", "x1=0.05 #m #When v1=8 #m/s\n", "x2=0.1 #m #When v2=3 #m/s\n", "x=0.075 #m\n", "\n", "#Calculations\n", "\n", "#For 1st velocity\n", "#v1=-f*((r**2-x1**2))**2\n", "#After Substituting values and further simplifying we get\n", "#12=-f*((r**2-0.05**2))**2 ..........................................1\n", "\n", "#For 2nd velocity\n", "#v2=-f*((r**2-x2**2))**2\n", "#After Substituting values and further simplifying we get\n", "#3=-f*((r**2-0.1**2))**2 ..........................................2\n", "\n", "#Dividing equations 1 and 2 and further simplifying we get\n", "#Amplitude\n", "r=(0.1575*15**-1)**0.5 #m \n", "\n", "#Sub value of r in equation 2 we get\n", "f=v2*(((r**2-x2**2))**0.5)**-1 #rad/s\n", "\n", "#Frequency\n", "n=f*(2*pi)**-1 #cycles/s\n", "\n", "#Acceleration\n", "a=f**2*x\n", "\n", "#Result\n", "print\"Frequency of motion is\",round(f,2),\"rad/s\"\n", "print\"Amplitude of motion is\",round(r,4),\"m\"\n", "print\"Acceleration when the displacement is 75 mm is\",round(a,2),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of motion is 134.16 rad/s\n", "Amplitude of motion is 0.1025 m\n", "Acceleration when the displacement is 75 mm is 1350.0 m/s**2\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.7,Page No.619" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "r=4.5 #m #amplitude\n", "T=3.5 #s #Period\n", "x1=3.5 #m #Distance of 1st point from centre\n", "x2=1.5 #m #Distsnce of 2nd point from centre\n", "\n", "#Calculations\n", "\n", "#Angular velocity\n", "f=2*pi*T**-1 #rad/s\n", "\n", "#For 1st point\n", "#x1=r*cos(f*t1)\n", "#After substituting and further simplifying \n", "t1=0.6796*1.795**-1\n", "\n", "#For second point\n", "#x2=r*cos(f*t2)\n", "#After substituting and further simplifying \n", "t2=1.231*1.795**-1\n", "\n", "#Time required by body in passing between two points\n", "t=t2-t1 #s\n", "\n", "#Result\n", "print\"Time required by body in passing between two points is\",round(t,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required by body in passing between two points is 0.31 s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.8,Page No.620" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "#Velocities of Body\n", "v1=6 #m/s\n", "v2=3 #m/s\n", "\n", "#Distance of Body\n", "x1=0.125 #m #When v1=6 #m/s\n", "x2=0.200 #m #When v2=3 #m/s\n", "\n", "W=0.2 #kg #Weight of cross head\n", "g=9.81 #Acceleration due to gravity\n", "\n", "\n", "#Calculations\n", "\n", "#For 1st velocity\n", "#v1=-f*((r**2-x1**2))**2\n", "#After Substituting values and further simplifying we get\n", "#6=-f*((r**2-0.125**2))**2 ..........................................1\n", "\n", "#For 2nd velocity\n", "#v2=-f*((r**2-x2**2))**2\n", "#After Substituting values and further simplifying we get\n", "#3=-f*((r**2-0.200**2))**2 ..........................................2\n", "\n", "#Dividing equations 1 and 2 and further simplifying we get\n", "#Amplitude\n", "r=(0.1444*3**-1)**0.5 #m \n", "\n", "#Sub value of r in equation 2 we get\n", "f=v2*(((round(r,4)**2-x2**2))**0.5)**-1 #rad/s\n", "\n", "#Period\n", "T=2*pi*f**-1 #s\n", "\n", "#Max Velocity\n", "V_max=f*r #m/s\n", "\n", "#mass of cross head\n", "m=W*g**-1 #N\n", "\n", "#Max acceleration\n", "a_max=round(f,2)**2*round(r,4) #m/s**2\n", "\n", "#Max Force\n", "F_max=m*a_max\n", "\n", "#Result\n", "print\"Amplitude of vibration is\",round(r,2),\"m\"\n", "print\"Max Velocity is\",round(V_max,2),\"m/s\"\n", "print\"period of Vibration is\",round(T,2),\"s\"\n", "print\"MAx Force in direction of motion\",round(F_max,2),\"Kg*f\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Amplitude of vibration is 0.22 m\n", "Max Velocity is 7.3 m/s\n", "period of Vibration is 0.19 s\n", "MAx Force in direction of motion 4.95 Kg*f\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.9,Page No.621" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "#Distance of Body\n", "x1=0.07 #m #When v1=0.6*V_max #m/s\n", "x2=0.05 #m #When v2 #m/s\n", "T=7.5 #s #Time to perform oscillation\n", "\n", "#Calculations\n", "\n", "#Equation of velocity\n", "#v=-f*((r**2-x**2)**0.5) ..................1\n", "\n", "#Velocity\n", "#v=0.6*V_max ........2\n", "#x=x1 ................3\n", "\n", "#Frequency\n", "f=2*pi*T**-1 #rad/s\n", "\n", "#MAx Velocity\n", "#V_max=-f*r ............4\n", "\n", "#Sub all values in equation 1 and further simplifying we get\n", "r=(0.0049*0.64**-1)**0.5\n", "\n", "#Velocity \n", "v=f*((r**2-x2**2)**0.5)\n", "\n", "#Max Acceleration\n", "a_max=f**2*r\n", "\n", "#Result\n", "print\"Amplitude of motion is\",round(r,4),\"m\"\n", "print\"Velocity of particle is\",round(v,2),\"m/s\"\n", "print\"MAx Acceleration is\",round(a_max,4),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Amplitude of motion is 0.0875 m\n", "Velocity of particle is 0.06 m/s\n", "MAx Acceleration is 0.0614 m/s**2\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.10,Page No.625" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "W=50 #N #Weight attached\n", "n=4 #No. of oscillation\n", "T=0.25 #s #Period of oscillation\n", "\n", "#Calculations\n", "\n", "#Static Extension\n", "P=(T*(2*pi)**-1)**2*9.81*100 #cm\n", "\n", "#Stiffness of spring\n", "k=W*round(P,2)**-1 #N/cm\n", "\n", "#Result\n", "print\"Stiffness of spring is\",round(k,2),\"N/cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stiffness of spring is 32.26 N/cm\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.11,Page No.625" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "C=150 #N/m #Stiffness\n", "T=1.5 #s #PEriod time\n", "\n", "#Calculations\n", "\n", "#Static Extension\n", "P=(T*(2*pi)**-1)**2*9.81\n", "\n", "#Weight Attached\n", "W=C*P #N\n", "\n", "#Result\n", "print\"Weight attached to spring\",round(W,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight attached to spring 83.87 N\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.12,Page No.626" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "#Frequency\n", "n1=12 #cycles/s #when Weight W1=W\n", "n2=10 #cycles/s #when Weight W2=(W+20)\n", "g=9.81 #m/s**2 #Acceleration due to gravity\n", "\n", "#Calculations\n", "\n", "#frequency equation\n", "#f=1*(2*pi)**-1*((k*g)*W**-1)**0.5\n", "\n", "#For First case f=12 \n", "#12=1*(2*pi)**-1*((k*g)*W**-1)**0.5 ...............1\n", "\n", "#For Second case f=10\n", "#10=1*(2*pi)**-1*((k*g)*W**-1)**0.5 .............2\n", "\n", "#Dividing equation 1 by 2 we get\n", "#12*10**-1=((W+20)*W**-1)**0.5 \n", "\n", "#Squaring above equation and further simplifying we get \n", "W=2000*44**-1\n", "\n", "#Sub value of W in equation 1 we get\n", "k=(n1*2*pi)**2*W*g**-1*10**-3 #KN/m\n", "\n", "#Result\n", "print\"Weight of spring is\",round(W,2),\"N\"\n", "print\"Stiffness of the spring is\",round(k,2),\"KN/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of spring is 45.45 N\n", "Stiffness of the spring is 26.34 KN/m\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.15,Page No.629" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "M=50 #kg #Mass of block\n", "g=9.81 #Acceleration due to gravity\n", "C1=4000 #N/m #Stiffness of 1st spring\n", "C2=6000 #N/m #Stiffness of 2nd spring\n", "r=0.04 #m #MAx amplitude\n", "\n", "#Calculations\n", "\n", "#Static Extension of 1st spring\n", "x1=M*g*C1**-1 #m\n", "\n", "\n", "#Static Extension of 2nd spring\n", "x2=M*g*C2**-1 #m\n", "\n", "#Total Extension \n", "x=x1+x2 #m\n", "\n", "#Period of vibration \n", "T=2*pi*(x*g**-1)**0.5 #s\n", "\n", "#Angular velocity\n", "f=2*pi*T**-1 #rad/s\n", "\n", "#MAx velocity\n", "V_max=f*r #m/s\n", "\n", "#Max Acceleration\n", "A_max=f**2*r #m/s**2\n", "\n", "#2nd case\n", "\n", "#Let\n", "#W1=Weight supported by first spring\n", "#W2=Weight suppoerted by second spring\n", "\n", "#W=W1+W2 #Total Weight ......................1\n", "\n", "#Extension of first spring\n", "#X1=W1*C1**-1 ...........................2\n", "\n", "#Extension of second spring\n", "#X2=W2*C2**-1 .........................3\n", "\n", "#As Extension of 1st spring is equal to 2nd spring\n", "#W1*C1**-1=W2*C2**-1 \n", "\n", "#sub value in equation 1 and further simplifying we get\n", "W2=50*g*3*5**-1 #N\n", "\n", "#Static extension of block\n", "X3=W2*C2**-1 #m\n", "\n", "#Period of vibration \n", "T2=2*pi*(X3*g**-1)**0.5 #s\n", "\n", "#Angular velocity\n", "f2=2*pi*T2**-1 #rad/s\n", "\n", "#MAx velocity\n", "V_max2=f2*r #m/s\n", "\n", "#Acceleration\n", "A_max2=f2**2*r #m/s**2\n", "\n", "\n", "#result\n", "print\"Period of vibrations\",round(T,4),\"s\"\n", "print\"MAx velocity\",round(V_max,2),\"m/s\"\n", "print\"Max Acceleration\" ,round(A_max,2),\"m/s**2\"\n", "\n", "#When Block is suppoetred with spring\n", "print\"Period of vibrations\",round(T2,2),\"s\"\n", "print\"MAx velocity\",round(V_max2,2),\"m/s\"\n", "print\"Max Acceleration\" ,round(A_max2,2),\"m/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Period of vibrations 0.9069 s\n", "MAx velocity 0.28 m/s\n", "Max Acceleration 1.92 m/s**2\n", "Period of vibrations 0.44 s\n", "MAx velocity 0.57 m/s\n", "Max Acceleration 8.0 m/s**2\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.16,Page No.631" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "x=0.3 #mm #Extension of spring\n", "W1=20 #N #Weight \n", "W2=700 #N #Weight supported\n", "e=1.05 #cm #Static Extension\n", "r=0.90 #cm #Amplitude\n", "g=980 #m/s**2 #Acceleration due to gravity\n", "x3=0.4 #cm #Displacement of weight from equilibrium position\n", "\n", "#Calculations\n", "\n", "#Stiffness of spring\n", "C=W1*x**-1 #N/mm\n", "\n", "#Extension of spring\n", "x2=W2*C**-1 #cm\n", "\n", "#Period of vibration\n", "T=2*pi*((e*g**-1)**0.5) #s\n", "\n", "#Frequency\n", "n=1*T**-1 #vib/s\n", "\n", "#Angular velocioty\n", "f=(g*e**-1)**0.5 #rad/s\n", "\n", "#Velocity\n", "v=-f*((r**2-x3**2)**0.5)\n", "\n", "#Result\n", "print\"Frequency of vibration is\",round(n,2),\"vib/s\"\n", "print\"Period of vibration is\",round(T,2),\"s\"\n", "print\"Velocity of weight is\",round(v,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of vibration is 4.86 vib/s\n", "Period of vibration is 0.21 s\n", "Velocity of weight is -24.63 m/s\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.17,Page No.632" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "W_o=24 #tf #Weight of empty wagon\n", "W1=32 #tf #Weight of goods\n", "W=W_o+W1 #Total Weight\n", "e1=8 #cm #Total Compression of spring\n", "g=981 #Acceleration due to gravity\n", "r=10 #cm #Amplitude\n", "x=4 #cm #displacement\n", "\n", "#Calculations\n", "\n", "#Stiffness of spring\n", "c=W*e1**-1 #tf/cm\n", "\n", "#Compression of spring due to weight of wagon\n", "e_o=W_o*c**-1 #cm\n", "\n", "#When Wagon is empty \n", "T_o=2*pi*((e_o*g**-1)**0.5)\n", "\n", "#When Wagon is Loaded \n", "T1=2*pi*((e1*g**-1)**0.5)\n", "\n", "#Angular velocity\n", "f=2*pi*T_o**-1 #rad/s\n", "\n", "#Velocity \n", "v=f*((r**2-x**2)**0.5)*10**-2\n", "\n", "#Result\n", "print\"Natural period of Vibrations is:When wagon is empty\",round(T_o,2),\"s\"\n", "print\" :When wagon is loaded\",round(T1,2),\"s\"\n", "print\"Velocity when displacement is\",round(v,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Natural period of Vibrations is:When wagon is empty 0.37 s\n", " :When wagon is loaded 0.57 s\n", "Velocity when displacement is 1.55 m/s\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.18,Page No.634" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "T=2 #s #time\n", "g2=981 #Acceleration due to gravity\n", "g=980 #Acceleration due to gravity\n", "\n", "#Calculations\n", "\n", "#Length of seconds pendulum with g=980\n", "L1=(T*(2*pi)**-1)**2*g\n", "\n", "#Length of seconds pendulum with g=981\n", "L2=(T*(2*pi)**-1)**2*g2\n", "\n", "#Result\n", "print\"Length of seconds pendulum with g=980 is\",round(L1,2),\"cm\"\n", "print\"Length of seconds pendulum with g=981 is\",round(L2,3),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of seconds pendulum with g=980 is 99.29 cm\n", "Length of seconds pendulum with g=981 is 99.396 cm\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.19,Page No.634" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "l=0.6 #m #Length of string\n", "W=80 #g\n", "g=9.81 \n", "\n", "#Calculations\n", "\n", "#Time\n", "T=2*pi*((l*g**-1)**0.5) #s\n", "\n", "#Result\n", "print\"Time period of pendulum is\",round(T,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time period of pendulum is 1.55 s\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.20,Page No.635" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "l=99.93 #cm #LEngth of pendulum\n", "dn=-5 #s #Number of beats clock loses\n", "\n", "#Calculations\n", "\n", "#Number of seconds in days \n", "dl=-dn*2*l*n**-1\n", "\n", "#Result\n", "print\"Length of pendulum for correct time is\",round(dl,5),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of pendulum for correct time is 205.52155 cm\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.21,Page No.635" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "T=2 #s #Time\n", "g=981 #cm/s**2\n", "\n", "#Calculations\n", "\n", "#Length of pendulum\n", "L=(T*(2*pi)**-1)**2*g #cm\n", "\n", "#Part-2\n", "\n", "#Decrease in gravity\n", "dg=g-981 #cm/s**2\n", "\n", "#Number of beats in day\n", "n=24*60*60\n", "\n", "# number of beats clock will lose\n", "dn=n*(2*g)**-1 #s\n", "\n", "#Result\n", "print\"Length of Pendulum\",round(L,2),\"cm\"\n", "print\"Number of beats clock will lose is\",round(dn,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of Pendulum 99.4 cm\n", "Number of beats clock will lose is 44.04 s\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.22,Page No.637" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "d=0.03 #m #Diameter of spindle\n", "L=3.5 #m #Length of spindle\n", "W=280 #N #Weight attached\n", "E=2*10**11 #N/m**2 #Modulus of elasticity\n", "g=9.81 #m/s**2 #Acceleration due to gravity\n", "\n", "#Calculations\n", "\n", "#Area of cross section\n", "A=pi*4**-1*d**2 #m**2\n", "\n", "#stress\n", "sigma=W*A**-1 #N/m**2\n", "\n", "#Strain\n", "dell=sigma*E**-1 \n", "\n", "#Increase in length\n", "dell_l=dell*L #m\n", "\n", "#Time period\n", "T=2*pi*((dell_l*g**-1)**0.5)\n", "\n", "#Frrequency\n", "f=1*T**-1 #Cycles/s\n", "\n", "#Result\n", "print\"Frequency of vibrations is\",round(f,2),\"Cycles/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of vibrations is 189.33 Cycles/s\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.23,Page No.638" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "d=100 #mm #Diameter of shaft\n", "L=1000 #mm #Length of shaft\n", "W=5000 #N #Weight attached\n", "C=0.8*10**5 #N/mm**2 #Modulus of rigidity\n", "g=9.81 #m/s**2\n", "E=2*10**5 #N/mm**2 #Modulus of Elasticity\n", "k=450 #mm #Radius of gyration\n", "\n", "#Calculations\n", "\n", "#Polar Moment of Inertia\n", "J=pi*32**-1*d**4\n", "\n", "#Torsional Stiffness\n", "q=C*J*L**-1\n", "\n", "#M.I\n", "I=M*g**-1*k**2\n", "\n", "#Torsional vibration\n", "f=1*(2*pi)**-1*((q*1000*I**-1)**0.5)*0.1\n", "\n", "#M.I\n", "I2=pi*64**-1*d**4 #mm**4\n", "\n", "#static deflection\n", "dell2=W*L**3*(3*E*I2)**-1\n", "\n", "#Frequency of transverse vibration\n", "f2=1*(2*pi)**-1*((g*(dell2*10**-3)**-1)**0.5)\n", "\n", "#Result\n", "print\"Frequency of Torsional vibration is\",round(f,2),\"cycles/s\"\n", "print\"Frequency of transverse vibration is\",round(f2,2),\"cycles/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of Torsional vibration is 13.88 cycles/s\n", "Frequency of transverse vibration is 12.1 cycles/s\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.24,Page No.640" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "d=100 #mm #Diameter of shaft\n", "L=1000 #mm #Length of shaft\n", "W=5000 #N #Weight attached\n", "C=8.16*10**4 #N/mm**2 #Modulus of rigidity\n", "g=9.81 #m/s**2\n", "E=2*10**5 #N/mm**2 #Modulus of Elasticity\n", "k=250 #mm #Radius of gyration\n", "\n", "#Calculations\n", "\n", "#Stress\n", "F=W*(pi*4**-1*d**2)**-1 #N/mm**2\n", "\n", "#static deflection\n", "dell=F*L*E**-1*10**-3 #m\n", "\n", "#Frequency of longitudinal vibrations\n", "f=1*(2*pi)**-1*((g*dell**-1))**0.5\n", "\n", "#Part-2\n", "\n", "#Torsional stiffness\n", "q=C*pi*32**-1*d**4*L**-1\n", "\n", "#M.I\n", "I=W*(g*1000)**-1*k**2\n", "\n", "#Frequency of torsional vibrations\n", "f2=1*(2*pi)**-1*((q*I**-1))**0.5\n", "\n", "#Result\n", "print\"Frequencies for free longitudinal vibrations is\",round(f,2),\"m\"\n", "print\"Frequencies for free torsional vibrations is\",round(f2,2),\"cycles/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequencies for free longitudinal vibrations is 279.4 m\n", "Frequencies for free torsional vibrations is 25.24 cycles/s\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.25,Page No.641" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "d=5 #mm #Diameter of shaft\n", "L=1000 #mm #Length of shaft\n", "W=20 #N #Weight of rotor\n", "D=200 #mm #Diameter of rotor\n", "C=0.85*10**5 #N/mm**2 #Modulus of rigidity\n", "g=9.81*1000 #mm/s**2\n", "\n", "#Calculations\n", "\n", "#Radius of rotor\n", "R=D*2**-1 #mm\n", "\n", "#Polar Modulus \n", "J=pi*32**-1*d**4 #mm**4\n", "\n", "#Torsional Stiffness\n", "q=C*J*L**-1 #N*mm\n", "\n", "#M.I\n", "I=W*g**-1*R**2*2**-1 #N*mm-s**2\n", "\n", "#Frequency of torsional vibrations\n", "f=1*(2*pi)**-1*((q*I**-1))**0.5\n", "\n", "#Result\n", "print\"Torsional Vibrations of the system is\",round(f,2),\"cycles/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Torsional Vibrations of the system is 3.6 cycles/s\n" ] } ], "prompt_number": 28 } ], "metadata": {} } ] }