{ "metadata": { "name": "chapter 14.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14:Projectiles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.1,Page No.507 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "alpha=60 #Degrees\n", "R=5000 #m #Horizontal Range\n", "g=9.81 #m/s**2 #Acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#By equation of Horizontal Range,we get\n", "u=((R*g)*(sin(2*alpha*pi*180**-1))**-1)**0.5 #m/s\n", "\n", "#Max Height attained by projectile\n", "h_max=u**2*(sin(alpha*pi*180**-1))**2*(2*g)**-1\n", "\n", "#Result\n", "print\"Velocity of projection is\",round(u,2),\"m/s\"\n", "print\"Max Height attained by projectile is\",round(h_max,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of projection is 237.99 m/s\n", "Max Height attained by projectile is 2165.06 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.2,Page No.507" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "u=100 #m/s #Velocity\n", "alpha=30 #Degrees #Angle made by projectile with horizontal\n", "g=9.81 #m/s #Acceleration due to gravity\n", "\n", "#Calculation\n", "\n", "#Horizontal Range\n", "R=u**2*sin(2*alpha*pi*180**-1)*g**-1 #m\n", "\n", "#MAx height attained\n", "h_max=u**2*sin(alpha*pi*180**-1)*g**-1 #m\n", "\n", "#Time of flight\n", "T=2*u*sin(alpha*pi*180**-1)*g**-1 #s\n", "\n", "#Result\n", "print\"Horizontal Range is\",round(R,2),\"m\"\n", "print\"MAx Height attained is\",round(h_max,2),\"m\"\n", "print\"Time of Flight is\",round(T,2),\"s\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Horizontal Range is 882.8 m\n", "MAx Height attained is 509.68 m\n", "Time of Flight is 10.19 s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.3,Page No.508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "#R=4*h_max\n", "\n", "#Calculation\n", "\n", "#Equation ofhorizontal Range is\n", "#R=u**2*sin(2*alpha)*g**-1 .........1\n", "\n", "#Equation of MAx height \n", "#h_max=u**2*sin(alpha)**2*(2*g)**-1 .........2\n", "\n", "#After simplifying both equations,we get\n", "alpha=arctan(1)*(pi**-1*180)\n", "\n", "#Result\n", "print\"Angle of projections is\",round(alpha,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle of projections is 45.0 degrees\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.4,Page No.508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "u=20 #m/s #Velocity\n", "x=20 #m #X cordinate of trajectory\n", "y=8 #m #Y cordinate of trajectory\n", "\n", "#Calculation\n", "\n", "#equation of trajectory\n", "#y=x*tan(alpha)-g*x**2*(2*u**2*cos(alpha)**2)**-1\n", "#After substituting values and further simplifying we get quadratic equation\n", "#4.905*(tan(alpha))**2-20*tan(alpha)+12.905=0\n", "a=4.905\n", "b=-20\n", "c=12.905\n", "\n", "X=b**2-4*a*c\n", "\n", "y1=(-b+X**0.5)*(2*a)**-1\n", "y2=(-b-X**0.5)*(2*a)**-1\n", "\n", "alpha1=arctan(y1)*(pi**-1*180) #Degrees\n", "alpha2=arctan(y2)*(pi**-1*180) #Degrees\n", "\n", "#Result\n", "print\"Angle of projection of particle is:alpha1\",round(alpha1,2),\"Degrees\"\n", "print\" :alpha2\",round(alpha2,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle of projection of particle is:alpha1 73.01 Degrees\n", " :alpha2 38.79 Degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.5,Page No.509" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "x=4.8 #m #X-cord of projectile\n", "y=3.6 #m #y-cord of projectile\n", "alpha=60 #Degrees #Inclination of jet\n", "g=9.81 #m/s**2\n", "\n", "#Calculation\n", "\n", "#Equation of trajectory\n", "#y=x*tan(alpha)-g*x**2*(2*u**2*cos(alpha)**2)**-1\n", "#After further simplifying we get\n", "u=((g*x**2)*(2*(cos(alpha*pi*180**-1))**2*((x*tan(alpha*pi*180**-1))-y))**-1)**0.5 #m/s\n", "\n", "#Result\n", "print\"required velocity of jet at nozzle exit is\",round(u,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "required velocity of jet at nozzle exit is 9.79 m/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.6,Page No.510" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "u=250 #m/s #Velocity\n", "x=4000 #m #x-cord\n", "y=700 #m #y-cord\n", "\n", "#Calculation\n", "\n", "#equation of trajectory\n", "#y=x*tan(alpha)-g*x**2*(2*u**2*cos(alpha)**2)**-1\n", "#After substituting values and further simplifying we get quadratic equation\n", "#1255.68*tan(alpha)**2-4000*tan(alpha)+1955.68=0\n", "a=1255.68\n", "b=-4000\n", "c=1955.68\n", "\n", "X=b**2-4*a*c\n", "\n", "y1=(-b+X**0.5)*(2*a)**-1\n", "y2=(-b-X**0.5)*(2*a)**-1\n", "\n", "alpha1=arctan(y1)*(pi**-1*180) #Degrees\n", "alpha2=arctan(y2)*(pi**-1*180) #Degrees\n", "\n", "#Result\n", "print\"Firing angle to hit the target is:alpha1\",round(alpha1,2),\"Degrees\"\n", "print\" :alpha2\",round(alpha2,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Firing angle to hit the target is:alpha1 68.83 Degrees\n", " :alpha2 31.09 Degrees\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.7,Page No.511" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "alpha1=15 #Degrees #Angle of projectile 1\n", "alpha2=45 #Degrees #Angle of projectile2\n", "g=9.81 #m/s**2\n", "#R1=R-12\n", "#R2=R+24\n", "\n", "#Calculation\n", "\n", "#form Equation of horizontal Range we get,\n", "#R-12=u**2*sin(2*alpha1)*g**-1 ..................1\n", "\n", "#R+24=u**2*sin(2*alpha2)*g**-1 ....................2\n", "\n", "#Dividing equation 1 by 2 and further simplifying we get\n", "R=24+24 #m\n", "\n", "#Sub value of R in equation 2 we get\n", "#u**2=g*72\n", "\n", "#Sub values of R and u**2 in equation of horizontal range we get\n", "#sin(2*alpha)=R*g*(g*72)**-1\n", "#LEt sin(2*alpha)=X\n", "X=R*g*(g*72)**-1\n", "alpha=(arcsin(X)*(180*pi**-1))*2**-1\n", "\n", "#Result\n", "print\"Angle of projection to hit the mark is\",round(alpha,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle of projection to hit the mark is 20.91\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.8,Page No.512" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "u=100 #m/s #initial Velocity\n", "alpha=30 #DEgrees #Angle of projection\n", "g=9.81 #m/s**2\n", "h=80 #m #Height below B\n", "\n", "#Calculation\n", "\n", "#Max Height \n", "H=u**2*(sin(alpha*pi*180**-1))**2*(2*g)**-1 #m\n", "\n", "#Vertical Distance\n", "S=H+h #m\n", "\n", "#Vertical Component of velocity striking the target\n", "v2=(2*g*S)**0.5 #m/s\n", "\n", "#Horizontal component of velocity\n", "v=u*cos(alpha*pi*180**-1)\n", "\n", "#Actual Velocity with which bullet strikes the target\n", "V=(v2**2+v**2)**0.5\n", "\n", "#Angle made by actual velocity striking velocity\n", "theta=arctan(v2*v**-1)*(pi**-1*180)\n", "\n", "#Result\n", "print\"Max height attained by bullet\",round(H,2),\"m\"\n", "print\"Actual Velocity with which it will strike the target\",round(theta,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Max height attained by bullet 127.42 m\n", "Actual Velocity with which it will strike the target 36.38 Degrees\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.9,Page No.514" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "h=150 #m #Height of cliff\n", "u=180 #m/s #Initial Velocity\n", "alpha=30 #ANgle of projection\n", "\n", "#Calculation\n", "\n", "#From equation of vertical Distance\n", "#y=u*sin(Alpha)*t-0.5*g*t**2\n", "#Sub values and further simplifying we get\n", "#4.905t**2-90*t-150=0\n", "a=4.905 \n", "b=-90\n", "c=-150\n", "\n", "X=(b**2-4*a*c)**0.5\n", "\n", "#Total time of flight\n", "t=(-b+(X))*(2*a)**-1\n", "\n", "#Horizontal Distance \n", "h1=u*cos(alpha*pi*180**-1)*t\n", "\n", "#MAx Height \n", "H=u**2*sin(alpha*pi*180**-1)**2*(2*g)**-1 #m\n", "\n", "#ELEvation above the ground\n", "H2=h+H #m\n", "\n", "#Result\n", "print\"Horizontal Distance from gun is\",round(h1,2),\"m\"\n", "print\"Elevation above the ground\",round(H2,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Horizontal Distance from gun is 3099.98 m\n", "Elevation above the ground 562.84 m\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.10,Page No.515" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "h=6 #m #Height of tunnel\n", "u=50 #m/s #Initial Velocity\n", "g=9.81\n", "\n", "#Calculation\n", "\n", "alpha=arcsin(((h*2*g)*((u**2)**-1))**0.5)*(pi**-1*180)\n", "\n", "#Horizontal Range \n", "R=u**2*sin(2*alpha*pi*180**-1)*g**-1\n", "\n", "#Result\n", "print\"Angle of projection is\",round(alpha,2),\"DEgrees\"\n", "print\"Horizontal Range is\",round(R,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle of projection is 12.53 DEgrees\n", "Horizontal Range is 107.96 m\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.11,Page No.516" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "alpha1=30 #Degrees #Angle of projection1\n", "alpha2=30 #Degrees #Angle of projection2\n", "u1=350 #m/s #Velocity of projection at A\n", "u2=300 #m/s #Velocity of projection at B\n", "L_AB=30 #m #distance between A nd B\n", "g=9.81 #m/s**2 \n", "\n", "#Calculation\n", "\n", "#Length AD\n", "L_AD=L_AB*cos(alpha1*pi*180**-1)\n", "\n", "#Horizontal component of velocity at A\n", "V_A=u1*cos(alpha1*pi*180) #m/s\n", "\n", "#Horizontal component of velocity at B\n", "V_B=u2*cos(alpha2*pi*180) #m/s\n", "\n", "#Horizontal Distance covered by shot A\n", "#x=(u1*cos(alpha1)*t ..........................1\n", "\n", "#Horizontal Distance covered by shot B\n", "#15*(3)**0.5-x=(u2*cos(alpha2))*t ................2\n", "\n", "#Adding Equations 1 and 2 we get\n", "t=15*(3)**0.5*((u1+u2)*cos(alpha1*pi*180**-1))**-1\n", "\n", "#sub values in equation 1 we get\n", "x=(u1*cos(alpha1*pi*180**-1))*t\n", "\n", "#Intial velocity shot in vertical direction\n", "V2=u1*sin(alpha1*pi*180**-1) #m/s\n", "\n", "#Distance in vertical direction\n", "y=V2*t-g*t**2*2**-1\n", "\n", "#Result\n", "print\"Time when these two shots meet\",round(t,2),\"s\"\n", "print\"Vertical Distance at which they meet\",round(y,3),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time when these two shots meet 0.05 s\n", "Vertical Distance at which they meet 8.066 m\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.12,Page No.518" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "v=720*10**3*3600**-1 #m/s #Speed of air craft\n", "u=200 #m/s #Velocity of bomb\n", "H=1000 #m #Height\n", "\n", "#Calculation\n", "\n", "#Time requaired by bomb\n", "t=(H*2*g**-1)**0.5 #s\n", "\n", "#Horizontal distance of air craft\n", "h=u*round(t,3) #m\n", "\n", "#Result\n", "print\"Time requaired by bomb to reach the ground\",round(t,2),\"s\"\n", "print\"Horizontal distance of air craft\",round(h,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time requaired by bomb to reach the ground 14.28 s\n", "Horizontal distance of air craft 2855.6 m\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.13,Page No.519" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "v=108*10**3*3600**-1 #m/s #Spedd of air craft\n", "u=30 #m/s #Horizontal Velocity\n", "H=1000 #m #Height\n", "g=9.81 #m/s**2\n", "\n", "#Calculation\n", "\n", "#Time taken by bomb\n", "t=(H*2*g**-1)**0.5 #s\n", "\n", "#Horizontal Distance OB\n", "h=u*t #m\n", "\n", "#Velocity of bomb hitting the ground\n", "V=g*t #m/s**2\n", "\n", "#Resultant Velocity\n", "V2=(u**2+V**2)**0.5 #m/s\n", "\n", "#Direction in which the bomb hits the ground\n", "theta=arctan(V*u**-1)*(180*pi**-1)\n", "\n", "#Result\n", "print\"HOrizontal Distance of air craft from target\",round(h,2),\"m\"\n", "print\"Velocity of bomb\",round(V2,2),\"m/s\"\n", "print\"Direction of bomb\",round(theta,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "HOrizontal Distance of air craft from target 428.35 m\n", "Velocity of bomb 143.25 m/s\n", "Direction of bomb 77.91 Degrees\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.14,Page No.520" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "H=2000 #m #Height of aeroplane\n", "u=10**6*3600**-1 #Velocity of plane #m/s\n", "g=9.8 #m/s**2\n", "\n", "#Calculation\n", "\n", "#Time required by bomb\n", "t=(2*H*g**-1)**0.5 #s\n", "\n", "#Horizontal Distance travelled by bomb\n", "h=u*t #m\n", "\n", "#Result\n", "print\"Time required by bomb to reach the ground\",round(t,2),\"s\"\n", "print\"Horizontal Distance travelled by bomb\",round(h,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required by bomb to reach the ground 20.2 s\n", "Horizontal Distance travelled by bomb 5611.96 m\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.16,Page No.521" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "L_AB1=4 #m #LEngth of AB in Horizontal Distance\n", "L_AB2=2 #m #LEngth of AB in Vertical Distance\n", "g=9.81 #m/s**2 \n", "\n", "#Calculation\n", "\n", "#time\n", "t=((L_AB2*2)*(9.81)**-1)**0.5\n", "\n", "#Minimum veloacity of motorcyclye at A in Horizontal Direction\n", "u=L_AB1*t**-1 #m/s\n", "\n", "#Vertical Component of velocity\n", "v=g*t #m/s\n", "\n", "#Resultant velocity at B\n", "V=(u**2+v**2)**0.5*3600*(10**3)**-1 #km/hr\n", "\n", "#Inclination\n", "theta=arctan(v*u**-1)*(180*pi**-1)\n", "\n", "#Result\n", "print\"Inclination of motorcycle clearing the ditch\",round(theta,2),\"Degrees\"\n", "print\"MAgnitude of velocity of motorcycleafter clearing ditch\",round(V,2),\"km/hr\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Inclination of motorcycle clearing the ditch 45.0 Degrees\n", "MAgnitude of velocity of motorcycleafter clearing ditch 31.89 km/hr\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.17,Page No.522" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "alpha=25 #Degrees #Angle of ramp\n", "L_BC1=4 #m #Horizontal Distance between B and C\n", "L_BC2=2 #m #vertical Distance between B and C\n", "g=9.81 #m/s**2\n", "\n", "#Calculation\n", "\n", "##From equation of path \n", "X=(L_BC2+L_BC1*tan(alpha*pi*180**-1))\n", "Y=(g*L_BC1**2)*(2*(cos(alpha*pi*180**-1))**2)**-1\n", "u=(X**-1*Y)**0.5\n", "\n", "#Result\n", "print\"Minimum speed of motorcycle is\",round(u,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum speed of motorcycle is 4.97 m/s\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.18,Page No.526" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "u=40 #m/s #Velocity of projection\n", "alpha=50 #Degrees #Angle of projection\n", "beta=20 #degrees #Ang;e if incline plane\n", "\n", "#Calculation\n", "\n", "#Time of flight\n", "T=2*u*sin((alpha-beta)*pi*180**-1)*(g*cos(beta*pi*180**-1))**-1\n", "\n", "#Range \n", "R=2*u**2*cos(alpha*pi*180**-1)*sin((alpha-beta)*pi*180**-1)*(g*(cos(beta*pi*180**-1))**2)**-1\n", "\n", "#Let alpha2 be the angle of projection for max range\n", "alpha2=(90+beta)*2**-1\n", "\n", "#MAx range up the plane\n", "R2=u**2*(g*(1+sin(beta*pi*180**-1)))**-1\n", "\n", "#Result\n", "print\"Time of flight is\",round(T,2),\"s\"\n", "print\"range up the plane is\",round(R,2),\"m\"\n", "print\"Max range up the plane\",round(R2,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time of flight is 4.34 s\n", "range up the plane is 118.73 m\n", "Max range up the plane 121.53 m\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.19,Page No.527" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "u=30 #m/s #velocity\n", "alpha=55 #angle of projection\n", "beta=20 #angle of plane\n", "g=9.81\n", "\n", "#Calculation\n", "#Maximum Range\n", "R=u**2*(g*(1+sin(beta*pi*180**-1)))**-1 #m\n", "\n", "#Time of Flight\n", "T=2*u*sin((alpha-beta)*pi*180**-1)*(g*cos(beta*pi*180**-1))**-1\n", "\n", "#Result\n", "print\"Time of Fliight is\",round(T,2),\"s\"\n", "print\"Maximum Range is \",round(R,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time of Fliight is 3.73 s\n", "Maximum Range is 68.36 m\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.20,Page No.527" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "u=3 #m/s #Velocity of projection\n", "alpha=25 #Degrees #Angle of projection\n", "beta=25 #degrees #Angle of plane with horizontal\n", "g=9.81 #m/s**2\n", "\n", "#Calculation\n", "\n", "#Range\n", "R=2*u**2*cos(alpha*pi*180**-1)*sin((alpha+beta)*pi*180**-1)*(g*(cos(beta*pi*180**-1))**2)**-1\n", "\n", "#L_BC=y\n", "#L_AC=x\n", "\n", "#From tan(beta) we get\n", "#y=0.466*x .................(1)\n", "\n", "#From Equation (L_AB)**2=(L_BC**2+L_AC)**2\n", "#After sub values and further simplifying we get\n", "x=(2.4*(1.217)**-1)**0.5 #m\n", "\n", "#Sub in equation 1 we get\n", "y=0.466*x\n", "\n", "#Result\n", "print\"Co-ordinates of point B are:x\",round(x,2),\"m\"\n", "print\" :y\",round(y,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Co-ordinates of point B are:x 1.4 m\n", " :y 0.65 m\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.21,Page No.528" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "L_AB=75 #m #LEngth of AB\n", "h=19.6 #m #Height of point of release\n", "beta=26.564 #Degrees #angle of plane \n", "\n", "#Calculation\n", "\n", "#Length AC\n", "L_AC=L_AB*cos(beta*pi*180**-1) #m\n", "\n", "#From horizontal Distance \n", "#u*cos(alpha)=L_AC*t**-1 .............1\n", "\n", "#Vertical motion motion from point of release\n", "#u*sin(alpha)=19.6 ....................2\n", "\n", "#vertical Distance\n", "y=L_AB*sin(beta*pi*180**-1) #m\n", "\n", "#Vertical distance from point of release travelled by ball\n", "#y=u*sin(alpha)*t-0.5*g*t**2\n", "\n", "#sub value of y in above equation and further simplifyin we get\n", "#t**2-4t-6.84=0\n", "a=1\n", "b=-4\n", "c=-6.84\n", "\n", "X=b**2-4*a*c\n", "\n", "t=(-b+X**0.5)*(2*a)**-1\n", "\n", "#sub value in equation 1 we get\n", "#Let ucos(alpha)=X\n", "X=67.08*t**-1 #..........................3\n", "\n", "#Dividing equation 1 by 3 we get\n", "alpha=arctan(19.6*12.68**-1)*(180*pi**-1)\n", "\n", "#sub in equation 1 we get\n", "u=12.68*cos(alpha*pi*180**-1)**-1\n", "\n", "#Result\n", "print\"Initial Velocity\",round(u,2),\"m/s\"\n", "print\"Inclination is\",round(alpha,4),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Initial Velocity 23.34 m/s\n", "Inclination is 57.0996 Degrees\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }