{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13 Principle of Virtual Work" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example 13.1 Application of Principle of Virtual Work" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of force (i.e P) that can hold the system in equilibrium is 500 N\n" ] } ], "source": [ "# Initilization of variables\n", "W=1000 # N # weight to be raised\n", "# Calculations\n", "# From the Principle of virtual work,\n", "P=W/2 # N\n", "# Results\n", "print('The value of force (i.e P) that can hold the system in equilibrium is %d N'%P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example 13.7 Application of Principle of Virtual Work" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Horizontal component of reaction at A (X_A) is 333.333333 N\n", "The Vertical component of reaction at A (Y_A) is 1333.333333 N\n", "The Horizontal component of reaction at B (X_B) is 333.333333 N\n", "The Vertical component of reaction at B (Y_B) is 666.666667 N\n" ] } ], "source": [ "import math\n", "# Initilization of variables\n", "P=1000 # N # Force acting at the hinge of the 1st square\n", "Q=1000 # N # Force acting at the hinge of the 2nd square\n", "# Calculations\n", "# Chosing the co-ordinate system with originat A, we can write,\n", "theta=45 # degree\n", "# Forces that do work are P,Q & X_B. Applying the principle of virtual work & Simplyfying and solving for X_B,\n", "X_B=((2*P)/6)*(math.cos(theta*math.pi/180)/math.sin(theta*math.pi/180)) # N \n", "# Now give a virtual angular displacement to the whole frame about end A such that line AB turns by an angle delta_phi.\n", "# The force doing work are P,Q&Y_B.Applying the principle of virtual work & Simplyfying this eq'n and solving for Y_B,\n", "Y_B=((3*Q)+P)/6 # N\n", "# Simply by removing the support at A & replacing it by the reactions X_A & Y_A we can obtain,\n", "X_A=X_B # N\n", "Y_A=P+Q-Y_B # N\n", "# Results\n", "print('The Horizontal component of reaction at A (X_A) is %f N'%X_A)\n", "print('The Vertical component of reaction at A (Y_A) is %f N'%Y_A)\n", "print('The Horizontal component of reaction at B (X_B) is %f N'%X_B)\n", "print('The Vertical component of reaction at B (Y_B) is %f N'%Y_B)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 0 }