{ "metadata": { "name": "chapter_4.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4:Conditions Of Equilibrium" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1,Page No.68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "F1=100 #N #Force acting on body\n", "\n", "#Calculations\n", "\n", "#As the Force F1 & F2 are acting on the same body and at same point but in opposite directions\n", "#These two forces will be equal\n", "F2=F1\n", "\n", "#Result\n", "print\"Magnitude of Force F2 is\",round(F2,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of Force F2 is 100.0 N\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2,Page No.68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "\n", "#Declaration Of Variables\n", "\n", "#Force\n", "F3=400 #N\n", "theta1=30 #Degree #Angle made by forces F2 & F3\n", "\n", "#Calculations\n", "\n", "#By Lami's Theorem\n", "#F1*sin(120)**-1=F2*sin(120)**-1=F3*sin(120)**-1\n", "F2=F3*sin(120*pi*180**-1)**-1*sin(120*pi*180**-1)\n", "F1=F2*sin(120*pi*180**-1)**-1*sin(120*pi*180**-1)\n", "\n", "#Result\n", "print\"Magnitude of Forces:F1\",round(F1,2),\"N\"\n", "print\" :F2\",round(F2,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of Forces:F1 400.0 N\n", " :F2 400.0 N\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3,Page No.69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Declaration Of Variables\n", "\n", "#FOrces\n", "F1=250 #N\n", "F3=1000 #N\n", "L_AB=1 #m #Length of AB\n", "\n", "#Calculations\n", "\n", "#Sum of forces in y direction\n", "F2=F1+F3 #N\n", "\n", "#Moment at pt A\n", "#-F2*L_AB+F3*(L_AB+x)=0\n", "#After further simplifying we get\n", "x=F2*L_AB*F3**-1-L_AB\n", "\n", "#Result\n", "print\"Magnitude of Force F2 is\",round(F2,2),\"N\"\n", "print\"Distance of F2 From F3 is\",round(x,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of Force F2 is 1250.0 N\n", "Distance of F2 From F3 is 0.25 N\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4,Page No.69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "\n", "#Forces\n", "F1=18 #N\n", "F2=22.5 #N\n", "F3=15 #N\n", "F4=30 #N\n", "\n", "#Angles\n", "theta2=45 #Degree\n", "theta3=90 #Degree\n", "theta4=30 #Degree\n", "\n", "#Calculations\n", "\n", "#Sum of Forces in x-direction\n", "#F1+F2*cos(45)-F4*cos(30)-F5*cos(theta5)=0\n", "#After further simplifying we get\n", "#F5*cos(theta5)=F1+F2*cos(45)-F4*cos(30)....................1\n", "\n", "#Sum of Forces in y-direction\n", "#F3+F2*sin(45)-F4*sin(30)-F5*sin(theta5)=0\n", "#After further simplifying we get\n", "#F5*sin(theta5)=F3+F2*sin(45)-F4*sin(30)....................2\n", "\n", "#Dividing equation 2 and 1 we get\n", "X=F3+F2*sin(45*pi*180**-1)-F4*sin(30*pi*180**-1)\n", "Y=F1+F2*cos(45*pi*180**-1)-F4*cos(30*pi*180**-1)\n", "theta=np.arctan((X)*(Y)**-1)*(pi**-1*180)\n", "\n", "F5=(F1+F2*cos(45*pi*180**-1)-F4*cos(30*pi*180**-1))*(cos(theta*pi*180**-1))**-1\n", "\n", "\n", "#Result\n", "print\"Magnitude of force F5 is\",round(F5,2),\"N\"\n", "print\"Direction of F5 is\",round(theta,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of force F5 is 17.78 N\n", "Direction of F5 is 63.51 Degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5,Page No.71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables \n", "\n", "#Forces\n", "F_C=1500 #N\n", "theta_C=60 #degrees\n", "\n", "F_B=1805 #N\n", "theta_B=33.67 #Degrees\n", "\n", "F_A=2240 #N\n", "theta_A=63.43 #Degrees\n", "\n", "#Distances of forces from D\n", "L_DC=2 #m\n", "L_DB=3 #m\n", "L_DE=4 #m\n", "L_DO=3 #m\n", "\n", "\n", "#Calculations\n", "\n", "#NEt forces along Y-axis\n", "R_y=-F_C*cos(theta_C*pi*180**-1)-F_B*cos(theta_B*pi*180**-1)+F_A*cos(theta_A*pi*180**-1)\n", "\n", "#Net Forces along x-axis\n", "R_x=F_C*sin(theta_C*pi*180**-1)-F_B*sin(theta_B*pi*180**-1)-F_A*sin(theta_A*pi*180**-1)\n", "\n", "#Resultant Forces\n", "R=(R_x**2+R_y**2)**0.5 #N\n", "\n", "#Angle made by resultant\n", "theta=np.arctan(R_y*R_x**-1)*(pi**-1*180) #Degrees\n", "\n", "#Net Moment about point O\n", "M_O=-F_C*cos(theta_C*pi*180**-1)*L_DO-F_B*cos(theta_B*pi*180**-1)*L_DO-F_C*sin(theta_C*pi*180**-1)*L_DC+F_B*sin(theta_B*pi*180**-1)*L_DB+F_A*sin(theta_A*pi*180**-1)*L_DE\n", "\n", "\n", "#Moment of R about O\n", "\n", "#X-intercept\n", "x=M_O*-R_x**-1\n", "\n", "#Y-intercept\n", "y=M_O*-R_y**-1\n", "\n", "#Result\n", "print\"Resultant is\",round(R,2),\"N\"\n", "print\"X intercept is\",round(x,2),\"m\"\n", "print\"Y intercept is\",round(y,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resultant is 2114.37 N\n", "X intercept is 0.97 m\n", "Y intercept is 1.33 m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6,Page No.73" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "\n", "#Declaration Of Variables\n", "theta=60 #Degrees #Angle made by chain with ceiling\n", "W=5 #N #Weight of lamp\n", "theta2=120 #Degree #Angle made by chain with cord\n", "theta3=150 #Degree #Angle made by chain with wire holding lamp\n", "theta4=90 #Degree #Angle made by cord with wire holding lamp\n", "\n", "#Calculations\n", "\n", "#LEt T1=tension in cord\n", "#T2=tension in chain\n", "\n", "#By lami's theorem\n", "#T1*sin(theta3)**-1=T2*sin(theta4)**-1=W*sin(theta2)**-1\n", "\n", "T1=W*sin(theta2*pi*180**-1)**-1*sin(theta3*pi*180**-1) #N\n", "T2=W*sin(theta2*pi*180**-1)**-1*sin(theta4*pi*180**-1) #N\n", "\n", "#Result\n", "print\"Tension in chain is\",round(T2,2),\"N\"\n", "print\"Tension in cord is\",round(T1,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tension in chain is 5.77 N\n", "Tension in cord is 2.89 N\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7,Page No.74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "\n", "#Forces\n", "F_P=1000 #N\n", "F_Q=1500 #N\n", "F_R=1000 #N\n", "F_S=500 #N\n", "\n", "theta=90 #Degree #Angle made by F_P with PS\n", "theta2=60 #Degree #Angle made by F_Q with QS\n", "theta3=45 #Degree #Angle made by F_R with RS\n", "theta4=30 #Degree #Angle made by F_S with PS\n", "\n", "#Calculations\n", "\n", "#Resultant of forces along x-axis\n", "R_x=-F_Q*cos(theta2*pi*180**-1)-F_R*cos(theta3*pi*180**-1)-F_S*cos(theta4*pi*180**-1)\n", "\n", "#Resultant of forces along y-axis\n", "R_y=-F_P*sin(theta*pi*180**-1)-F_Q*sin(theta2*pi*180**-1)-F_R*sin(theta3*pi*180**-1)-F_S*sin(theta4*pi*180**-1)\n", "\n", "#Resultant\n", "R=(R_x**2+R_y**2)**0.5 #N\n", "\n", "#Direction of resultant\n", "theta=np.arctan(R_y*R_x**-1)*(180*pi**-1) #Degree\n", "\n", "#Result\n", "print\"Magnitude of Resultant is\",round(R,2),\"N\"\n", "print\"Direction of Resultant is\",round(theta,2),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of Resultant is 3764.97 N\n", "Direction of Resultant is 59.87 degree\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9,Page No.78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "W=100 #N #Weight of roller\n", "L_BC=10 #cm #Radius of roller\n", "L_AB=20 #cm #Length of tie rod\n", "\n", "#Calculations\n", "\n", "theta=np.arcsin(L_BC*L_AB**-1)*(pi**-1*180) #Degrees\n", "\n", "F=W*cos(theta*pi*180**-1)**-1 #N #Force in tie rod\n", "R_C=F*sin(theta*pi*180**-1)\n", "\n", "#Result \n", "print\"Force in tie rod is\",round(F,2),\"N\"\n", "print\"Reaction at C is\",round(R_C,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force in tie rod is 115.47 N\n", "Reaction at C is 57.74 N\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.11,Page No.79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "\n", "#Declaration Of Variables\n", "W=120 #N #Weight of ball\n", "theta=30 #Degrees #angle made by groove\n", "theta2=60 #Degrees #Angle made by groove\n", "\n", "#Calculations\n", "\n", "#LEt R_A and R_B be the reactions at A and B respectively\n", "#by LAmi's theorem\n", "#R_B*sin(120)**-1=R_A*sin(150)**-1=W*sin(90)**-1\n", "\n", "R_C=W*sin(90*pi*180**-1)**-1*sin(120*pi*180**-1) #N\n", "R_A=W*sin(90*pi*180**-1)**-1*sin(150*pi*180**-1) #N\n", "\n", "\n", "#Result\n", "print\"Reaction at A is\",round(R_A,2),\"N\"\n", "print\"Reaction at c is\",round(R_C,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reaction at A is 60.0 N\n", "Reaction at c is 103.92 N\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.11(A),Page No.81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "\n", "#Declaration Of Variables\n", "W=100 #N #weight of roller\n", "\n", "#Calculations\n", "\n", "#LEt R_A and R_B be the reactions at A and B respectively\n", "theta=45 #Degrees #Angle made by R_B with horizontal\n", "theta2=30 #Degrees #Angle made by R_A with horizontal\n", "\n", "#by LAmi's theorem\n", "#R_B*sin(120)**-1=R_A*sin(135)**-1=W*sin(105)**-1\n", "\n", "R_B=W*sin(105*pi*180**-1)**-1*sin(120*pi*180**-1) #N\n", "R_A=W*sin(105*pi*180**-1)**-1*sin(135*pi*180**-1) #N\n", "\n", "#Result\n", "print\"Reaction at A is\",round(R_A,2),\"N\"\n", "print\"Reaction at B is\",round(R_B,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reaction at A is 73.21 N\n", "Reaction at B is 89.66 N\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.12,Page No.81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "W=100 #N #Weight of roller\n", "F=200 #N #Horizontal Force\n", "L_AB=10 #cm #LEngth of bar AB\n", "L_BC=5 #cm #radius of roller\n", "\n", "#Calculations\n", "\n", "theta=np.arcsin(L_BC*L_AB**-1)*(pi**-1*180)\n", "\n", "#LEt R_C be the reaction at c\n", "\n", "#sum of Forces along x-axis\n", "F_AB=F*cos(theta*pi*180**-1)**-1 #N\n", "\n", "#sum of forces along y-axis\n", "R_C=W+F_AB*sin(theta*pi*180**-1)\n", "\n", "#Result\n", "print\"Force in bar AB is\",round(F_AB,2),\"N\"\n", "print\"Reaction at C is\",round(R_C,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force in bar AB is 230.94 N\n", "Reaction at C is 215.47 N\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.14,Page No.84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "\n", "#Declaration Of Variables\n", "W=1000 #N #Weight of rollers\n", "theta=30 #Degree #Angle made by groove\n", "\n", "#Calculations\n", "\n", "#LEt R_A,R_B,R_C,R_D be the reactions at A,B,C,D respectively\n", "\n", "#Roller-2\n", "R_D=W*sin(90*pi*180**-1)*sin(150*pi*180**-1) #N\n", "R_A=W*sin(90*pi*180**-1)*sin(120*pi*180**-1) #N\n", "\n", "#ROller-1\n", "R_B=(W+R_D*sin(theta*pi*180**-1))*sin(60*pi*180**-1)**-1 #N\n", "R_C=R_B*cos(60*pi*180**-1)+R_D*cos(theta*pi*180**-1)\n", "\n", "#Result\n", "print\"Reactions at A:R_A\",round(R_A,2),\"N\"\n", "print\" B:R_B\",round(R_B,2),\"N\"\n", "print\" C:R_C\",round(R_C,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reactions at A:R_A 866.03 N\n", " B:R_B 1443.38 N\n", " C:R_C 1154.7 N\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.15,Page No.85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "W=1000 #N #Weight of each sphere\n", "L_AF=L_BF=L_FD=L_DE=L_CE=25 #cm\n", "L=90 #Width of channel\n", "L_FG=40 #cm\n", "L_EF=L_FD+L_DE #cm\n", "\n", "#Calculations\n", "\n", "theta=np.arcsin(L_FG*L_EF**-1)*(180*pi**-1) #Degrees\n", "\n", "#LEt R_A,R_B,R_C,R_D be the reactions at A,B,C,D respectively\n", "\n", "#Roller-2\n", "R_D=W*(cos(theta*pi*180**-1))**-1 #N\n", "R_C=R_D*sin(theta*pi*180**-1) #N\n", "\n", "#Roller-1\n", "R_A=R_D*sin(theta*pi*180**-1) #N\n", "R_B=R_D*cos(theta*pi*180**-1)+W #N\n", "\n", "#Result\n", "print\"Reactions at A:R_A\",round(R_A,2),\"N\"\n", "print\" B:R_B\",round(R_B,2),\"N\"\n", "print\" C:R_C\",round(R_C,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reactions at A:R_A 1333.33 N\n", " B:R_B 2000.0 N\n", " C:R_C 1333.33 N\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.16,Page No.87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "W=1000 #N #Weight of 2 circular cyclinders\n", "L_AF=L_FC=L_CG=L_GB=15 #cm\n", "W2=2000 #N #Weight of 3rd cyclinder\n", "r2=15 #cm\n", "L_AB=40 #cm\n", "L_AH=L_HB=20 #cm\n", "\n", "#Calculations\n", "\n", "theta=np.arcsin(L_AH*(L_AF+L_FC)**-1)*(pi**-1*180) #Degrees\n", "\n", "#Let R_G,R_F,R_D,R_E be the reactions at G,F,D,E \n", "\n", "R_F=W2*(2*cos(theta*pi*180**-1))**-1 #N\n", "R_G=R_F #N\n", "\n", "#Roller-1\n", "\n", "R_D=W+R_F*cos(theta*pi*180**-1) #N\n", "S=R_F*sin(theta*pi*180**-1) #N\n", "\n", "#Roller-2\n", "\n", "R_E=W+R_G*cos(41.81*pi*180**-1) #N\n", "\n", "#Result\n", "print\"Reaction at E is \",round(R_E,2),\"N\"\n", "print\"Reactions at D is\",round(R_D,2),\"N\"\n", "print\"Force S in the string is \",round(S,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reaction at E is 2000.0 N\n", "Reactions at D is 2000.0 N\n", "Force S in the string is 894.43 N\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.17,Page No.88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "L_OB=L_OC=L_OA=40 #cm #Radius of roller\n", "h=20 #cm #Height of block\n", "L_OD=L_OA-h #cm #Length \n", "W=3000 #N #Weight of roller\n", "\n", "#Calculations\n", "\n", "#LEt R_B be the reaction at B\n", "L_BD=((L_OB**2-L_OD**2)**0.5) #cm\n", "theta=np.arctan(L_BD*(L_OC+L_OD)**-1)*(180*pi**-1) #degree\n", "\n", "#Sum of all vertical Forces\n", "R_B=W*(cos(theta*pi*180**-1))**-1 #N\n", "\n", "#Sum of all horizontal Forces\n", "P=R_B*sin(theta*pi*180**-1) #N\n", "\n", "#Result\n", "print\"Reaction at B is\",round(R_B,2),\"N\"\n", "print\"Horizontal Reaction at C is\",round(P,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reaction at B is 3464.1 N\n", "Horizontal Reaction at C is 1732.05 N\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.18,Page No.89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "#Declaration Of Variables\n", "L_OB=L_OC=L_OA=40 #cm #Radius of roller\n", "h=20 #cm #Height of block\n", "L_OD=L_OA-h #cm #Length \n", "W=3000 #N #Weight of roller\n", "\n", "#Calculations\n", "\n", "theta=np.arccos(L_OD*L_OB**-1)*(pi**-1*180) #N\n", "\n", "R_B=W*(cos(theta*pi*180**-1))**-1 #N\n", "P=R_B*sin(theta*pi*180**-1) #N\n", "\n", "#LEt P_min be the least Force applied\n", "#let alpha be the angle made by least force\n", "#P_min=W*L_BD*L_BC**-1\n", "\n", "L_BD=((L_OB**2-L_OD**2)**0.5) #cm\n", "\n", "#But L_BC=L_BO*sin(alpha) \n", "\n", "#Force P will be min when sin(Alpha) is max.\n", "#thus sin(alpha)=90 or sin(alpha)=0. therefore sub value in above equation,we get min Force\n", "#LEt P_min be the Least Force to be applied\n", "P_min=W*L_BD*(L_OB*1)**-1 #N\n", "\n", "#Direction of least force is right angle to L_BO\n", "\n", "#Result\n", "print\"Minimum least force is\",round(P_min,2),\"N\"\n", "print\"Magnitude of force applied horizontally at centre of roller\",round(P,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum least force is 2598.08 N\n", "Magnitude of force applied horizontally at centre of roller 5196.15 N\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.19,Page No.91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "L_BC=25 #cm \n", "L_AB=40 #cm\n", "\n", "#Calculations\n", "\n", "#Let alpha be the angle made by force F so that body will be in equilibrium\n", "#Theta is angle made by R_A with horizontal,so Force F has to make same angle with horizontal\n", "alpha=np.arctan(L_AB*L_BC**-1)*(pi**-1*180) #degrees\n", "theta=alpha\n", "\n", "#Result\n", "print\"Angle theta is\",round(theta,2),\"Degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle theta is 57.99 Degrees\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.20,Page No.91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "\n", "#Declaration Of Variables\n", "L_AB=1.6 #m\n", "L_BD=1.2 #m\n", "L_BC=0.8 #m\n", "L_CD=0.4 #m\n", "F_C=200 #N #Force t C\n", "theta=60 #Degrees\n", "\n", "#Calculations\n", "\n", "\n", "\n", "#Sum of all forces in x-direction\n", "R_Bx=F_C #N\n", "\n", "L_BD2=L_BD*sin(theta*pi*180**-1) #m\n", "L_DD=L_BD*cos(theta*pi*180**-1) #m\n", "L_BC2=sin(theta*pi*180**-1)*L_BC #m\n", "\n", "R_D=F_C*L_BC2*L_DD**-1 #N\n", "R_By=R_D\n", "\n", "#Resultant reaction at B\n", "R_B=(R_Bx**2+R_By**2)**0.5 #N\n", "\n", "#Sum of moments at A\n", "M_A=R_By*L_AB\n", "\n", "\n", "#Result\n", "print\"Couple to be apllied to hold the system is\",round(M_A,2),\"N\"\n", "print\"Magnitude of pin reaction at B\",round(R_B,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Couple to be apllied to hold the system is 369.5 N\n", "Magnitude of pin reaction at B 305.51 N\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.21,Page No.93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from math import sin, cos, tan, radians, pi\n", "import numpy as np\n", "\n", "#Declaration Of Variables\n", "W=2000 #N #Weight of chain\n", "L_AB=2 #m\n", "F_B=320 #N\n", "\n", "#Calculations\n", "\n", "#By LAmi's theorem\n", "#F_A*sin(90)=W*sin(180-theta)**-1=F_B*sin(90+theta)**-1\n", "#But sin(180-theta)=sin(theta),sin(90+theta)=cos(theta)\n", "#Tan(theta)=W*F_B**-1\n", "theta=np.arctan(W*F_B**-1)*(180*pi**-1) #Degrees\n", "\n", "F_A=W*(sin(theta*pi*180**-1))**-1 #N\n", "#Let x be the lateral distance\n", "x=cos(theta*pi*180**-1)*2\n", "\n", "#Result\n", "print\"Force in the chain is\",round(F_A,2),\"N\"\n", "print\"Horizontal displacement is\",round(x,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force in the chain is 2025.44 N\n", "Horizontal displacement is 0.32 m\n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }