{ "metadata": { "name": "chapter19.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 19: Mechanical Vibrations" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-2, Page No:465" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Initilization of variables\n", "k=18 #lb/in\n", "g=386 #in/s**2\n", "W=35 #lb\n", "\n", "#Calculations\n", "f=(1/(2*pi))*sqrt((k*g/W)) #cps\n", "period=1/f #s\n", "\n", "#Result\n", "print'The period of vibration is',round(period,2),\"s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The period of vibration is 0.45 s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-11, Page No:471" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "ds=0.2 #m\n", "ts=0.05 #m\n", "rhos=7850 #kg/m**3 density of steel\n", "dw=0.002 #m\n", "lw=0.9 #m\n", "G=80*10**9 #Pa\n", "\n", "#Calculations\n", "#Torsional Constant\n", "K=(pi*dw**4*G)/(32*lw) #m/rad\n", "#Mass Calculations\n", "m=(4**-1)*pi*(ds**2)*ts*rhos #kg\n", "#Moment of Inertia\n", "Io=(0.5)*m*(ds*2**-1)**2 #kg.m**2\n", "#Frequency\n", "f=(1*(2*pi)**-1)*(sqrt(K*Io**-1)) #Hz\n", "\n", "#Result\n", "print'The natural frequency of the system is',round(f,2),\"Hz\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The natural frequency of the system is 0.24 Hz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-13, Page No 472" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "m=120 #kg\n", "k=0.3 #m\n", "ls=0.6 #m\n", "ds=0.05 #m\n", "G=80*10**9 #Pa\n", "\n", "#Calculations\n", "#Polar Moment of Inertia\n", "J1=m*k**2 #kg.m**2\n", "J2=J1 #kg.m**2\n", "J=(32**-1)*pi*(ds**4) #m**4\n", "#Frequency\n", "f=(1/(2*pi))*(sqrt((J*G*(J1+J2))/(ls*J1*J2))) #Hz\n", "\n", "#Result\n", "print'The natural frequency of the torsional oscillation is',round(f,1),\"Hz\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The natural frequency of the torsional oscillation is 19.6 Hz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-14, Page No: 473" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "ds=2 #in\n", "L=15 #in\n", "Wf1=300 #lb\n", "k1=6 #in\n", "Wf2=100 #lb\n", "k2=4 #in\n", "G=12*10**6 #Pa\n", "g=386 #in/s**2\n", "\n", "#Calculations\n", "#Moment of inertia of flywheel\n", "Jf=(Wf1*g**-1)*k1**2 #lb-s**2-in\n", "#Moment of inertia of the rotor\n", "Jr=(Wf2*g**-1)*k2**2 #lb-s**2-in\n", "#Moment of inertia of the shaft cross section\n", "J=(32**-1)*pi*ds**4 #in**4\n", "#Frequency\n", "f=((pi*2)**-1)*(sqrt((J*G*(Jf+Jr))*(L*Jf*Jr)**-1)) #cps\n", "\n", "#Result\n", "print'The natural frequency of the system is',round(f,1),\"cps\"\n", "\n", "#The answer may wary due to decimal point descrepancy" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The natural frequency of the system is 93.9 cps\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-15, Page No: 473" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "W=10 #lb\n", "A=2 #in**2\n", "#Calculations\n", "\n", "wn=sqrt(((A*144**-1)*5*62.4*5)/2.59) #rad/s\n", "\n", "#Result\n", "print'The frequency of oscillation is',round(wn,2),\"rad/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of oscillation is 2.89 rad/s\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-16, Page No:474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "f=50 #cps\n", "g=386 #in/s**2\n", "E=30*10**6 #lb/in**2\n", "l=4 #in\n", "I=2.08*10**-6 #in**4\n", "\n", "#Calculations\n", "W=(3*E*I*g)/(((f*2*pi)**2)*l**3) #lb\n", "\n", "#Result\n", "print'The value of W is',round(W,3),\"lb\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of W is 0.011 lb\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-19, Page No:478" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "F=10 #lb\n", "v=20 #in/s\n", "g=386 #in/s\n", "W=12 #lb\n", "k=20 #lb/in\n", "\n", "#Calculations\n", "#Coefficient of damping\n", "c=F*(v**-1) #lb-s/in\n", "#Natural Frequency\n", "wn=sqrt((k*g)/W) #rad/s\n", "#Critical Damping coefficient\n", "cr=(2*W*(g**-1))*wn #lb-s/in\n", "#Damping Coefficient\n", "d=c*(cr**-1)\n", "#Frequency of damped vibrations\n", "wd=sqrt(1-d**2)*wn #rad/s\n", "\n", "#Result\n", "print'The frequency of damped vibrations is',round(wd,1),\"rad/s\"\n", "\n", "# The answer is off by 0.1 units" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of damped vibrations is 24.0 rad/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-20, Page No 478" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "wn=25.4 #rad/s\n", "t=0.261 #s\n", "d=0.316\n", "\n", "#Calculations\n", "delta=d*t*wn #logarithmic decay\n", "\n", "#Result\n", "print'The rate of decay is',round(delta,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of decay is 2.095\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-24, Page No 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "F=9 #N\n", "m=5 #kg\n", "k=6000 #N/m\n", "f1=1 #Hz\n", "f2=5.4 #Hz\n", "f3=50 #Hz\n", "\n", "#Calculations\n", "#Natural Frequency\n", "fn=((pi*2)**-1)*(sqrt(k/m)) #Hz\n", "deltaf=F*(k/1000)**-1 #mm\n", "#Part(a)\n", "r1=f1*fn**-1\n", "amp1=deltaf*(1-r1**2)**-1 #mm amplitude\n", "#Part (b)\n", "r2=f2*fn**-1\n", "amp2=deltaf/(1-r2**2) #mm amplitude\n", "#Part (c)\n", "r3=f3*fn**-1\n", "amp3=deltaf/(1-r3**2) #mm amplitude\n", "\n", "#Result\n", "print'The amplitudes in part (a),(b) and (c) respectively are',round(amp1,3),\"mm ,\",round(amp2,1),\"mm and\",round(amp3,3),\"mm\"\n", "\n", "# The answer for amp2 is incorrect in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amplitudes in part (a),(b) and (c) respectively are 1.551 mm , 36.9 mm and -0.018 mm\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-25, Page No 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of vraiables\n", "g=386 #in/s**2\n", "W=20 #lb\n", "w=600 #rpm\n", "ratio=12**-1\n", "\n", "#Calculations\n", "r=sqrt((1*ratio**-1)+1) \n", "fn=((w/60)/r) #cps\n", "k=((fn*2*pi)**2*W)/(g) #lb/in\n", "\n", "#Result\n", "print'The value of k is',round(k,1),\"lb/in\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of k is 15.7 lb/in\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.19-28, Page No 487" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "X=12 #mm\n", "me_M=1.3 #mm\n", "\n", "#Calculations\n", "d=(me_M)/(2*X)\n", "\n", "#Result\n", "print'The damping ratio is',round(d,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The damping ratio is 0.054\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }