{ "metadata": { "name": "chapter 13.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13:Kinematics of Curvilinear Motion,Circular Motion,,Rotation And Translation" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.1,Page No.471" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "w_o=5 #Rad/s #Initial Angular Velocity\n", "w=13 #rad/s #IFinal angular Velocity\n", "t=4 #s #time\n", "\n", "#Calculation\n", "\n", "#Angular Acceleration of the body\n", "alpha=(w-w_o)*t**-1 #rad/s**2\n", "\n", "#Result\n", "print\"Angular Acceleration of the body is\",round(alpha,2),\"Rad/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angular Acceleration of the body is 2.0 Rad/s**2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2,Page No.471" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "N_o=20 #Initial r.p.m of wheel\n", "n=50 #No. of revolution\n", "n2=100 \n", "t=70 #s #time\n", "\n", "#Calculation\n", "\n", "#Angular Dispalcement\n", "theta=2*pi*n\n", "\n", "#Initial Angular Velocity\n", "w_o=2*pi*N_o*60**-1\n", "\n", "#Angular Velocity at the end of 70 s\n", "alpha=(theta-w_o*t)*((t**2)*2**-1)**-1 #rad/s**2\n", "w=w_o+alpha*t #rad/s\n", "\n", "#Time Required for the speed to reach 100 r.p.m\n", "\n", "#Final Angular Velocity\n", "w2=2*pi*n2*60**-1 #rad/s\n", "\n", "#Time required for speed to reach 100 revolutions\n", "t=(w2-w_o)*alpha**-1 #s\n", "\n", "#Result\n", "print\"Angular Velocity at the end of 70 s is\",round(w,2),\"rad/s**2\"\n", "print\"Time required for speed to reach 100 revolutions is\",round(t,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angular Velocity at the end of 70 s is 6.88 rad/s**2\n", "Time required for speed to reach 100 revolutions is 122.5 s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3,Page No.472" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "alpha=1 #rad/s**2 #Angular Acceleration\n", "w_o=5.25 #rad/s**2 #Initial Angular velocity\n", "w=10.50 #rad/s**2 #Final angular velocity\n", "\n", "#Calculation\n", "\n", "#Total angle turned\n", "theta=(w**2-w_o**2)*2**-1 #rad\n", "\n", "#Result\n", "print\"Total angle turned is\",round(theta,2),\"rad\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total angle turned is 41.34 rad\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4,Page No.472" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "#Part-1\n", "w_o=0 #Initial angular velocity\n", "alpha=1 #rad/s**2 #Angular accleration\n", "t=90 #s #time\n", "\n", "#Part-2\n", "\n", "w_o2=90 #rad/s #Initial Angular velocity\n", "w2=0 #final angular velocity\n", "alpha2=-0.5 #rad/s**2 #Angular retardation\n", "\n", "\n", "#Calculation\n", "\n", "#Part-1\n", "\n", "#Angular Velocity\n", "w=w_o+alpha*t #rad/s\n", "\n", "#Speed in r.p.m\n", "N=60*w*(2*pi)**-1 #r.p.m\n", "\n", "#Part-2\n", "\n", "#Time taken by flywheel in seconds to come to rest \n", "t1=-w_o2*alpha2**-1 #s\n", "\n", "#Result\n", "print\"Speed in r.p.m is\",round(N,2)\n", "print\"Time taken by flywheel in seconds to come to rest is\",round(t1,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed in r.p.m is 859.44\n", "Time taken by flywheel in seconds to come to rest is 180.0 s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5,Page No.473" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "N=200 #r.p.m #initial speed\n", "f1=20.94 #rad/s #Frequency\n", "N2=160 #r.p.m\n", "t=10 #s #time\n", "f2=16.75 #rad/s\n", "f3=0 #Final angular velocity\n", "\n", "#Calculation\n", "\n", "#Uniform retardation\n", "alpha=(f2-f1)*t**-1 #rad/s**2\n", "\n", "#total angular displacement\n", "theta=(f3**2-f1**2)*(2*alpha)**-1 #rad\n", "n=theta*(2*pi)**-1 #revolutions\n", "\n", "#Time taken by wheel before it comes to rest\n", "t=-f1*alpha**-1\n", "\n", "\n", "#Result\n", "print\"Number of revolutions is\",round(n,2),\"revolution\"\n", "print\"Time taken by wheel before it comes to rest is\",round(t,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of revolutions is 83.28 revolution\n", "Time taken by wheel before it comes to rest is 49.98 s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6,Page No.474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "#Angle of rotation\n", "#theta=2*t**3-5*t**2+8*t+6\n", "t=0 #s\n", "t2=4 #s\n", "\n", "#Calculation\n", "\n", "#After deriving above equation we get\n", "f1=6*t**2-10*t+8 #rad/s\n", "\n", "#Again differentiating above equation we get\n", "alpha1=12*t-10 #rad/s**2\n", "\n", "#for t2=4\n", "f2=6*t2**2-10*t2+8 #rad/s\n", "alpha2=12*t2-10 #rad/s**2\n", "\n", "#Result\n", "print\"Angular Velocity at t=0 is\",round(f1,2),\"rad/s\"\n", "print\"Angular acceleration at t=4 is\",round(alpha1,2),\"rad/s**2\"\n", "print\"Angular Velocity at t=0 is\",round(f2,2),\"rad/s\"\n", "print\"Angular acceleration at t=4 is\",round(alpha2,2),\"rad/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angular Velocity at t=0 is 8.0 rad/s\n", "Angular acceleration at t=4 is -10.0 rad/s**2\n", "Angular Velocity at t=0 is 64.0 rad/s\n", "Angular acceleration at t=4 is 38.0 rad/s**2\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6(A),Page No.474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "#angular rotation\n", "#theta=9*32**-1*t**3\n", "t=1.6 #s\n", "\n", "#Calculation\n", "\n", "#after differentiating above equation twice we get\n", "alpha=27*16**-1*t #rad/s**2\n", "\n", "#Result\n", "print\"Angular accelerations is\",round(alpha,2),\"rad/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angular accelerations is 2.7 rad/s**2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.7,Page No.475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "f1=2 #rad/s #initiaal angular velocity\n", "alpha1=0 #Initial angular acceleration\n", "\n", "#Calculation\n", "\n", "#Integrating law of rotation we get\n", "#f2=t**3-3*t+C .......1\n", "#put t=0 weg et\n", "C=2\n", "\n", "#now at t=5 #s\n", "t=5 #s\n", "f2=t**3-3*t+C\n", "\n", "#Integrting equation 1 we get\n", "#theta=t**4*4**-1-3*t**2*2**-1+2*t\n", "#Sub values and further simplifying we get\n", "theta=t**4*4**-1-3*t**2*2**-1+2*t\n", "\n", "#Result\n", "print\"Angular velocity when t=5s is\",round(f2,2),\"rad/s\"\n", "print\"Angular displacement when t=5s is\",round(theta,2),\"radians\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angular velocity when t=5s is 112.0 rad/s\n", "Angular displacement when t=5s is 128.75 radians\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.8,Page No.476" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "#Angle of rotation of body \n", "#theta=theta1+a*t+b*t**2\n", "f=3*pi\n", "f2=8*pi\n", "t=0 #s\n", "t2=2 #s\n", "\n", "#Calculations\n", "\n", "#differentiating above equation and further sub values and simplifuing we getweget\n", "a=f\n", "b=(f2-a)*4**-1\n", "\n", "#Result\n", "print\"Constants a is\",round(a,2)\n", "print\"Constants b is\",round(b,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Constants a is 9.42\n", "Constants b is 3.93\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9,Page No.480" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "#Velocity\n", "V_A=4 #m/s\n", "theta=30 #Degrees\n", "\n", "#Calculation\n", "\n", "#Velocity\n", "V_B=V_A*(tan(theta*pi*180**-1))**-1 #m/s\n", "\n", "#Result\n", "print\"Velocity of point B is\",round(V_B,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of point B is 6.93 m/s\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9(A),Page No.480" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "r=1 #m #radius\n", "V_C=20 #m/s #Velocity\n", "f=20 #rad/s #Angular velocity\n", "\n", "#Calculation\n", "\n", "#Length\n", "L_DE=(r**2+r**2)**0.5 #m\n", "L_DF=2 #m #Diameter\n", "\n", "#Velocity \n", "V_E=L_DE*f #m/s\n", "V_F=f*L_DF #m/s\n", "\n", "#Result\n", "print\"Velocity of point E:V_E\",round(V_E,2),\"m/s\"\n", "print\"Velocity of point E:V_F\",round(V_F,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of point E:V_E 28.28 m/s\n", "Velocity of point E:V_F 40.0 m/s\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9(B),Page No.481" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "D=50 #cm\n", "r=0.25 #m #radius\n", "V_A=L_AL=5 #m/s\n", "V_B=L_BM=3 #m/s\n", "\n", "#Calculation\n", "\n", "#V_A=f*L_AO\n", "#V_B=f*L_BO \n", "\n", "#After further simplifying and resolving we get\n", "f=2*0.5**-1 #rad/s\n", "x=L_BO=3*f**-1 \n", "\n", "#Linear Velocity\n", "V_C=f*(r+x) #m/s\n", "\n", "#Result\n", "print\"Linear Velocity of roller is\",round(V_C,2),\"m/s\"\n", "print\"Angular velocity is\",round(f,2),\"rad/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Linear Velocity of roller is 4.0 m/s\n", "Angular velocity is 4.0 rad/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9(C),Page No.482" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "r=1 #m\n", "u=20 #m/s\n", "\n", "#Calculation\n", "\n", "#Velocity component of point E\n", "#u_E=u+u*sin(u*t)\n", "#at t=0\n", "t=0\n", "u_E=u+u*sin(u*t*pi*180**-1)\n", "v_E=u*cos(u*t)\n", "V_E=(u_E**2+v_E**2)**0.5 #m/s\n", "u_F=u+u*cos(u*t*pi*180**-1) #m/s\n", "\n", "#Result\n", "print\"Velocity of point E is\",round(V_E,2),\"m/s\"\n", "print\"Velocity of point F is\",round(u_F,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of point E is 28.28 m/s\n", "Velocity of point F is 40.0 m/s\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9(D),Page No.485" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of Variables\n", "\n", "g=9.81 #Acceleration due to gravity\n", "W1=W2=80*1000*g\n", "D1=0.75*10**3 #mm\n", "R1=0.75*500 #mm\n", "a1=0.025 #m/s**2\n", "D2=1.2*10**3 #mm\n", "R2=1.2*500 #mm\n", "a2=0.0625 #m/s**2\n", "\n", "#Calculation\n", "\n", "#Horizontal Forces\n", "P1=W1*a1*R1**-1 #N\n", "P2=W2*a2*R2**-1 #N\n", "\n", "#Result\n", "print\"Horizontal Force required to maintain uniform speed is\",round(P1,2),\"N\"\n", "print\"Horizontal Force for truck and trailer is\",round(P2,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Horizontal Force required to maintain uniform speed is 52.32 N\n", "Horizontal Force for truck and trailer is 81.75 N\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }