{ "metadata": { "name": "CHAPTER7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter7 : Convection Heat Transfer in Flow Past immersed Bodies" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.1 page NO.353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou=1.177 # density in kg/cu.m\n", "v=15.68e-6 # viscosity in sq.m/s\n", "L=0.5 # length in m\n", "V_inf=1; # air velocity in m/s\n", "Re= (V_inf*L)/v # Reynolds Number\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "x=[0,0.065,0.125,0.5]\n", "t=[0,0.004,0.006,0.013]\n", "xlabel(\"x (m)\") \n", "ylabel(\"t (m)\") \n", "plt.xlim((0,0.6))\n", "plt.ylim((0,0.015))\n", "a1=plot(x,t)\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "x=[0,0.75,0.9,1]\n", "t=[0,0.005,0.0075,0.010]\n", "xlabel(\"V (m/s)\") \n", "ylabel(\"y (m)\") \n", "plt.xlim((0,1))\n", "plt.ylim((0,0.010))\n", "a1=plot(x,t)\n", "\n", "gc=1\n", "mu=rou*v/gc\n", "b=1 # width in m\n", "Df=0.664*V_inf*mu*b*(Re)**0.5\n", "\n", "\n", "print\"(a)plot between boundary layer growth with distance\"\n", "print\"(b)velocity distribution with distance\"\n", "print\"(c)The skin-drag including both sides of plate is \",round(2*Df,4),\"n\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)plot between boundary layer growth with distance\n", "(b)velocity distribution with distance\n", "(c)The skin-drag including both sides of plate is 0.0044 n\n" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEICAYAAACuxNj9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9c1fXd//EHDHRlNq0ZFoevJKBgKmYYZdloqVyydTKv\nVpjXxtJ1eVnqurpq2aolWU5abSu5NG1J0pZjyyaUeNI0VpmIGuUKSzTYdYDQ+QPTsg4/3t8/PoW/\ngHNEDp9z4Hm/3bp1Drzf57zeN/A8+Xzen/f7E2KMMYiIiLQh1O4CREQk8CksRETEK4WFiIh4pbAQ\nERGvFBYiIuKVwkJERLwKs7sAfwkJCbG7BBGRoNTSiooufWRhjOmy/z388MO216CxaXwaX9f7rzVd\nOixERKRjKCxERMQrhUWQSklJsbsEv+nKYwONL9h19fG1JsS0dZIqiIWEhLR5/k1ERE7V2menjixE\nRMQrhYWIiHilsBAREa8UFiIi4pXCQkREvPJrWLhcLuLj44mLiyMrK6vFNrNnzyYuLo7ExERKS0ub\nvz516lQiIiIYNmxYi/2efPJJQkNDOXDggF9qFxGRY/wWFo2NjcycOROXy0VZWRkrVqxgx44dJ7Qp\nLCxk165dlJeXs3TpUmbMmNH8vdtuuw2Xy9Xia7vdbtatW8eAAQP8Vb6IiBzHb2FRUlJCbGws0dHR\nhIeHk56eTn5+/gltCgoKyMjIACA5OZm6ujpqa2sBGDNmDH379m3xte+++24ef/xxf5UuIiIn8duu\ns9XV1URFRTU/dzgcbN682Wub6upq+vfv3+rr5ufn43A4GD58uNca5s6d2/w4JSWl2668FBFpTVFR\nEUVFRV7b+S0sfN0i/OSVgm31++KLL5g/fz7r1q1rtf/xjg8LERE51cl/SGdmZrbYzm+noSIjI3G7\n3c3P3W43DoejzTZVVVVERka2+pq7d++msrKSxMRELr74YqqqqrjsssvYu3dvxw9ARESa+S0skpKS\nKC8vp7KyEo/HQ15eHk6n84Q2TqeT3NxcAIqLi+nTpw8RERGtvuawYcPYs2cPFRUVVFRU4HA4ePfd\nd7ngggv8NQwREcGPYREWFkZ2djapqakMGTKEW265hYSEBJYsWcKSJUsASEtLY+DAgcTGxjJ9+nQW\nLVrU3H/y5MmMHj2anTt3EhUVRU5OzinvobvhiYh0Du06KyIizbTrrIiItJvCQkREvFJYiIiIVwoL\nERHxSmEhIiJeKSxERMQrhYWIiHilsBAREa8UFiIiPnK7oanJ7irsobAQEfGishL+8z9hxAg46R5u\n3YbCQkSkFRUVcPvtcNllcMEFsHMnXHKJ3VXZQ2EhInKSTz6BadNg1Cjo3x/Ky+HRR+H88+2uzD4K\nCxGRr+3eDVOnwuWXQ2SkdSQxbx6cd57dldnPb3fKExEJFrt2wWOPwSuvwJ13WkcSffvaXVVgUViI\nSLe1a5d1eunVV2HWLOt5nz52VxWYFBYi0u18MwexejXMnq2Q8IXCQkS6jZ07rZBYs8YKid274Tvf\nsbuq4KAJbhHp8j7+GP7jP+Cqq2DQIOtI4qGHFBSnQ2EhIl3WRx/BlCkwZgwkJFhHEg8+qJBoD4WF\niHQ5O3bArbfCNddYi+h27YIHHoBzz7W7suClsBCRLqOsDCZPhu99D4YNs44kfvlLhURH8HtYuFwu\n4uPjiYuLIysrq8U2s2fPJi4ujsTEREpLS5u/PnXqVCIiIhg2bNgJ7e+9914SEhJITExk0qRJHDp0\nyK9jEJHA9uGHkJ4O115r7d+0ezfcfz/07m13ZV2HX8OisbGRmTNn4nK5KCsrY8WKFew4aReuwsJC\ndu3aRXl5OUuXLmXGjBnN37vttttwuVynvO748eP58MMPef/99xk0aBC//vWv/TkMEQlQH3wAt9wC\n3/8+jBxphcR99ykk/MGvYVFSUkJsbCzR0dGEh4eTnp5Ofn7+CW0KCgrIyMgAIDk5mbq6OmprawEY\nM2YMfVtYRjlu3DhCQ0Ob+1RVVflzGCISYP7xD7j5Zhg7FpKSrJD4xS/gnHPsrqzr8us6i+rqaqKi\nopqfOxwONm/e7LVNdXU1/fv39+k9li1bxuTJk1v83ty5c5sfp6SkkJKS4nvxIhJwtm+HRx6Bt9+G\ne+6BnBzo1cvuqoJbUVERRUVFXtv5NSxCQkJ8ameMaVe/xx57jB49enDrrbe2+P3jw0JEgtf771sh\n8c47VkgsX66Q6Cgn/yGdmZnZYju/hkVkZCRut7v5udvtxuFwtNmmqqqKyMhIr6/9/PPPU1hYyPr1\n6zuuYBEJKO+9Z4XEpk1w773wwgtw9tl2V9U9+XXOIikpifLyciorK/F4POTl5eF0Ok9o43Q6yc3N\nBaC4uJg+ffoQERHR5uu6XC5+85vfkJ+fz7e//W2/1S8i9igthRtvhLQ0a63E7t1w990KCjv5NSzC\nwsLIzs4mNTWVIUOGcMstt5CQkMCSJUtYsmQJAGlpaQwcOJDY2FimT5/OokWLmvtPnjyZ0aNHs3Pn\nTqKiosjJyQFg1qxZHDlyhHHjxnHppZdyxx13+HMYItJJSkth4kT4wQ8gJcUKibvuUkgEghBz8oRB\nFxESEnLKXIiIBKZ334XMTNi61br09fbb4ayz7K6qe2rts1MruEXENtu2gdNp/Td2rLUtx+zZCopA\npLAQkU63ZQv88Idwww0wfrwVErNmKSQCmcJCRDpNSYk1HzFpEkyYYIXEzJmg61QCn25+JCJ+t3mz\nNSfxwQcwZw68/DL07Gl3VXI6FBYi4jfFxVZIfPihtfvr3/6mkAhWCgsR6XCbNlkhsWOHFRKrVikk\ngp3mLESkw7zzDqSmWveUmDQJysth+nQFRVegIwsROWMbN1pHEuXl1pFERgb06GF3VdKRFBYi0m5v\nvw1z51orrR94AH7yE4VEV6WwEJHT9tZbVkhUVBwLifBwu6sSf1JYiIjP3nzTCol//tMKiR//WCHR\nXSgsRMSroiJrTsLthgcfhClTFBLdjcJCRFpVVGQdSVRVwUMPWSERpk+Nbkk/dhE5gTHHQqKmxgqJ\nW29VSHR3+vGLCGCFxIYN1umm2lorJCZPVkiIRb8GIt2cMbB+vRUSe/daIZGerpCQE+nXQaSbMgZe\nf90KiX37joXEt75ld2USiBQWIt2MMbBunTUncfAg/OpXcPPNCglpm8JCpJswBtautULi0CErJH70\nI4WE+EZhIdLFGQOvvWaFxOHDVkjcdJNCQk6PwkKkizIGXC4rJD7//FhIhGqvaWkHv/7auFwu4uPj\niYuLIysrq8U2s2fPJi4ujsTEREpLS5u/PnXqVCIiIhg2bNgJ7Q8cOMC4ceMYNGgQ48ePp66uzp9D\nEAk6xsDq1ZCcDL/4BdxzD2zfbs1LKCikvfz2q9PY2MjMmTNxuVyUlZWxYsUKduzYcUKbwsJCdu3a\nRXl5OUuXLmXGjBnN37vttttwuVynvO6CBQsYN24cO3fu5LrrrmPBggX+GoJIUDEGXn0VLr8c7r/f\nCor337fmJRQScqb89itUUlJCbGws0dHRhIeHk56eTn5+/gltCgoKyMjIACA5OZm6ujpqa2sBGDNm\nDH379j3ldY/vk5GRwapVq/w1BJGgYAy88gqMGmVt7jdnDrz3nk45Scfy25xFdXU1UVFRzc8dDgeb\nN2/22qa6upr+/fu3+rp79uwhIiICgIiICPbs2dNq27lz5zY/TklJISUl5TRHIRK4vgmJzExobISH\nH4YbblBAyOkpKiqiqKjIazu/hUVISIhP7Ywx7er3Tdu22h8fFiJdhTFQUGCFhDFWSDidCglpn5P/\nkM7MzGyxnd/CIjIyErfb3fzc7XbjcDjabFNVVUVkZGSbrxsREUFtbS39+/fn008/5YILLujYwkUC\nlDGQn2+FREjIsZA4jb+vRNrNb3+LJCUlUV5eTmVlJR6Ph7y8PJxO5wltnE4nubm5ABQXF9OnT5/m\nU0ytcTqdLF++HIDly5czceJE/wxAJEA0NcHf/gaXXgrz5llhsW2bdcpJQSGdxvhRYWGhGTRokImJ\niTHz5883xhjzzDPPmGeeeaa5zZ133mliYmLM8OHDzbZt25q/np6ebi688ELTo0cP43A4zLJly4wx\nxuzfv99cd911Ji4uzowbN84cPHiwxff289BE/K6x0ZiXXjJm+HBjLrvMmIICY5qa7K5KurrWPjtD\nvv5mlxMSEnLKfIhIMGhqgpdfhkcegZ49rdNNP/iBjiKkc7T22akV3CIBoqkJVq60QuKss+DXv4a0\nNIWEBAaFhYjNmprgpZeskOjVCx5/HP7t3xQSElgUFiI2aWw8FhK9e8MTT0BqqkJCApPCQqSTNTbC\nX/9qhcR3vgO//S2MH6+QkMCmsBDpJI2N8Je/WCHRty/8/vcwbpxCQoKDwkLEzxob4c9/hkcfhfPO\ng6efhrFjFRISXBQWIn7S0HAsJPr1g4UL4brrFBISnBQWIh2soQFWrLBCIiICFi2Ca69VSEhwU1iI\ndJCGBnjxRSskLrwQnnkGUlIUEtI1KCxEzlBDA/zpT1ZIREbC0qVWSIh0JQoLkXZqaIA//tEKiago\nePZZhYR0XQoLkdNUX38sJAYMgOeeg+99z+6qRPxLYSHio/p6yM2Fxx6Diy+GnBy45hq7qxLpHAoL\nES/q62H5cpg/H2JirMC4+mq7qxLpXAoLkVZ4PMdCIi4OXngBrrrK7qpE7KGwEDmJxwPPP2+FxODB\n1pVOo0fbXZWIvRQWIl/zeKx5iPnzISHBWlh35ZV2VyUSGBQW0u199dWxkLjkEsjLgyuusLsqkcCi\nsJBu66uvYNky6450Q4da24YnJ9tdlUhgajMs6uvrWbt2LW+++SaVlZWEhIQwYMAArrnmGlJTUwkL\nU9ZI8PnyS2ttxIIFMHy4dQOiyy+3uyqRwBba2jfmzZvHqFGjePXVV4mPj2fq1KlkZGQwePBgXnnl\nFZKSknj00UfbfHGXy0V8fDxxcXFkZWW12Gb27NnExcWRmJhIaWmp174lJSVcfvnlXHrppYwaNYot\nW7ac7pilm/ryS8jOtq5scrng5Zdh9WoFhYhPTCvy8/NNU1NTa982jY2NJj8/v9XvNzQ0mJiYGFNR\nUWE8Ho9JTEw0ZWVlJ7RZvXq1mTBhgjHGmOLiYpOcnOy17/e+9z3jcrmMMcYUFhaalJSUFt+/jaFJ\nN3P0qDFPP21MZKQx119vzJYtdlckErha++xs9cjC6XQS0sZ2maGhoTidzla/X1JSQmxsLNHR0YSH\nh5Oenk5+fv4JbQoKCsjIyAAgOTmZuro6amtr2+x74YUXcujQIQDq6uqIjIz0NRelmzl61LrRUEwM\nvP465OdDQQEkJdldmUjw8TrpsGXLFubPn09lZSUNDQ0AhISEsH379jb7VVdXExUV1fzc4XCwefNm\nr22qq6upqalpte+CBQu4+uqrueeee2hqamLTpk0+DFO6k6NHrZ1fH38cRo2CV16BkSPtrkokuHkN\niylTpvDEE08wdOhQQkNbPRA5RVtHJcezjnp8N23aNJ5++mluvPFG/vrXvzJ16lTWrVvXYtu5c+c2\nP05JSSFFW4J2aUePwpIlVkgkJ8Orr8Kll9pdlUhgKyoqoqioyGs7r2HRr1+/Nk83tSYyMhK32938\n3O1243A42mxTVVWFw+Ggvr6+1b4lJSW8/vrrANx000387Gc/a7WG48NCuq4vvrBuNPTEE9b6iMJC\nGDHC7qpEgsPJf0hnZma22M7rocLDDz/MtGnTWLFiBStXrmTlypW8/PLLXgtISkqivLycyspKPB4P\neXl5p4SO0+kkNzcXgOLiYvr06UNERESbfWNjY/n73/8OwIYNGxg0aJDXWqRr+vxzePJJa07inXdg\nzRrrCicFhUjH83pksXz5cj7++GMaGhpOOA01adKktl84LIzs7GxSU1NpbGxk2rRpJCQksGTJEgCm\nT59OWloahYWFxMbG0qtXL3JyctrsC7B06VLuvPNOvvrqK8466yyWLl3a7sFLcPr8c1i82AqKq6+G\n116z1kuIiP+EGC+TBoMHD+ajjz7yeQ4iUISEhJz2fIgEts8/h0WLrJC45hp46CEYNszuqkS6ltY+\nO72ehho9ejRlZWV+KUrEF0eOWJPWMTGwdat1Gexf/qKgEOlMXk9Dbdq0iREjRnDxxRfTs2dPwLdL\nZ0XO1JEj8L//C7/9LVx7Laxfb230JyKdz2tYuFyuzqhDpNnhw1ZI/O538P3vwxtvwJAhdlcl0r21\nGhaHDx+md+/eREdHt9r5mzYiHeGzz6y9m37/exg7FoqKrPtKiIj9Wg2LG2+8kcGDB3PDDTeQlJTE\neeedB8D+/fvZunUrq1atory8vHnNg0h7ffYZLFwITz0F48fDm29CfLzdVYnI8dq8GmrDhg28+OKL\nbNy4kZqaGgAuuugirr76aqZMmRLQK6J1NVTg++wza++mp5+G1FR48EHrNqYiYp/WPju9XjobrBQW\ngevQoWMhMWGCFRJaWykSGNp96axIR6mrg0cegdhY2LULNm6E3FwFhUgwUFiI39XVQWamFRKffGJt\nzbF8uUJCJJgoLMRv6upg7lwrJCorobgYnn/eulOdiAQXhYV0uIMH4Ve/skLi//4PNm+GnBzruYgE\nJ4WFdJgDB6z9muLioKYGSkpg2TJrmw4RCW4KCzljBw4cu6Kptha2bIE//AEGDrS7MhHpKF7D4r77\n7vPpa9L97N8PDzxgHUns3Wtt8vfss3DxxXZXJiIdzWtYrF279pSvFRYW+qUYCQ779sEvf2kdSezb\nB9u2Wfe8bmNnGBEJcq1u97F48WIWLVrE7t27GXbcXtCHDx/mqquu6pTiJLDs22fdS2LpUvjRj+Dd\nd2HAALurEpHO0OoK7kOHDnHw4EHmzJlDVlZW84q+3r17c/7553dqke2hFdwd51//skLi2Wfh5pvh\n/vvh//0/u6sSEX/Qdh9y2vbuhSeegOeeg/R0mDMHoqLsrkpE/EnbfYjP9u6Fe++1tgf/4gt4/33r\n/hIKCpHuS2EhzfbsgXvusbYH//JLKySys8HhsLsyEbGbwkKorYX/+R/rSMLjgX/8w7q/hEJCRL7h\n17BwuVzEx8cTFxdHVlZWi21mz55NXFwciYmJlJaW+tR34cKFJCQkMHToUK35OAO1tXD33dZ9rRsa\n4IMPrG3DIyPtrkxEAo7xk4aGBhMTE2MqKiqMx+MxiYmJpqys7IQ2q1evNhMmTDDGGFNcXGySk5O9\n9t2wYYMZO3as8Xg8xhhj9u7d2+L7+3FoQa+mxpi77jKmb19jfv5zY6qr7a5IRAJFa5+dfjuyKCkp\nITY2lujoaMLDw0lPTyc/P/+ENgUFBWRkZACQnJxMXV0dtbW1bfZdvHgx999/P+Hh4QD069fPX0Po\ncj79FO66yzqSAPjwQ+t+1xddZG9dIhL4/BYW1dXVRB13+YzD4aC6utqnNjU1Na32LS8v58033+SK\nK64gJSWFrVu3+msIXcrLL8PQoRAaCmVl8LvfwYUX2l2ViASLVldwn6mQkBCf2pnTXAvR0NDAwYMH\nKS4uZsuWLdx888188sknLbadO3du8+OUlJSAvme4P2Vnw69/DevWwciRdlcjIoGkqKiIoqIir+38\nFhaRkZG43e7m5263G8dJl9ec3KaqqgqHw0F9fX2rfR0OB5MmTQJg1KhRhIaGsn///hZXlR8fFt1R\nU5O12nrVKnj7bW3wJyKnOvkP6czMzBbb+e00VFJSEuXl5VRWVuLxeMjLy8PpdJ7Qxul0kpubC0Bx\ncTF9+vQhIiKizb4TJ05kw4YNAOzcuROPxxMU2490No8HfvITeOst617XCgoRORN+O7IICwsjOzub\n1NRUGhsbmTZtGgkJCSxZsgSA6dOnk5aWRmFhIbGxsfTq1YucnJw2+wJMnTqVqVOnMmzYMHr06NEc\nNnLMZ5/BpElwzjnw+utw9tl2VyQiwU57Q3UxNTWQlgajR1sL6771LbsrEpFgor2huoEdO6yQuPlm\nay8nBYWIdBS/nYaSzvX22/Dv/w6PPw5fL10REekwCosu4OWXYfp0+NOfYPx4u6sRka5IYRHkvllD\n8dprWkMhIv6jsAhSWkMhIp1JYRGEPB6YOhU++cRaQ/Hd79pdkYh0dQqLIKM1FCJiB106G0RqauCa\na2DQIFi5UkEhIp1HYREktIZCROyk01BBQGsoRMRuCosApzUUIhIIFBYBTGsoRCRQKCwCkNZQiEig\nUVgEGK2hEJFApLAIIFpDISKBSpfOBgitoRCRQKawCABaQyEigU6noWz2zRqKrCz46U/trkZEpGUK\nCxt9s4bij3+E1FS7qxERaZ3CwibZ2TB/PrhccNlldlcjItI2hUUnO34NxcaNWkMhIsHBrxPcLpeL\n+Ph44uLiyMrKarHN7NmziYuLIzExkdLSUp/7Pvnkk4SGhnLgwAG/1d/RPB74yU/gzTcVFCISXPwW\nFo2NjcycOROXy0VZWRkrVqxgx44dJ7QpLCxk165dlJeXs3TpUmbMmOFTX7fbzbp16xgwYIC/yu9w\nn30GaWlw+DCsX6/FdiISXPwWFiUlJcTGxhIdHU14eDjp6enk5+ef0KagoICMr7dRTU5Opq6ujtra\nWq997777bh5//HF/ld7hPv3UWkMRF6c1FCISnPw2Z1FdXU1UVFTzc4fDwebNm722qa6upqamptW+\n+fn5OBwOhg8f7rWGuXPnNj9OSUkhJSWlnaNpP2Ng8mT44Q9h3jwICen0EkREWlVUVERRUZHXdn4L\nixAfPxWNMT6/5tGjR5k/fz7r1q3zqf/xYWGXP/3JOgWVmamgEJHAc/If0pmZmS2281tYREZG4na7\nm5+73W4cDkebbaqqqnA4HNTX17fYd/fu3VRWVpKYmNjc/rLLLqOkpIQLLrjAX0Npt7o6uPde68on\nrcoWkWDmtzmLpKQkysvLqaysxOPxkJeXh9PpPKGN0+kkNzcXgOLiYvr06UNERESrfYcOHcqePXuo\nqKigoqICh8PBu+++G5BBAfDgg3DDDZCcbHclIiJnxm9HFmFhYWRnZ5OamkpjYyPTpk0jISGBJUuW\nADB9+nTS0tIoLCwkNjaWXr16kZOT02bfk/l6qssO27bBSy9BWZndlYiInLkQczqTBkEkJCTktOZD\nOlJjI1x5Jdxxh/Z7EpHg0tpnp3ad9YNnn4WePa0FeCIiXYGOLDrY3r0wdKi18G7YsE5/exGRM9La\nZ6fCooP99KfW6uwnnuj0txYROWOtfXZqI8EO9Oab1hGFJrVFpKvRnEUHqa+3JrR/9zvo3dvuakRE\nOpbCooM89RQ4HNZd70REuhrNWXQAtxsuvRSKiyE2tlPeUkTEL3TprB/993/DzJkKChHpujTBfYbW\nrIH33oMXXrC7EhER/1FYnIGjR60jiuxsOOssu6sREfEfnYY6A1lZ1lzFhAl2VyIi4l+a4G6n8nJr\n/6fSUjjuPk0iIkFNE9wdyBiYNQvmzFFQiEj3oLBoh5UroaoKfv5zuysREekcOg11mg4fhiFD4MUX\nYcyYDn95ERFbaSPBDnLPPbBvHzz/fIe/tIiI7bSRYAf4xz8gNxc++MDuSkREOpfmLHzU1AQzZsAj\nj0CA3vJbRMRvFBY+ys0Fjwduv93uSkREOp/mLHxw4IA1qb16NVx2WYe8pIhIQNIE9xn4r/+CsDBr\nWw8Rka7MtkV5LpeL+Ph44uLiyMrKarHN7NmziYuLIzExkdLSUq997733XhISEkhMTGTSpEkcOnTI\nb/Vv3gz5+fDoo357CxGRwGf8qKGhwcTExJiKigrj8XhMYmKiKSsrO6HN6tWrzYQJE4wxxhQXF5vk\n5GSvfdeuXWsaGxuNMcbcd9995r777jvlvTtiaA0Nxlx6qTEvvHDGLyUiEhRa++z065FFSUkJsbGx\nREdHEx4eTnp6Ovn5+Se0KSgoICMjA4Dk5GTq6uqora1ts++4ceMIDQ1t7lNVVeWX+hcvhnPPhSlT\n/PLyIiJBw6/rLKqrq4k6bvMkh8PB5s2bvbaprq6mpqbGa1+AZcuWMXny5Bbff+7cuc2PU1JSSElJ\n8bn22lrIzIS//x1CQnzuJiISVIqKiigqKvLazq9hEeLjp6xp50T0Y489Ro8ePbj11ltb/P7xYXG6\n7rkHpk2zroISEemqTv5DOjMzs8V2fg2LyMhI3G5383O3243D4WizTVVVFQ6Hg/r6+jb7Pv/88xQW\nFrJ+/foOr/uNN+Ctt6CsrMNfWkQkKPl1ziIpKYny8nIqKyvxeDzk5eXhdDpPaON0OsnNzQWguLiY\nPn36EBER0WZfl8vFb37zG/Lz8/n2t7/doTV7PHDHHfDUU9CrV4e+tIhI0PLrkUVYWBjZ2dmkpqbS\n2NjItGnTSEhIYMmSJQBMnz6dtLQ0CgsLiY2NpVevXuTk5LTZF2DWrFl4PB7GjRsHwJVXXsmiRYs6\npObf/hZiYuCGGzrk5UREugQtyjvOP/9prdAuKYGBA/1UmIhIANOd8nzw85/DXXcpKERETqYtyr/2\nyivWhHZent2ViIgEHoUF8MUXMHs2LF0KPXvaXY2ISODRaShg/nxIToav58tFROQk3X6C++OP4aqr\nYPt2uOiiTihMRCSAaYK7BcbAnXfCgw8qKERE2tKtwyIvD/71L5g50+5KREQCW7c9DXXokLXv01//\nCqNHd2JhIiIBTHfKO8ldd8GRI/CHP3RiUSIiAa61z85ueense+/BihXw4Yd2VyIiEhy63ZxFUxPM\nmAGPPQbf/a7d1YiIBIduFxbLlln/nzrV3jpERIJJt5qz2LcPLrkEXnsNRoywqTARkQCmCW7gZz+D\nc86B3//epqJERAJct5/gfucdWLMGduywuxIRkeDTLeYsGhqsSe0nn4Rzz7W7GhGR4NMtwiI7G/r1\ng1tusbsSEZHg1OXnLKqrITERNm6EwYPtrkpEJLB12wnu9HSIjYVHH7W7IhGRwNctJ7jXrYPNm4+t\nrRARkfbx65yFy+UiPj6euLg4srKyWmwze/Zs4uLiSExMpLS01GvfAwcOMG7cOAYNGsT48eOpq6tr\n9f3vvBNsqlPkAAAHzElEQVQWLoSzz+64MQWKoqIiu0vwm648NtD4gl1XH19r/BYWjY2NzJw5E5fL\nRVlZGStWrGDHSdetFhYWsmvXLsrLy1m6dCkzZszw2nfBggWMGzeOnTt3ct1117FgwYJWaxgyBH74\nQ3+N0F5d+Re2K48NNL5g19XH1xq/hUVJSQmxsbFER0cTHh5Oeno6+fn5J7QpKCggIyMDgOTkZOrq\n6qitrW2z7/F9MjIyWLVqVas1PPWUnwYnItLN+C0sqquriYqKan7ucDiorq72qU1NTU2rfffs2UNE\nRAQAERER7Nmzp9UaBgzokKGIiHR7fpvgDgkJ8amdLxdjGWNafL2QkJA238fXGoJVZmam3SX4TVce\nG2h8wa6rj68lfguLyMhI3G5383O3243D4WizTVVVFQ6Hg/r6+lO+HhkZCVhHE7W1tfTv359PP/2U\nCy64oMX376JXBIuI2MJvp6GSkpIoLy+nsrISj8dDXl4eTqfzhDZOp5Pc3FwAiouL6dOnDxEREW32\ndTqdLF++HIDly5czceJEfw1BRES+5rcji7CwMLKzs0lNTaWxsZFp06aRkJDAkiVLAJg+fTppaWkU\nFhYSGxtLr169yMnJabMvwJw5c7j55pt57rnniI6O5i9/+Yu/hiAiIt8wQWzNmjVm8ODBJjY21ixY\nsKDFNrNmzTKxsbFm+PDh5t133+3kCs+Mt/Ht2LHDXHHFFaZnz57miSeesKHCM+NtfH/84x/N8OHD\nzbBhw8zo0aPN+++/b0OV7edtfKtWrTLDhw83I0aMMCNHjjTr16+3ocr28+XfnzHGlJSUmG9961tm\n5cqVnVjdmfE2tjfeeMOce+65ZsSIEWbEiBFm3rx5NlTZuYI2LBoaGkxMTIypqKgwHo/HJCYmmrKy\nshParF692kyYMMEYY0xxcbFJTk62o9R28WV8e/fuNVu2bDEPPPBA0IWFL+N75513TF1dnTHG+sfb\n1X5+R44caX68fft2ExMT09lltpsv4/um3bXXXmt+8IMfmJdeesmGSk+fL2N74403zPXXX29ThfYI\n2l1n27uOo61LbQOJL+Pr168fSUlJhIeH21Rl+/kyviuvvJLvfOc7gPXzq6qqsqPUdvFlfL169Wp+\nfOTIEb4bRDeF92V8AAsXLuSmm26iX79+NlTZPr6OzXSzi2iCNizau44jWD5wfBlfMDvd8T333HOk\npaV1RmkdwtfxrVq1ioSEBCZMmMDTTz/dmSWeEV///eXn5zfvzBAsl7L7MraQkBDeeecdEhMTSUtL\no6ysrLPL7HRBu5Fge9dxBMsvbLDU2V6nM7433niDZcuWsXHjRj9W1LF8Hd/EiROZOHEib731Fj/+\n8Y/5+OOP/VxZx/BlfHfddRcLFixo3sU0WP4S92VsI0eOxO12c/bZZ7NmzRomTpzIzp07O6E6+wRt\nWLR3Hcc36zUCnS/jC2a+jm/79u3cfvvtuFwu+vbt25klnpHT/fmNGTOGhoYG9u/fz/nnn98ZJZ4R\nX8a3bds20tPTAdi3bx9r1qwhPDz8lEvoA40vY+vdu3fz4wkTJnDHHXdw4MABzjvvvE6rs9PZO2XS\nfvX19WbgwIGmoqLCfPXVV14nuDdt2hRUE6S+jO8bDz/8cNBNcPsyvn/+858mJibGbNq0yaYq28+X\n8e3atcs0NTUZY4zZtm2bGThwoB2ltsvp/H4aY8xPf/rToLkaypex1dbWNv/sNm/ebAYMGGBDpZ0r\naI8szmQdRzDwZXy1tbWMGjWKzz77jNDQUJ566inKyso455xzbK7eO1/G98gjj3Dw4MHmc97h4eGU\nlJTYWbbPfBnfypUryc3NJTw8nHPOOYc///nPNlftO1/GF6x8GdtLL73E4sWLCQsL4+yzzw6qn117\nddk75YmISMcJ2quhRESk8ygsRETEK4WFiIh4pbAQERGvFBYinWzs2LEcPnzY5/YFBQXMmzfPjxWJ\neKewEOlEGzZsYPDgwScs6vLm+uuvZ+XKldTX1/uxMpG2KSxE2mnLli0kJiby1Vdf8fnnnzN06FCv\newS9+OKL3HDDDQBUVlYSHx/PbbfdxuDBg5kyZQpr167lqquuYtCgQWzZsgWwtp+48sorWbt2rd/H\nJNIarbMQOQMPPfQQX375JUePHiUqKor77ruvzfYJCQls3LiR8847j8rKSuLi4njvvfcYMmQIo0aN\nIjExkeeee46CggJycnL429/+BkBOTg4fffQRWVlZnTEskVME7QpukUDwq1/9iqSkJM466ywWLlzo\ntX1NTc0J+wddfPHFXHLJJQBccskljB07FoChQ4dSWVnZ3O6iiy7C5XJ1bPEip0GnoUTOwL59+/j8\n8885cuQIR48ePe3+PXv2bH4cGhpKjx49mh83NDQ0f6+pqanL70QsgU1hIXIGpk+fzqOPPsqtt97q\n9RQUWEcI+/fvP+33+fTTTxkwYEB7ShTpEAoLkXbKzc2lZ8+epKenM2fOHLZs2UJRUVGbfa6++mq2\nbt3a/Pzko4Xjnx//uKSkhGuuuaZjChdpB01wi3SioqIi8vLyWLx4sc99mpqaGDlyJFu3biUsTNOM\nYg8dWYh0opSUFMrLy09rUd6rr77KTTfdpKAQW+nIQkREvNKRhYiIeKWwEBERrxQWIiLilcJCRES8\nUliIiIhXCgsREfHq/wNpvB1fWm+96gAAAABJRU5ErkJggg==\n" }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEMCAYAAADu7jDJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH8RJREFUeJzt3X1wk1W+B/BvSosy6CyCEKXpUGiCLRaCbiGCKHWhllaN\nKAwUuXsrFKfXVVjxDdzduVJ3likKCsLoLV4tLytQRYfWpWR5qUVFQkQ6smtZKNhomtLu8lJA3SFJ\ne+4fuYS0tM2TlydPXr6fGWdJe05ynrP6/Dj55pyohBACREREAUpQegBERBTdWEiIiCgoLCRERBQU\nFhIiIgoKCwkREQWFhYSIiIIiayExmUxIT0+HTqfDihUrum2zaNEi6HQ66PV61NXVeX4+f/58qNVq\njB49ulP7c+fOIScnByNHjsT999+PtrY2OS+BiIh8kK2QtLe34+mnn4bJZEJ9fT22bt2KY8eOdWpT\nXV2NkydPoqGhAevXr8eTTz7p+d28efNgMpmued7S0lLk5OTgxIkTmDJlCkpLS+W6BCIikkC2QmKx\nWKDVapGamoqkpCQUFBSgsrKyU5uqqioUFhYCAAwGA9ra2tDS0gIAuOeee3DTTTdd87zefQoLC7Fj\nxw65LoGIiCSQrZDY7XakpKR4Hms0Gtjtdr/bdNXa2gq1Wg0AUKvVaG1tDeGoiYjIX4lyPbFKpZLU\nrusJLVL7XWnbU3t/noeIiK7y9+Qs2VYkycnJsNlsnsc2mw0ajabXNk1NTUhOTu71edVqteftr9On\nT2PIkCE9thVC8B8h8PLLLys+hkj5h3PBueBcXPvP558LJCcLXLwY2NGLshWSrKwsNDQ0wGq1wuFw\noKKiAkajsVMbo9GITZs2AQDMZjMGDBjgeduqJ0ajERs3bgQAbNy4EdOnT5fnAoiI4oDLBTz1FLBy\nJXDjjYE9h2yFJDExEevWrUNubi5GjRqF2bNnIyMjA2VlZSgrKwMA5OfnY8SIEdBqtSguLsZbb73l\n6T9nzhxMnDgRJ06cQEpKCsrLywEAS5cuxZ49ezBy5EjU1NRg6dKlcl0CEVHMe/ttYNAgYPbswJ9D\nJYSIyWPkVSoVYvTS/FZbW4vs7GylhxEROBdXcS6uite5aG0FMjOB/fuBUaPcPwvk3slCQkQUpx5/\nHBg8GHjttas/C+TeKduntoiIKHJ98QWwdy/QZZ94QHjWFhFRnAlFwO6NhYSIKM6EImD3xoyEiCiO\ndBewe2PY7oWFhIjoWt0F7N4YthMRUY9CGbB7Y0ZCRBQHQh2we2MhISKKA6EO2L0xIyEiinG+AnZv\nDNu9sJAQEbn5Cti9MWwnIqJO5ArYvTEjISKKUXIG7N5YSIiIYpScAbs3ZiRERDHIn4DdG8N2Lywk\nRBTP/AnYvTFsJyIiHDggf8DujRkJEVEMCVfA7o2FhIgohrz9NjBwoPwBuzdmJEREMSLQgN0bw3Yv\nLCREFG8CDdi9MWwnIopT4Q7YvTEjISKKckoE7N5YSIiIopwSAbs3ZiRERFEsFAG7N4btXlhIiCge\nhCJg98awnYgojigZsHtjRkJEFIWUDti9sZAQEUUhpQN2b8xIiIiiTKgDdm8M272wkBBRrAp1wO6N\nYTsRUYyLlIDdGzMSIqIoEUkBuzcWEiKiKBFJAbs3ZiRERFFAzoDdG8N2LywkRBRL5AzYvQVy75T1\nrS2TyYT09HTodDqsWLGi2zaLFi2CTqeDXq9HXV2dz74WiwXjx4/HHXfcgXHjxuGrr76S8xKIiBR3\nJWD/7/9WeiQ9EDJxuVwiLS1NNDY2CofDIfR6vaivr+/UZufOnSIvL08IIYTZbBYGg8Fn38mTJwuT\nySSEEKK6ulpkZ2d3+/oyXhoRUdg4nULo9UJs3Rqe1wvk3inbisRisUCr1SI1NRVJSUkoKChAZWVl\npzZVVVUoLCwEABgMBrS1taGlpaXXvrfeeisuXLgAAGhra0NycrJcl0BEpLhIDdi9ybaPxG63IyUl\nxfNYo9Hg0KFDPtvY7XY0Nzf32Le0tBSTJk3C888/j46ODhw8eLDHMSxbtszz5+zsbGRnZwd5VURE\n4dPaCrzyijtgV6nkeY3a2lrU1tYG9RyyFRKVxKsWfoY6RUVFePPNN/HII4/gww8/xPz587Fnz55u\n23oXEiKiaLNkiTtkl/NTWl3/kl1SUuL3c8hWSJKTk2Gz2TyPbTYbNBpNr22ampqg0WjgdDp77Gux\nWLB3714AwMyZM7FgwQK5LoGISDGRuIO9J7JlJFlZWWhoaIDVaoXD4UBFRQWMRmOnNkajEZs2bQIA\nmM1mDBgwAGq1ute+Wq0W+/fvBwDU1NRg5MiRcl0CEZEiInUHe09kW5EkJiZi3bp1yM3NRXt7O4qK\nipCRkYGysjIAQHFxMfLz81FdXQ2tVov+/fujvLy8174AsH79ejz11FO4fPky+vXrh/Xr18t1CURE\nioiGgN0bNyQSEUWQcO1g7wl3tnthISGiaBSuHew94THyRERRLJoCdm88/ZeIKAJEW8DujYWEiCgC\nRFvA7o0ZCRGRwpQO2L1F3Om/RETUO4cD+PWvgaIi5YtIoLgiISJSSEcH8J//Cfz4I7B9O5AYAR9/\n4qe2iIiiyJIlQGOj+5NakVBEAhXFQyciil6vvw5UVwOffw7066f0aILDQkJEFGZbtgCrV7v3jQwc\nqPRogsdCQkQURnv2AIsXAzU1gNfXLkU1FhIiojD5+mtg7lzg44+B229XejShw4//EhGFwalTwEMP\nAevXA5MmKT2a0GIhISKSWWsrkJsLvPwyMH260qMJPRYSIiIZXboEPPAA8B//ARQXKz0aeXBDIhGR\nTBwO4MEHgeHDgf/5H0ClUnpEvvH7SLywkBCRkiJx17oU3NlORBQhYmXXuhQxfnlEROEXS7vWpWAh\nISIKoVjbtS4FCwkRUYjE4q51KVhIiIhCIFZ3rUvBfSREREGK5V3rUrCQEBEFIdZ3rUvBQkJEFKB4\n2LUuBTckEhEFIBp3rUvBne1eWEiISC7RumtdCu5sJyIKgxdfjJ9d61JwCoiI/LBqFbBrV/zsWpeC\nhYSISKItW4A1a+Jr17oULCRERBLE6651KVhIiIh8+Ppr4LHH4nPXuhTcR0JE1Isru9bfeQe45x6l\nRxOZWEiIiHrAXevSsJAQEXWDu9alk7WQmEwmpKenQ6fTYcWKFd22WbRoEXQ6HfR6Perq6iT1Xbt2\nLTIyMpCZmYklS5bIeQlEFIccDmDGDODOO92rEfJByMTlcom0tDTR2NgoHA6H0Ov1or6+vlObnTt3\niry8PCGEEGazWRgMBp99a2pqxNSpU4XD4RBCCPHPf/6z29eX8dKIKIa1twsxd64QRqMQTqfSowm/\nQO6dsq1ILBYLtFotUlNTkZSUhIKCAlRWVnZqU1VVhcLCQgCAwWBAW1sbWlpaeu379ttv46WXXkJS\nUhIAYPDgwXJdAhHFoSu71rdt4651qWQrJHa7HSleH7bWaDSw2+2S2jQ3N/fYt6GhAZ999hnuuusu\nZGdn4/Dhw3JdAhHFmSu71j/5hLvW/SFbvVVJPApT+Hk4mMvlwvnz52E2m/HVV19h1qxZ+O6777pt\nu2zZMs+fs7OzkZ2d7ddrEVH8iNdd67W1taitrQ3qOWQrJMnJybDZbJ7HNpsNGo2m1zZNTU3QaDRw\nOp099tVoNHj00UcBAOPGjUNCQgLOnj2LQYMGXTMG70JCRNSTeN613vUv2SUlJX4/h2xvbWVlZaGh\noQFWqxUOhwMVFRUwGo2d2hiNRmzatAkAYDabMWDAAKjV6l77Tp8+HTU1NQCAEydOwOFwdFtEiIik\nuLJrfft27loPlGwrksTERKxbtw65ublob29HUVERMjIyUFZWBgAoLi5Gfn4+qqurodVq0b9/f5SX\nl/faFwDmz5+P+fPnY/To0ejbt6+nEBER+Yu71kODX2xFRHGptRW4+27ghRe44dBbIPdO7mwnorjD\nXeuhxRUJEcWVK9+1npoKlJXFznethwq/s90LCwkRdXXlu9YvXQI++ogbDrvD72wnIuoFv2tdHr1O\npdPpxO7du/HZZ5/BarVCpVJh2LBhuPfee5Gbm4tE/j9BRFGC37Uunx7f2vrjH/+Ijz76CBMmTMD4\n8eMxdOhQdHR04PTp07BYLDCbzZg5cyb+8Ic/hHvMkvCtLSK64v33gZdecu9aj7cNh/4KaUZSVVWF\nhx56qMejTjo6OvCXv/zlmk2GkYKFhIgAYPdu4Ne/du9a54ZD3xi2e2EhIaKvvwamTXN/1zo3HEoj\nS9j+1VdfYfny5bBarXC5XJ4XOnr0aGCjJCIKA+5aDx+fK5KRI0di5cqVyMzMRELC1f2Lqampco8t\nKFyREMWvK7vWn38e+K//Uno00UWWFcngwYMjNgchIurq0iUgPx+YO5dFJFx8rkh2796NiooKTJ06\nFX379nV3Uqk8R7lHKq5IiOIPd60HT5YVycaNG3H8+HG4XK5Ob21FeiEhovjS0QHMn+/eI/LWWywi\n4eSzkBw+fBj/+Mc/JH/jIRGRErhrXTk+T/+dOHEi6uvrwzEWIqKArFoFVFfzu9aV4jMjSU9Px6lT\npzB8+HBcd9117k5R8PFfZiRE8YG71kNLlg2JVqu125/z479EpLRPPgEWLOCu9VAKaSG5dOkSbrzx\nxl47S2mjFBYSotjkcgE7dgCvvw6cPg1s3gxMmqT0qGJHSAvJ1KlTcdttt+Hhhx9GVlYWBg4cCAA4\ne/YsDh8+jB07dqChoQF79+4NfuQyYCEhii0XLwLvvgu8+SYwdCjw7LPA9OlAnz5Kjyy2hPytrZqa\nGmzZsgUHDhxAc3MzAGDo0KGYNGkS5s6di+zs7KAGLCcWEqLY8P337uKxYQOQkwMsXgwYDEqPKnbx\n0EYvLCRE0c1sBt54w/1x3nnzgIULgWHDlB5V7OM3JBJRVOuafzzzDPC//wtEaBRL/4+FhIgU1zX/\neO455h/RhIWEiBTTNf/Yto35RzTyubOdiCjUzGZg9mzgzjvdZ2IdOcIiEs24IiGisGD+EbtYSIhI\nVsw/Yp/Pt7befPNNnD9/PhxjIaIY8v337qIxfDhw6JD7rasDB4AZM1hEYo3PQtLa2opx48Zh1qxZ\nMJlM3JtBRL1i/hF/JG1I7OjowO7du7FhwwYcPnwYs2bNQlFREdLS0sIxxoBwQyJR+HSXf8yfz/wj\nGsm2ITEhIQG33HIL1Go1+vTpg/Pnz2PmzJmYOnUqXnvttYAGS0TRj/kHARJWJGvWrMGmTZswaNAg\nLFiwAI888giSkpLQ0dEBnU6HU6dOhWusfuGKhEg+PP8qdsmyIjl37hw+/vhjDOtyyE1CQgI++eQT\n/0ZIRFGt6/lXR47w/CvioY1E5APzj/jCQxuJKGSYf5BULCRE1AnPvyJ/yXrWlslkQnp6OnQ6HVas\nWNFtm0WLFkGn00Gv16Ourk5y31WrViEhIQHnzp2TbfxE8YT7PyhgQiYul0ukpaWJxsZG4XA4hF6v\nF/X19Z3a7Ny5U+Tl5QkhhDCbzcJgMEjq+8MPP4jc3FyRmpoqzp492+3ry3hpRDHD6RTiww+FmDBB\niNRUIVavFuLiRaVHRUoK5N4p24rEYrFAq9UiNTUVSUlJKCgoQGVlZac2VVVVKCwsBAAYDAa0tbWh\npaXFZ99nn30Wr776qlxDJ4p5Fy+6P32l07n/97nngJMngd/+liE6+U+2QmK325GSkuJ5rNFoYLfb\nJbVpbm7usW9lZSU0Gg3GjBkj19CJYhbPvyI5yBa2q1QqSe2EHx8z+/e//43ly5djz549kvovW7bM\n8+fs7GxkZ2dLfi2iWML9H9ST2tpa1NbWBvUcshWS5ORk2Gw2z2ObzQaNRtNrm6amJmg0Gjidzm77\nnjp1ClarFXq93tP+l7/8JSwWC4YMGXLNGLwLCVG84fd/kBRd/5JdUlLi/5OEPKn5f06nU4wYMUI0\nNjaKy5cv+wzbDx486AnbpfQVQjBsJ+rGhQtCvP66OzyfOFGI7duFcLmUHhVFi0DunbKtSBITE7Fu\n3Trk5uaivb0dRUVFyMjIQFlZGQCguLgY+fn5qK6uhlarRf/+/VFeXt5r366kvn1GFA+4/4OUwiNS\niKJc1/xj4ULmHxQ4HpFCFCeYf1AkYSEhiiI8/4oiEQsJURRg/kGRTNaztogoODz/iqIBVyREEYb5\nB0UbFhKiCMH8g6IVCwmRwph/ULRjRkKkEOYfFCu4IiEKI+YfFItYSIjCgPkHxTIWEiIZMf+geMCM\nhEgGzD8onnBFQhQizD8oXrGQEAWJ+QfFOxYSogAx/yByY0ZC5CfmH0SdcUVCJAHzD6KesZAQ9YL5\nB5FvLCRE3WD+QSQdMxIiL8w/iPzHFQnFPeYfRMFhIaG4xfyDKDRYSCjuMP8gCi1mJBQ3mH8QyYMr\nEoppzD+I5MdCQjGJ+QdR+LCQUExh/kEUfsxIKCYcOsT8g0gpXJFQ1LqSf7zxBtDczPyDSCksJBR1\nLl4E3nsPWLPGnX88+yzzDyIlsZBQ1GD+QRSZmJFQxGP+QRTZuCKhiMT8gyh6sJBQRGH+QRR9WEgo\nIjD/IIpezEhIUcw/iKKf7IXEZDIhPT0dOp0OK1as6LbNokWLoNPpoNfrUVdX57PvCy+8gIyMDOj1\nejz66KO4cOGC3JdBIeRyAdu3A3ffDRQUABMnAlYrsHIlMGyY0qMjIr8JGblcLpGWliYaGxuFw+EQ\ner1e1NfXd2qzc+dOkZeXJ4QQwmw2C4PB4LPv7t27RXt7uxBCiCVLloglS5Zc89oyXxoF4MIFId54\nQ4jUVCEmThRi+3YhXC6lR0VE3gK5d8q6IrFYLNBqtUhNTUVSUhIKCgpQWVnZqU1VVRUKCwsBAAaD\nAW1tbWhpaem1b05ODhISEjx9mpqa5LwMCtL337sPTRw+3H2U+7ZtwIEDwIwZDNGJYoGsYbvdbkdK\nSornsUajwaFDh3y2sdvtaG5u9tkXAN577z3MmTOn29dftmyZ58/Z2dnIzs4O8EooEIcOuY9v37sX\nmDfPnX/wrSuiyFJbW4va2tqgnkPWQqJSqSS1c6+m/PenP/0Jffv2xWOPPdbt770LCYUH938QRZeu\nf8kuKSnx+zlkLSTJycmw2WyexzabDRqNptc2TU1N0Gg0cDqdvfbdsGEDqqursW/fPhmvgKTi/g+i\n+CVrRpKVlYWGhgZYrVY4HA5UVFTAaDR2amM0GrFp0yYAgNlsxoABA6BWq3vtazKZ8Nprr6GyshLX\nX3+9nJdAPjD/ICJZVySJiYlYt24dcnNz0d7ejqKiImRkZKCsrAwAUFxcjPz8fFRXV0Or1aJ///4o\nLy/vtS8ALFy4EA6HAzk5OQCACRMm4K233pLzUqgL5h9EdIVKBBpQRDiVShVw9kLd6y7/mD+f+QdR\nLAnk3skjUsgn5h9E1BsWEuoRz78iIil41hZdg+dfEZE/uCIhANz/QUSBYyGJc8w/iChYLCRxivkH\nEYUKM5I4w/yDiEKNK5I4wPyDiOTEQhLDmH8QUTiwkMQg5h9EFE7MSGII8w8iUgJXJFGO+QcRKY2F\nJEox/yCiSMFCEmWYfxBRpGFGEiWYfxBRpOKKJIIx/yCiaMBCEoGYfxBRNGEhiSDMP4goGjEjiQDM\nP4gomnFFohDmH0QUK1hIwoz5BxHFGhaSMGH+QUSxihmJzJh/EFGs44pEBsw/iCiesJCEEPMPIopH\nLCQhwPyDiOIZM5IgMP8gIuKKxG/MP4iIOmMhkYj5BxFR91hIfGD+QUTUO2YkPWD+QUQkDVckXph/\nEBH5j4UEzD+IiIIR14WE+QcRUfDiMiNh/kFEFDqyFhKTyYT09HTodDqsWLGi2zaLFi2CTqeDXq9H\nXV2dz77nzp1DTk4ORo4cifvvvx9tbW2SxuJyAdu3A3ffDRQUABMnAlYrsHIlMGxYUJcZ8Wpra5Ue\nQsTgXFzFubiKcxEc2QpJe3s7nn76aZhMJtTX12Pr1q04duxYpzbV1dU4efIkGhoasH79ejz55JM+\n+5aWliInJwcnTpzAlClTUFpa2us4Ll4EVq8GdDp3iP7ss8DJk8Bvfxs/ITr/I7mKc3EV5+IqzkVw\nZCskFosFWq0WqampSEpKQkFBASorKzu1qaqqQmFhIQDAYDCgra0NLS0tvfb17lNYWIgdO3b0OIbn\nngOGDwfMZvdbVwcOADNmMEQnIgol2cJ2u92OlJQUz2ONRoNDhw75bGO329Hc3Nxj39bWVqjVagCA\nWq1Ga2trj2O4kn/E+ltXRERKkq2QqFQqSe2EEJLadPd8KpWq19dZtUqFVaskDSPmlZSUKD2EiMG5\nuIpzcRXnInCyFZLk5GTYbDbPY5vNBo1G02ubpqYmaDQaOJ3Oa36enJwMwL0KaWlpwS233ILTp09j\nyJAh3b6+lAJFRETBky0jycrKQkNDA6xWKxwOByoqKmA0Gju1MRqN2LRpEwDAbDZjwIABUKvVvfY1\nGo3YuHEjAGDjxo2YPn26XJdAREQSyLYiSUxMxLp165Cbm4v29nYUFRUhIyMDZWVlAIDi4mLk5+ej\nuroaWq0W/fv3R3l5ea99AWDp0qWYNWsW3n33XaSmpuKDDz6Q6xKIiEgKEcV27dolbrvtNqHVakVp\naWm3bRYuXCi0Wq0YM2aMOHLkSJhHGD6+5uLPf/6zGDNmjBg9erSYOHGi+OabbxQYZXhI+fdCCCEs\nFovo06eP+Oijj8I4uvCSMheffvqpGDt2rLj99tvF5MmTwzvAMPI1F//6179Ebm6u0Ov14vbbbxfl\n5eXhH2QYzJs3TwwZMkRkZmb22Mbf+2bUFhKXyyXS0tJEY2OjcDgcQq/Xi/r6+k5tdu7cKfLy8oQQ\nQpjNZmEwGJQYquykzMWXX34p2trahBDu/6DieS6utLvvvvvEAw88ILZv367ASOUnZS7Onz8vRo0a\nJWw2mxDCfTONRVLm4uWXXxZLly4VQrjnYeDAgcLpdCoxXFl99tln4siRIz0WkkDum1F7REqg+1R6\n+7hwtJIyFxMmTMAvfvELAO65aGpqUmKospMyFwCwdu1azJw5E4MHD1ZglOEhZS62bNmCGTNmeD4I\nc/PNNysxVNlJmYtbb70VFy9eBABcvHgRgwYNQmJi7B1HeM899+Cmm27q8feB3DejtpD0tAfFV5tY\nvIFKmQtv7777LvLz88MxtLCT+u9FZWWl5yQFqR9VjzZS5qKhoQHnzp3Dfffdh6ysLGzevDncwwwL\nKXPxxBNP4Ntvv8XQoUOh1+uxZs2acA8zIgRy34zachvoPpVYvGn4c02ffvop3nvvPRw4cEDGESlH\nylw888wzKC0thUqlgnC/vRuGkYWflLlwOp04cuQI9u3bh59//hkTJkzAXXfdBZ1OF4YRho+UuVi+\nfDnGjh2L2tpanDp1Cjk5Ofjmm29wY7ycpeTF3/tm1BaSQPepXNmPEkukzAUAHD16FE888QRMJlOv\nS9toJmUuvv76axQUFAAAzpw5g127diEpKemaj6dHOylzkZKSgptvvhn9+vVDv379cO+99+Kbb76J\nuUIiZS6+/PJL/P73vwcApKWlYfjw4Th+/DiysrLCOlalBXTfDFmCE2ZOp1OMGDFCNDY2isuXL/sM\n2w8ePBizAbOUufj+++9FWlqaOHjwoEKjDA8pc+Ht8ccfj9lPbUmZi2PHjokpU6YIl8slfvrpJ5GZ\nmSm+/fZbhUYsHylzsXjxYrFs2TIhhBAtLS0iOTlZnD17Vonhyq6xsVFS2C71vhm1K5Jg9qnEGilz\n8corr+D8+fOeXCApKQkWi0XJYctCylzECylzkZ6ejmnTpmHMmDFISEjAE088gVGjRik88tCTMhe/\n+93vMG/ePOj1enR0dODVV1/FwIEDFR556M2ZMwf79+/HmTNnkJKSgpKSEjidTgCB3zdVQsToG8RE\nRBQWUfupLSIiigwsJEREFBQWEiIiCgoLCRERBYWFhEiiX/3qV9i9e3enn61evRq/+c1vrml7+fJl\nTJ482e/NjqdPn0Zubm6Pv58yZQouXbrk13MSyY2FhEiiOXPmYNu2bZ1+VlFRgccee+yatu+//z4e\nfPBBv09SMJlMmDZtWo+/LygowDvvvOPXcxLJjYWESKIZM2Zg586dcLlcAACr1Yrm5mZMmjTpmrZb\nt27Fww8/DACora3F5MmTMX36dKSlpWHp0qXYvHkzxo8fjzFjxuC7777z9PvrX/+KvLw8nD59Gvfe\ney/uuOMOjB49Gl988QUA9xe7dS1mREpjISGSaODAgRg/fjyqq6sBANu2bcPs2bOvadfe3o6///3v\nGDlypOdnR48eRVlZGY4dO4bNmzfj1KlTsFgsWLBgAdauXevpd/z4caSnp2PLli2YNm0a6urqcPTo\nUYwdOxaA+6umz5w5g59++ikMV0wkDQsJkR+8396qqKjAnDlzrmlz5syZaw76GzduHNRqNfr27Qut\nVuvJQTIzM2G1WgEAhw4dgsFgAACMHz8e5eXlKCkpwdGjR3HDDTd4nkutVnc6C4lIaSwkRH4wGo3Y\nt28f6urq8PPPP+OOO+7otl3XkP26667z/DkhIcHzOCEhwfNW2a5du5CXlwfA/Z0Rn3/+OZKTk/H4\n4493Ot5dCBGTp1hT9GIhIfLDDTfcgPvuuw/z5s3rNmQH3F8O9eOPP/r93DU1NZg6dSoA4IcffsDg\nwYOxYMECLFiwAEeOHPG0a21t7fZ0ZyKlsJAQ+WnOnDn429/+1u3bWgDQp08fZGZm4vjx4wDc3+XQ\n0wriyu/OnDmD66+/Hv379wfgDujHjh2LO++8Ex988AGeeeYZAEBLSwsGDRrkaUcUCXhoI5EMNmzY\ngNbWVixZskRS+/fffx92ux0vvvhir+3Wr1+Pn376CYsXLw7FMIlCgoWESAYOhwNTp07F/v37Q5pn\nTJkyBZWVlZ3CdyKlsZAQEVFQmJEQEVFQWEiIiCgoLCRERBQUFhIiIgoKCwkREQWFhYSIiILyf2cF\nCXXQW9RxAAAAAElFTkSuQmCC\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.2 page NO.360" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 62.4 # density in Ibm/ft^3 \n", "cp=0.9988 # specific heat BTU/(lbm-degree Rankine) \n", "v= 1.083e-5 # viscosity in sq.ft/s \n", "kf = 0.345 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a = 5.54e-3 # diffusivity in sq.ft/hr \n", "Pr = 7.02 # Prandtl Number\n", "V=1.2 # velocity in ft/s\n", "\n", "x1=1\n", "Re1=(V*x1)/v # Reynolds Number at x=1 ft\n", "hL1=0.664*Pr**(1/3.0)*Re1**0.5*kf/x1\n", "Tw=100 # temperature of metal plate in degree fahrenheit\n", "T_inf=40 # temperature of water in degree fahrenheit\n", "A1=x1*18/12.0 # cross sectional area for 1 ft length\n", "q1=hL1*A1*(Tw-T_inf)\n", "\n", "print\"The heat transferred to water over the plate is\",round(q1,0),\"BTU/hr\"\n", "x2=2\n", "Re2=(V*x2)/v # Reynolds Number at x=1 ft\n", "hL2=0.664*Pr**(1/3.0)*Re2**0.5*kf/x2\n", "Tw=100 # temperature of metal plate in degree fahrenheit\n", "T_inf=40 # temperature of water in degree fahrenheit\n", "A2=x2*18/12.0 # cross sectional area for 1 ft length\n", "q2=hL2*A2*(Tw-T_inf)\n", "print\"The heat transferred to water over the plate is \",round(q2,0),\"BTU/hr\"\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "T=[100,80,60,50,40]\n", "y=[0,0.0008,0.0018,0.0025,0.004]\n", "xlabel(\"T (F)\") \n", "ylabel(\"y (ft) \") \n", "plt.xlim((100,40))\n", "plt.ylim((0,0.004))\n", "a1=plot(T,y)\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "Pr=[0.6,50]\n", "t=[1.2,0.28]\n", "xlabel(\"Pr\") \n", "ylabel(\"t (ft) \") \n", "plt.xlim((0.6,50))\n", "plt.ylim((0,2))\n", "ax.plot([10], [1], 'o')\n", "ax.annotate('(Exact solution)', xy=(8,1.2))\n", "ax.annotate('(dt/dt=Pr**-(1/3))', xy=(15,1))\n", "ax.plot([25], [0.75], 'o')\n", "ax.plot([35], [0.55], 'o')\n", "ax.plot([40], [0.48], 'o')\n", "\n", "a1=plot(Pr,t)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transferred to water over the plate is 13141.0 BTU/hr\n", "The heat transferred to water over the plate is 18584.0 BTU/hr\n" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEMCAYAAAAIx/uNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9U2/W9P/BnKOHcXk4ntVpqCZo2SRsomgax0d16v9EO\nOTCX27pdLnS7l+PYHXfdROeut+56Zsu5toV5d656uVV0lRb1Su2uCh0UmetJdbtNscJ274VaYxuu\nIZRqf6Cr620gvr5/sGSlBRJoPiT55Pk4p+eQ8H59+n5JzYvX6/PJJxoRERAREUVRSqw3QERE6sPi\nQkREUcfiQkREUcfiQkREUcfiQkREUcfiQkREUadoceno6IDZbIbJZEJdXd2Ea6qrq2EymWCxWNDT\n0xNx7E9+8hOkpKTgzJkzoee2bdsGk8kEs9mMzs7O6CdERESREYWMjo6KwWAQj8cjfr9fLBaL9PX1\njVvT1tYmxcXFIiLicrnEZrNFFPvhhx9KUVGR6PV6OX36tIiI9Pb2isViEb/fLx6PRwwGgwQCAaXS\nIyKiKSjWuXR1dcFoNEKv10Or1aKsrAwtLS3j1rS2tqKiogIAYLPZMDw8jKGhobCxDz74IH784x+P\nO1ZLSwvKy8uh1Wqh1+thNBrR1dWlVHpERDQFxYqLz+dDdnZ26LFOp4PP54tozeDg4KSxLS0t0Ol0\nuOmmm8Yda3BwEDqdbsq/j4iIZkeqUgfWaDQRrZNp3H3m/Pnz2Lp1K37xi19EFD/RHiLdFxERjTed\n12vFOpesrCx4vd7QY6/XO66zmGjNwMAAdDrdpLHHjh1Df38/LBYLlixZgoGBAdx88804efLkhMfK\nysqacG8ioto/mzZtivkemB9zY37q+HPkiGDBAsHx49O/BaVixaWgoAButxv9/f3w+/3YvXs3HA7H\nuDUOhwNNTU0AAJfLhYyMDGRmZk4am5eXh5MnT8Lj8cDj8UCn06G7uxuZmZlwOBxobm6G3++Hx+OB\n2+3GqlWrlEqPiEjVAgHg3nuBmhpgyZLpxys2FktNTUV9fT2KiooQCARQWVmJnJwcNDQ0AACqqqpQ\nUlKC9vZ2GI1GpKeno7GxccrYS1084srNzUVpaSlyc3ORmpqK7du3cwRGRDRD//IvwJ/8CfCd78ws\nXiMiSXXLfY1GAzWn7HQ6YbfbY70Nxag5PzXnBjC/RPLee8Dq1cA77/yxa5nuayeLCxERhQQCY4Xl\nG98AvvvdPz4/3ddO3v6FiIhCrnQcFsTOhYiIAEw8Dgti50JERNN2pVeHXYrFhYiIojYOC+JYjIgo\nyU01DgviWIyIiCIW7XFYEIsLEVESi/Y4LIhjMSKiJBXJOCyIYzEiIgpLqXFYEIsLEVESUmocFsSx\nGBFRkpnOOCyIYzEiIpqU0uOwIBYXIqIkovQ4LIhjMSKiJDGTcVgQx2JERHSZ2RqHBbG4EBElgdka\nhwVxLEZEpHJXMg4L4liMiIhCZnscFqRoceno6IDZbIbJZEJdXd2Ea6qrq2EymWCxWNDT0xM29kc/\n+hEsFgtWrlyJNWvWwOv1AgD6+/sxd+5cWK1WWK1WbNiwQcnUiIgSwmyPw0JEIaOjo2IwGMTj8Yjf\n7xeLxSJ9fX3j1rS1tUlxcbGIiLhcLrHZbGFjP/3001D8U089JZWVlSIi4vF4JC8vL+y+FEyZiCiu\nHDkismCByPHjV36s6b52Kta5dHV1wWg0Qq/XQ6vVoqysDC0tLePWtLa2oqKiAgBgs9kwPDyMoaGh\nKWPnzZsXij937hyuueYapVIgIkpYsRqHBSlWXHw+H7Kzs0OPdTodfD5fRGsGBwenjH3kkUdw/fXX\nY9euXXj44YdDz3s8HlitVtjtdvzqV79SIi0iooQQs3HYH6QqdWCNRhPROpnBlVtbtmzBli1bUFtb\ni+9///tobGzE4sWL4fV6MX/+fHR3d2Pt2rXo7e0d1+kEbd68OfS13W6H3W6f9h6IiOLVe+8BtbVj\nV4elzLCFcDqdcDqdM96DYsUlKysrdLIdALxeL3Q63ZRrBgYGoNPpMDIyEjYWANavX4+SkhIAQFpa\nGtLS0gAA+fn5MBgMcLvdyM/Pvyzu4uJCRKQm0RqHXfqLd01NzbTiFRuLFRQUwO12o7+/H36/H7t3\n74bD4Ri3xuFwoKmpCQDgcrmQkZGBzMzMKWPdbncovqWlBVarFQBw6tQpBAIBAMDx48fhdruxdOlS\npdIjIopLsR6HBSnWuaSmpqK+vh5FRUUIBAKorKxETk4OGhoaAABVVVUoKSlBe3s7jEYj0tPT0djY\nOGUsAPzwhz/E0aNHMWfOHBgMBjz99NMAgLfeeguPPvootFotUlJS0NDQgIyMDKXSIyKKO9EYh0UL\n36FPRKQCgcDYu/C/8Q3gu9+N/vH5Dn0ioiQUL+OwIHYuREQJLhr3DguHnQsRURKJ9ZslJ8PiQkSU\nwOJtHBbEsRgRUYKajXFYEMdiRERJIF7HYUEsLkRECShex2FBHIsRESWY2RyHBXEsRkSkYvE+Dgti\ncSEiSiDxPg4L4liMiChBBMdhXV3AbN+Xl2MxIiIVungclgg3fGdxISJKAIkyDgviWIyIKM7FchwW\nxLEYEZGKJNo4LIjFhYgojiXaOCyIYzEiojgVD+OwII7FiIhUIFHHYUEsLkREcShRx2FBihaXjo4O\nmM1mmEwm1NXVTbimuroaJpMJFosFPT09YWN/9KMfwWKxYOXKlVizZg28Xm/oe9u2bYPJZILZbEZn\nZ6dyiRERKei994DaWmDHDiAlUVsAUcjo6KgYDAbxeDzi9/vFYrFIX1/fuDVtbW1SXFwsIiIul0ts\nNlvY2E8//TQU/9RTT0llZaWIiPT29orFYhG/3y8ej0cMBoMEAoHL9qVgykREV2x0VOTWW0Xq62O9\nk/Gm+9qpWE3s6uqC0WiEXq+HVqtFWVkZWlpaxq1pbW1FRUUFAMBms2F4eBhDQ0NTxs6bNy8Uf+7c\nOVxzzTUAgJaWFpSXl0Or1UKv18NoNKKrq0up9IiIFJHo47CgVKUO7PP5kJ2dHXqs0+lw6NChsGt8\nPh8GBwenjH3kkUfwwgsvYO7cuaECMjg4iFtvvfWyY01k8+bNoa/tdjvsdvuMciQiiqbgOKyrK/bj\nMKfTCafTOeN4xYqLRqOJaJ3M4LLgLVu2YMuWLaitrcUDDzyAxsbGae3h4uJCRBQP4u3qsEt/8a6p\nqZlWvGLFJSsra9zJdq/XC51ON+WagYEB6HQ6jIyMhI0FgPXr16OkpGTSY2VlZUUtHyIiJallHBak\nWONVUFAAt9uN/v5++P1+7N69Gw6HY9wah8OBpqYmAIDL5UJGRgYyMzOnjHW73aH4lpYWWK3W0LGa\nm5vh9/vh8XjgdruxatUqpdIjIooaVVwddgnFOpfU1FTU19ejqKgIgUAAlZWVyMnJQUNDAwCgqqoK\nJSUlaG9vh9FoRHp6emi8NVksAPzwhz/E0aNHMWfOHBgMBjz99NMAgNzcXJSWliI3NxepqanYvn17\nxKM5IqJYibdxWLTw9i9ERDH0z/8MtLUBv/xlfHct033tZHEhIoqReLp3WDi8txgRUQJQ6zgsiMWF\niCgG1HZ12KU4FiMimmWJNA4L4liMiCiOqX0cFsTiQkQ0i9Q+DgviWIyIaJYk4jgsiGMxIqI4lCzj\nsCAWFyKiWZAs47AgjsWIiBSWyOOwII7FiIjiSLKNw4JYXIiIFJRs47AgjsWIiBSihnFYEMdiRERx\nIFnHYUEsLkRECkjWcVgQx2JERFGmpnFYEMdiREQxlOzjsCAWFyKiKEr2cVgQx2JERFGixnFYUFyN\nxTo6OmA2m2EymVBXVzfhmurqaphMJlgsFvT09ISNfeihh5CTkwOLxYJ77rkHn3zyCQCgv78fc+fO\nhdVqhdVqxYYNG5RMjYhoHI7DLiEKGR0dFYPBIB6PR/x+v1gsFunr6xu3pq2tTYqLi0VExOVyic1m\nCxvb2dkpgUBAREQ2btwoGzduFBERj8cjeXl5YfelYMpElMQef1zEbhf5w8uT6kz3tVOxzqWrqwtG\noxF6vR5arRZlZWVoaWkZt6a1tRUVFRUAAJvNhuHhYQwNDU0ZW1hYiJSUlFDMwMCAUikQEUXkvfeA\n2lpgxw4ghWeyAQCpSh3Y5/MhOzs79Fin0+HQoUNh1/h8PgwODoaNBYDnn38e5eXloccejwdWqxVX\nXXUVHnvsMaxevXrCvW3evDn0td1uh91un256REQAgL17gW9/G/jxj9U1DnM6nXA6nTOOV6y4aDSa\niNbJDE+ub9myBWlpaVi/fj0AYPHixfB6vZg/fz66u7uxdu1a9Pb2Yt68eZfFXlxciIhm4tw54Ac/\nADo7gVdeAW6/PdY7iq5Lf/GuqamZVrxiDVxWVha8Xm/osdfrhU6nm3LNwMAAdDpd2NidO3eivb0d\nL730Uui5tLQ0zJ8/HwCQn58Pg8EAt9sd9byIiA4dAqxW4MIF4Le/VV9hiQplTv2IjIyMyNKlS8Xj\n8ciFCxfCntA/ePBg6IT+VLH79u2T3Nxc+fjjj8cd6+OPP5bR0VERETl27JhkZWXJ2bNnL9uXgikT\nkcqNjIhs2iSycKHInj2x3s3smu5rp2JjsdTUVNTX16OoqAiBQACVlZXIyclBQ0MDAKCqqgolJSVo\nb2+H0WhEeno6Ghsbp4wFgPvuuw9+vx+FhYUAgNtuuw3bt2/HgQMHsGnTJmi1WqSkpKChoQEZGRlK\npUdEScbtBr7xDSAjA+jpARYvjvWO4hvfRElENAUR4LnngEceAR59FPjud5PzirDpvnYq1rkQESW6\njz4CKisBnw84cADIzY31jhJHEtZfIqLw9u4FLBbgxhsBl4uFZbrYuRARXUTtlxjPFnYuRER/wEuM\no4edCxElvdFR4LHHgKefBrZvB7761VjvKPGxuBBRUuMlxsrgWIyIkpII8OyzwBe/OFZc9u1jYYkm\ndi5ElHR4ibHy2LkQUVLhJcazg50LESUFXmI8u8IWl+HhYRw8eBD9/f3QaDTQ6/W47bbbcNVVV83G\n/oiIrtihQ2PnVf7sz8YuMf7CF2K9I/Wb9N5ib7/9Nh5//HH09/fDarVi8eLFEBGcOHECPT090Ov1\n+Id/+IdJP5ArXvHeYkTJg5cYR0/U7i322muv4Sc/+QlMJtOE33///ffxzDPPJFxxIaLkwEuMYyvs\nXZE9Hg+WLFkS9rlEwc6FSN14F2NlTPe1M2xxsVqt6OnpGfdcfn4+uru7Z7bDGGNxIVKviy8xfvFF\nXgkWTVEbix05cgR9fX345JNP8Oqrr0JEoNFo8Omnn+LChQtR2SwRUbTs3Qt8+9vAvfcC//EfQFpa\nrHeU3CYtLu+//z727t2LTz75BHv37g09P2/ePDz33HOzsjkionB4iXF8mrS47NmzBy+++CK2bt2K\nf/zHf5zNPRERRYSXGMevSU9zdXd3Y3BwEM3NzThz5sxlf4iIYmV0FNi8GXA4gNpaYOdOFpZ4M2lx\n+bu/+zusWbMGR48exc033zzuT0FBQUQH7+jogNlshslkQl1d3YRrqqurYTKZYLFYxl04MFnsQw89\nhJycHFgsFtxzzz345JNPQt/btm0bTCYTzGYzOjs7I9ojESUWt3usU3G5xi4x5ntX4pSEUVVVFW7J\nhEZHR8VgMIjH4xG/3y8Wi0X6+vrGrWlra5Pi4mIREXG5XGKz2cLGdnZ2SiAQEBGRjRs3ysaNG0VE\npLe3VywWi/j9fvF4PGIwGELrLhZBykQUhz7/XKShQeSaa0T+9V/HHtPsme5r56Sdy+9+9zsAwDPP\nPDNpYQqumUhXVxeMRiP0ej20Wi3KysrQ0tIybk1raysqKioAADabDcPDwxgaGpoytrCwECl/uGjd\nZrNhYGAAANDS0oLy8nJotVro9XoYjUZ0dXWFr65EFPc++mhsBPbMM2N3Mf7e9wCNJta7oqlMekJ/\n3bp1WL58Of7iL/4CBQUFuPrqqwEAp0+fxuHDh/H666/D7XbjzTffnDDe5/MhOzs79Fin0+HQoUNh\n1/h8PgwODoaNBYDnn38e5eXlAIDBwUHceuutlx1rIps3bw59bbfbYbfbJ/mvQESxxkuMY8PpdMLp\ndM44ftLi8uabb2L//v3493//d9x///0YHBwEACxevBirV6/G17/+9SlflDUR/lohM3xD45YtW5CW\nlob169dPew8XFxciik+8xDi2Lv3Fu6amZlrxU94V+c4778Sdd945o41lZWXB6/WGHnu9Xuh0uinX\nDAwMQKfTYWRkZMrYnTt3or29Hb/85S+nPFZWVtaM9k5EscVLjFVAmVM/IiMjI7J06VLxeDxy4cKF\nsCf0Dx48GDqhP1Xsvn37JDc3Vz7++ONxxwqe0L9w4YIcP35cli5dKp9PcMZPwZSJ6AqNjIhs2iSy\ncKHIz34W693Qxab72qnYh4Wlpqaivr4eRUVFCAQCqKysRE5ODhoaGgAAVVVVKCkpQXt7O4xGI9LT\n09HY2DhlLADcd9998Pv9KCwsBADcdttt2L59O3Jzc1FaWorc3FykpqZi+/btEY/miCj2gncxnj+f\ndzFWg7A3rlQb3riSKL5cfBfjTZvG7mLM3wvjT9RuXElEpLSL72J84ADvYqwm/JQDIoqJvXsBiwW4\n8caxd9uzsKgLOxcimlXBS4x/8Qtgzx6AH2arTmE7l6eeegpnz56djb0QkcodOgRYrcCFC8BvfsPC\nomZhi8vJkydxyy23oLS0FB0dHTwZTkTTNjIC1NTwLsbJJKKrxT7//HN0dnZi586dOHz4MEpLS1FZ\nWQmDwTAbe4wqXi1GNHtGR8c+bvixx4Bly4Cf/pSXGCeq6b52RnRCPyUlBYsWLUJmZibmzJmDs2fP\n4mtf+xoeeuihGW+UiNRrdHSsOzGbgaYmYMcOoL2dhSWZhO1cnnzySTQ1NWHBggX41re+hXXr1kGr\n1eLzzz+HyWTCsWPHZmuvUcHOhUg5F3cq118/9r6V//f/Yr0rioaov8/lzJkzePXVV3HDDTeMez4l\nJQV79+6d/g6JSHUuLSo7drCoJDu+Q5+IZoydSvLgO/SJSHHsVCgcFhciihiLCkWKxYWIwmJRoeli\ncSGiSbGo0EyxuBDRZVhU6EqxuBBRCIsKRQuLCxGxqFDUsbgQJTEWFVIKiwtREmJRIaUp+kmUHR0d\nMJvNMJlMqKurm3BNdXU1TCYTLBYLenp6wsbu2bMHK1aswJw5c9Dd3R16vr+/H3PnzoXVaoXVasWG\nDRuUS4woQU10Q8n9+1lYSAGikNHRUTEYDOLxeMTv94vFYpG+vr5xa9ra2qS4uFhERFwul9hstrCx\nR44ckaNHj4rdbpd33303dCyPxyN5eXlh96VgykRxa2REpLFRxGAQueMOEacz1juiRDPd107FxmJd\nXV0wGo3Q6/UAgLKyMrS0tCAnJye0prW1FRUVFQAAm82G4eFhDA0NwePxTBprNpuV2jKR6nD8RbGi\nWHHx+XzIzs4OPdbpdDh06FDYNT6fD4ODg2FjJ+LxeGC1WnHVVVfhsccew+pJPkN18+bNoa/tdjvs\ndnuEWRElBhYVulJOpxNOp3PG8YoVF41GE9E6idIdihcvXgyv14v58+eju7sba9euRW9vL+bNm3fZ\n2ouLC5GasKhQtFz6i3dNTc204hUrLllZWfB6vaHHXq8XOp1uyjUDAwPQ6XQYGRkJG3uptLQ0pKWl\nAQDy8/NhMBjgdruRn58fjXSI4hqLCsUbxa4WKygogNvtRn9/P/x+P3bv3g2HwzFujcPhQFNTEwDA\n5XIhIyMDmZmZEcUC47ueU6dOIRAIAACOHz8Ot9uNpUuXKpUeUVzg1V8UrxTrXFJTU1FfX4+ioiIE\nAgFUVlYiJycHDQ0NAICqqiqUlJSgvb0dRqMR6enpaGxsnDIWAF577TVUV1fj1KlT+PKXvwyr1Yp9\n+/bhwIED2LRpE7RaLVJSUtDQ0ICMjAyl0iOKKXYqFO/4SZRECYSf/Eixwk+iJFIhdiqUaFhciOIY\niwolKhYXojjEokKJjsWFKI6wqJBasLgQxQEWFVIbFheiGGJRIbVicSGKARYVUjsWF6JZxKJCyYLF\nhWgWsKhQsmFxIVIQiwolKxYXIgWwqFCyY3EhiiIWFaIxLC5EUcCiQjQeiwvRFWBRIZoYiwvRDLCo\nEE2NxYVoGlhUiCLD4kIUARYVoulhcSGaAosK0cywuBBNgEWF6MqkKHnwjo4OmM1mmEwm1NXVTbim\nuroaJpMJFosFPT09YWP37NmDFStWYM6cOeju7h53rG3btsFkMsFsNqOzs1OZpEjVRkeBnTsBsxlo\nahorKvv3s7AQTZsoZHR0VAwGg3g8HvH7/WKxWKSvr2/cmra2NikuLhYREZfLJTabLWzskSNH5OjR\no2K32+Xdd98NHau3t1csFov4/X7xeDxiMBgkEAhcti8FU6YENjIi0tgoYjCI3HGHiNMZ6x0RxZfp\nvnYq1rl0dXXBaDRCr9dDq9WirKwMLS0t49a0traioqICAGCz2TA8PIyhoaEpY81mM5YtW3bZ39fS\n0oLy8nJotVro9XoYjUZ0dXUplR6pBDsVImUods7F5/MhOzs79Fin0+HQoUNh1/h8PgwODoaNvdTg\n4CBuvfXWy441kc2bN4e+ttvtsNvtkaREKsJzKkRTczqdcDqdM45XrLhoNJqI1o11W7O7h4uLCyUX\nFhWiyFz6i3dNTc204hUrLllZWfB6vaHHXq8XOp1uyjUDAwPQ6XQYGRkJGxvu7xsYGEBWVtaVpkEq\nwaJCNLsUO+dSUFAAt9uN/v5++P1+7N69Gw6HY9wah8OBpqYmAIDL5UJGRgYyMzMjigXGdz0OhwPN\nzc3w+/3weDxwu91YtWqVUulRguA5FaLYUKxzSU1NRX19PYqKihAIBFBZWYmcnBw0NDQAAKqqqlBS\nUoL29nYYjUakp6ejsbFxylgAeO2111BdXY1Tp07hy1/+MqxWK/bt24fc3FyUlpYiNzcXqamp2L59\ne8SjOVIfdipEsaURJU96xCGNRqPoeR6KrUuLyqZNLCpE0TDd106+Q59UgZ0KUXxhcaGExqJCFJ9Y\nXCghsagQxTcWF0ooLCpEiYHFhRLC+fPAyy8DW7eyqBAlAhYXimt9fcCzz451KwUFLCpEiYLFheLO\n+fPAz342VlQ++AD45jeBd94BliyJ9c6IKFJ8nwvFjUu7lKoq4O67Aa021jsjIr7PhRIKuxQidWLn\nQjHBLoUosbBzobjFLoUoebBzIcWxSyFKfOxcKC6wSyFKbuxcKKrYpRCpEzsXmnXsUojoUuxcaMbY\npRAlD3YupCh2KUQUCXYuFBF2KUTJbbqvnSkK7gUdHR0wm80wmUyoq6ubcE11dTVMJhMsFgt6enrC\nxp45cwaFhYVYtmwZ7rrrLgwPDwMA+vv7MXfuXFitVlitVmzYsEHJ1JLC+fPACy8At98OrFkDpKeP\ndSkdHcC6dSwsRDQFUcjo6KgYDAbxeDzi9/vFYrFIX1/fuDVtbW1SXFwsIiIul0tsNlvY2Iceekjq\n6upERKS2tlY2btwoIiIej0fy8vLC7kvBlFWjt1fk/vtFFiwQKSoSefVVEb8/1rsiolia7munYp1L\nV1cXjEYj9Ho9tFotysrK0NLSMm5Na2srKioqAAA2mw3Dw8MYGhqaMvbimIqKCrz++utKpZBU2KUQ\nUTQpVlx8Ph+ys7NDj3U6HXw+X0RrBgcHJ409efIkMjMzAQCZmZk4efJkaJ3H44HVaoXdbsevfvUr\nRfJSm74+4IEHgOxs4KWXgAcfBD78ENiyhSfpiWjmFLtaTKPRRLROIjhBJCITHk+j0YSeX7x4Mbxe\nL+bPn4/u7m6sXbsWvb29mDdv3mVxmzdvDn1tt9tht9sj2qta8IovIgrH6XTC6XTOOF6x4pKVlQWv\n1xt67PV6odPpplwzMDAAnU6HkZGRy57PysoCMNatDA0NYdGiRThx4gQWLlwIAEhLS0NaWhoAID8/\nHwaDAW63G/n5+Zft7eLikkwuveLrwQd5xRcRTezSX7xramqmFa/YWKygoAButxv9/f3w+/3YvXs3\nHA7HuDUOhwNNTU0AAJfLhYyMDGRmZk4Z63A4sGvXLgDArl27sHbtWgDAqVOnEAgEAADHjx+H2+3G\n0qVLlUovYfBcChHFgmKdS2pqKurr61FUVIRAIIDKykrk5OSgoaEBAFBVVYWSkhK0t7fDaDQiPT0d\njY2NU8YCwMMPP4zS0lLs2LEDer0er7zyCgDgrbfewqOPPgqtVouUlBQ0NDQgIyNDqfTiHrsUIool\nvolSRSY6l/Ktb/FcChFduem+drK4qADfPU9ESuO9xZIEr/gionjGziXBsEsholhg56JC7FKIKNGw\nc4lj7FKIKF6wc0lw7FKISA3YucQJdilEFM/YuSQQdilEpFbsXGKAXQoRJRp2LnGKXQoRJRN2Lgpj\nl0JEasDOJQ6wSyGiZMfOJYrYpRCRWrFzmWXsUoiILsfOZYbYpRBRMmHnoiB2KUREkWHnEgF2KUSU\n7Ni5RAm7FCKimWPncgl2KUREl5tu55Ki4F7Q0dEBs9kMk8mEurq6CddUV1fDZDLBYrGgp6cnbOyZ\nM2dQWFiIZcuW4a677sLw8HDoe9u2bYPJZILZbEZnZ2fE+zx/HnjhBeD224E1a4D09LEupaMDWLcu\nsQqL0+mM9RYUpeb81JwbwPySjWLFJRAI4Hvf+x46OjrQ19eHl19+GUeOHBm3pr29HR988AHcbjee\nffZZfOc73wkbW1tbi8LCQrz//vtYs2YNamtrAQB9fX3YvXs3+vr60NHRgQ0bNuDzzz+fco99fcAD\nDwDZ2cBLLwEPPgh8+CGwZUvijr/U/g9czfmpOTeA+SUbxYpLV1cXjEYj9Ho9tFotysrK0NLSMm5N\na2srKioqAAA2mw3Dw8MYGhqaMvbimIqKCrz++usAgJaWFpSXl0Or1UKv18NoNKKrq2vCvamlSyEi\nileKFRefz4fs7OzQY51OB5/PF9GawcHBSWNPnjyJzMxMAEBmZiZOnjwJABgcHIROp5vy7wtSS5dC\nRBSvFLvGxmYPAAAHrElEQVRaTKPRRLQukhNEIjLh8TQazZR/z2Tfe+MNDd54I6LtJaSamppYb0FR\nas5PzbkBzC+ZKFZcsrKy4PV6Q4+9Xu+4zmKiNQMDA9DpdBgZGbns+aysLABj3crQ0BAWLVqEEydO\nYOHChZMeKxhzsSS7OI6IKCYUG4sVFBTA7Xajv78ffr8fu3fvhsPhGLfG4XCgqakJAOByuZCRkYHM\nzMwpYx0OB3bt2gUA2LVrF9auXRt6vrm5GX6/Hx6PB263G6tWrVIqPSIimoJinUtqairq6+tRVFSE\nQCCAyspK5OTkoKGhAQBQVVWFkpIStLe3w2g0Ij09HY2NjVPGAsDDDz+M0tJS7NixA3q9Hq+88goA\nIDc3F6WlpcjNzUVqaiq2b98e8WiOiIiiTFTk3nvvlYULF0peXl7oudOnT8uXvvQlMZlMUlhYKGfP\nng19b+vWrWI0GmX58uXyxhtvxGLLV+SJJ56QvLw8WbFihTzxxBMiMnW+iWbr1q2Sm5sreXl5Ul5e\nLv/3f/+nmvzee+89WblyZejPF77wBXnyySdVk5+IyNmzZ+WrX/2qmM1mycnJEZfLpZr8brjhBrnx\nxhtl5cqVcsstt4iIuv7fExEZHR2VlStXyt133y0i089P0TdRzrZ7770XHR0d456L5vti4sn//M//\n4Kc//Sneeecd/Pa3v8XPf/5zHDt2bNJ8E01/fz+ee+45dHd347//+78RCATQ3NysmvyWL1+Onp4e\n9PT04N1338Wf/umfYt26darJDwDuv/9+lJSU4MiRI/iv//ovmM1m1eSn0WjgdDrR09MTesuDWnIL\nevLJJ5GbmxuaAE07v9mogLPJ4/GM61yWL18uQ0NDIiJy4sQJWb58uYiM/VZcW1sbWldUVCQHDx6c\n3c1egT179khlZWXo8T/90z9JXV3dpPkmmtOnT8uyZcvkzJkzMjIyInfffbd0dnaqJr+LvfHGG7J6\n9WoRmfzfa6IZHh6WJUuWXPa8WvLT6/Vy6tSpcc+pJTcREa/XK2vWrJH9+/eHOpfp5qeqzmUi0Xhf\nTDzKy8vD22+/jTNnzuD3v/892tvbMTAwMGm+iebqq6/GD37wA1x//fVYvHgxMjIyUFhYqJr8Ltbc\n3Izy8nIAk/97TTQejwfXXnst7r33XuTn5+Nv//Zv8dlnn6kmP41Ggy996UsoKCjAc889B0A9PzsA\n+P73v4/HH38cKSl/LBHTzU/1xeViM31fTDwym83YuHEj7rrrLhQXF2PlypWYM2fOuDXh8o1nx44d\nwxNPPIH+/n4MDg7i3LlzePHFF8etSeT8gvx+P/bu3Yu//Mu/vOx7iZzf6Ogouru7sWHDBnR3dyM9\nPf2yMUoi5/frX/8aPT092LdvH/7t3/4Nb7/99rjvJ3JuP//5z7Fw4UJYrdZJ37oRSX6qLy7B98UA\nmNH7YuLZN7/5TRw+fBgHDhzA/PnzsWzZsknzTTSHDx/GF7/4RSxYsACpqam45557cPDgQSxatEgV\n+QXt27cPN998M6699loAk/97TTQ6nQ46nQ633HILAOBrX/sauru7VfPzu+666wAA1157LdatW4eu\nri7V/Oz+8z//E62trViyZAnKy8uxf/9+/PVf//W081N9cVHz+2I++ugjAMCHH36IV199FevXr580\n30RjNpvhcrlw/vx5iAjefPNN5Obm4itf+Yoq8gt6+eWXQyMxYPJ/r4lm0aJFyM7Oxvvvvw8AePPN\nN7FixQpV/Px+//vf43e/+x0A4LPPPkNnZyduvPFG1fzstm7dCq/XC4/Hg+bmZtx555144YUXpp+f\nwueFZlVZWZlcd911otVqRafTyfPPPy+nT5+WNWvWTHj53JYtW8RgMMjy5culo6Mjhjufmdtvv11y\nc3PFYrHI/v37RUSmzDfR1NXVhS5F/pu/+Rvx+/2qyu/cuXOyYMEC+fTTT0PPqSm/3/zmN1JQUCA3\n3XSTrFu3ToaHh1WR3/Hjx8VisYjFYpEVK1bI1q1bRURdP7sgp9MpX/nKV0Rk+vkl3YeFERGR8lQ/\nFiMiotnH4kJERFHH4kJERFHH4kJERFHH4kKkkNOnT8NqtcJqteK6666DTqeD1WpFfn4+RkZGJo37\nq7/6Kxw/fhwAoNfrcdNNN4WO43K5cPLkSZSUlMxWGkQzotgt94mS3YIFC9DT0wNg7BMK582bhwcf\nfHDKmA8++ACfffYZli5dCuCPN0i8+uqrx62bP38+uru7kZ+fr8zmia4QOxeiWRLJVf/Nzc2Xfaje\nRHEOhwMvv/xy1PZGFG0sLkRx5Ne//jUKCgpCj0UEd9xxB6xWK2677bbQ86tWrcJbb70Viy0SRYRj\nMaI48r//+7+h+1YBk4/FrrvuOvT398/y7ogix86FKM5EMj4TkYS96y4lBxYXojhyww034MSJE2HX\nnThxAjfccMMs7IhoZlhciGZJJJ3G6tWrcfjw4bAxXV1d+PM///Oo7Y0o2njjSqI4cvz4cdx3331o\na2ubct3Xv/51/P3f/z2sVuss7Yxoeti5EMWRpUuXYt68eTh27Nikaz766CMMDw+zsFBcY+dCRERR\nx86FiIiijsWFiIiijsWFiIiijsWFiIiijsWFiIiijsWFiIii7v8D2EqN0pcBl9MAAAAASUVORK5C\nYII=\n" }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlGX+P/D3MCAwgBxmghRMzAOCwDB5Ck3FEMkDUNqa\ntqWpm+aW6O7329pW16a7+7WT5aLuaoddt7LVTvsLECR0ZfCASBmWeQAPYGCIzXCWM3P//pjp2UZQ\nDjIMMO/XdXFdPs/c88zHO5s3z/OZeW6ZEEKAiIhsnp21CyAiot6BgUBERAAYCEREZMJAICIiAAwE\nIiIyYSAQEREACwZCUVERpk+fjjFjxiA4OBhbtmxpc1x8fDxGjhwJtVqN3NxcS5VDRETtsLfUgR0c\nHLB582aEhYWhpqYGY8eORVRUFAIDA6UxqampuHDhAs6fP4/jx49j1apVyM7OtlRJRER0CxY7Q7jz\nzjsRFhYGAHB1dUVgYCB++OEHszFJSUlYsmQJAGDixImoqKhAaWmppUoiIqJb6JEeQmFhIXJzczFx\n4kSz/VeuXMGQIUOkbT8/PxQXF/dESUREdAOLXTL6SU1NDR5++GEkJCTA1dW11eM33jlDJpO1GtPW\nPiIial9n7k5k0TOEpqYmzJ8/H4899hgefPDBVo/7+vqiqKhI2i4uLoavr2+bxxJC2OzPSy+9ZPUa\nessP54Lzwfno+E9nWSwQhBBYvnw5goKCsHbt2jbHxMbG4v333wcAZGdnw8PDAz4+PpYqiYiIbsFi\nl4yOHj2KXbt2ITQ0FBqNBgCwceNGfP/99wCAlStXYvbs2UhNTcWIESPg4uKCnTt3WqocIiJqh8UC\n4b777oPBYGh33LZt2yxVQr8RERFh7RJ6Dc6FOc6HOc7H7ZGJrlxo6mEymaxL18OIiGxZZ987eesK\nIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBER\nAAYCERGZMBCIiAgAA4GIiEwYCEREBICBQEREJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQ\niIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBERAAYCERGZMBCIiAgAA4GIiEwYCEREBICBQERE\nJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEg\nEBERAAYCERGZMBCIiAgAA4GIiEwsGgjLli2Dj48PQkJC2nxcq9XC3d0dGo0GGo0Gf/7zny1ZDhER\n3YK9JQ++dOlSrF69GosXL77pmGnTpiEpKcmSZRARUQdY9AxhypQp8PT0vOUYIYQlSyAiog6y6BlC\ne2QyGbKysqBWq+Hr64tNmzYhKCiozbHr16+X/hwREYGIiIieKZKIqI/QarXQarVdfr5MWPhX9MLC\nQsTExODUqVOtHquuroZcLodCocC+ffuwZs0a5Ofnty5SJuOZBBFRJ3X2vdOqnzJyc3ODQqEAAMya\nNQtNTU0oKyuzZklERDbLqoFQWloqpVdOTg6EEPDy8rJmSURENsuiPYRFixYhMzMTOp0OQ4YMwYYN\nG9DU1AQAWLlyJT799FNs374d9vb2UCgU2LNnjyXLISKiW7B4D6E7sIdARNR5faqHQEREvQcDgYiI\nADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBERAAYCERGZMBCIiAgAA4GIiEwYCEREBICB\nQEREJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAGAg9rqGhAdOmTYMQAoWF\nhXB2doZGo5F+du3a1W2vlZmZiWPHjt32cQoLCxESEtLuuI0bN5ptT548ucuvuWDBAhQUFHT5+UTU\neQyEHvbhhx9i7ty5kMlkAIARI0YgNzdX+nnssce67bUyMjKQlZXVbcdrz8svv2y2ffTo0S4f68kn\nn8TmzZtvtyQi6gQGQg/bvXs34uLibjnm8uXLGDVqFPR6PQwGA6ZMmYIDBw4AAB566CGMGzcOwcHB\neOedd6TnpKWlYezYsQgLC0NUVBQuX76Mt956C5s3b4ZGo8GRI0fMXiMzM1M6K7nnnntw/fp1CCHw\n7LPPIiQkBKGhofj4449b1fbPf/4Tq1evlrbnzp2LzMxMPPfcc6irq4NGo8Hjjz8OAHB1dQWAmx5X\nq9UiIiICv/jFLxAYGGgWhhEREUhNTe3M1BLR7RJ9QB8ps13Nzc3izjvvlLYLCgqEs7OzCAsLk36O\nHDkihBDi3XffFb/4xS/Ea6+9Jp566inpOWVlZUIIIWpra0VwcLAoKysT165dE0OGDBGFhYVCCCHK\ny8uFEEKsX79evPHGG23WEhMTI7KysoQQQly/fl00NzeLTz/9VERFRQmDwSBKS0vFXXfdJa5evSoK\nCgpEcHCwEEKInTt3imeeeUY6zty5c0VmZqYQQghXV1ez1/hpu63jlpSUiIyMDOHu7i6uXLkiDAaD\nCA8Pl/7+QggxdepUcebMmc5OMxGZdPa9k2cIPUin08HNzc1s3/Dhw80uGf103X358uWorKzEW2+9\nhU2bNknjExISEBYWhvDwcBQXFyM/Px/Z2dmYOnUqhg4dCgDw8PCQxhv/TbQ2efJk/OY3v8HWrVtR\nXl4OuVyOo0eP4tFHH4VMJoO3tzemTZuGnJyc2/57HzlypNVxv/zyS8hkMkyYMAGDBw+GTCZDWFgY\nCgsLpecNHjzYbJuILIuB0MNu9gZ9o9raWhQXF0Mmk6G6uhqA8RLLf/7zH2RnZ+PkyZMICwtDfX29\n1I/ojHXr1uHvf/876urqMHnyZOTl5bVZ343Htre3h8FgkLbr6+vbfS2ZTHbT4zo6Okr75HI5mpub\npW0hBOzs+E+UqKfw/7YepFKpUFNT06Gx69atw+OPP44NGzbgySefBABUVVXB09MTTk5OOHfuHLKz\nsyGTyXDvvffi0KFD0m/TZWVlAAA3NzcpTG508eJFjBkzBr/73e8wfvx4nDt3DlOmTMFHH30Eg8GA\nH3/8EYcOHcKECRPMnufv74+TJ09CCIGioiKzMwgHBwezN/Sf3Oy47YVjSUmJdNZDRJZnb+0COqru\nUh2c73a2dhm3RS6XIzg4GHl5eQgICABgfGPWaDTSmGXLlkGtVuPEiRPYsmULZDIZPvvsM7z33ntY\ntGgRduzYgaCgIAQEBCA8PByAMWjefvttzJs3DwaDAT4+Pvjiiy8QExODhx9+GImJidi2bZvZx0AT\nEhKQkZEBOzs7BAcHY/bs2XBwcMCxY8egVqshk8nw+uuvw9vbG4WFhdJv9Pfddx+GDRuGoKAgBAYG\nYuzYsdIxV6xYgdDQUIwdOxYffPCB9JyHHnqozeOePXu21RnIT9tNTU0oLi7G6NGjLfBfgojaIhMd\nvYZhRTKZDEe8j2CA9wAoY5VQxangNs4NMrvOXyqxtn/+858oLS3FunXrrF1Kr5aeno6UlBQkJCRY\nuxSiPquty7W3HN9XAsHQbEBVThX0iXroknRormiGMkYJVawKnpGesHPqG1e/GhsbMWPGDGRmZnbp\n2r+tWLBgAV577TX4+/tbuxSiPqvfBsKNZdaer4U+SQ9dog4139TAM9ITqjgVlHOUcFA5WKlSIqLe\nw2YC4eeadE3QpxjPHMoPlMNV7QpVrArKOCUUIxU9WCkRUe9hk4Hwc4Z6A8oPlkOXqIM+WQ97d3vj\nmUOsEgMnDoRMzss0RGQbbD4Qfk4YBKq/qpYuLTVea4RyrrEp7TnDE3KF3ALVEhH1DgyEW6i7VGcM\nhyQdqr+qhsd0D+OlpblKDPAZ0A2VEhH1HgyEDmoqa0LZvjLoEnUoTy+HIkghXVpSjFbwE0BE1Ocx\nELrA0GBAhbYCuiQd9El62DnbSU1p90nu7DsQUZ/EQLhNQgjU5NYYm9JJejQUN0A5RwllrBJeM70g\nd2XfgYj6BgZCN6u/XA99srEpXXW8Cu5T3I2XlmKUcBzk2P4BiIispNsDoaKiAseOHZPuZ+Pv74/w\n8HC4u7vfdrEdZc1A+LnmymZj3yFJh7K0MjiPdIYqTgVVrAqKMew7EFHv0m2BcPjwYbz++usoLCyE\nRqPB4MGDIYRASUkJcnNz4e/vj9/97ne47777uq34mxbZSwLh5wyNBlQeroQuUQddog4ye5mx7xCr\nhMcUD8jsGQ5EZF3dFgi//e1vsWrVKowcObLNJ+bn52PHjh148803u1ZpJ/TGQPg5IQSuf3vd2JRO\n1KOuoA7KWUoo45TwivaC/cA+c1NZIupHuv2SUUFBAYYNG9buPkvq7YFwo4biBuiSjU3pyqOVcJ/k\nDmWcEqoYFRz92Hcgop7R2ffOdm8ROm/evFb75s+f37mqbIyjnyN8V/kidF8owovDMehXg1CVVYUv\n1V/ixLgTKPxjIWq+qelTIQcADQ0NmDZtWqu6n3jiCXz22WcAgL/85S+oq6sze/yVV17Bv/71r1bH\nc3V1BQBcvnwZu3fv7lQt/v7+CA0NhVqtRnR0NEpLS286dsOGDR3a93OnTp3CsmXLAADnzp1DeHg4\nnJyc8MYbb7Qa+9RTTyErKwt/+MMfoFarERYWhsjISBQVFQEAvvnmGyxfvlwan5SUhD/96U8d+nsS\n9aSbniGcPXsWZ86cwbPPPotNmzZBCAGZTIaqqiq8/vrrOH36dM8V2cfOEG5GNAtUHvlv3wEGGNd3\niFXBfZo77Bx69y28//GPf0Cv1+PZZ58127906VLExMRg3rx5GDZsGL766isolUrp8fvvvx+ffPKJ\n2T7gvyu6abVavPHGG0hOTu5wLcOGDcOJEyfg5eWFF154ATU1NWZrJwghsH//fhw6dAhNTU0YNWoU\nqqurERQU1Grf2rVrWx1/8eLFWL16NcaPH48ff/wRly9fxueffw5PT0/8z//8j9lYjUaDr7/+GjU1\nNdKa2Vu3bsU333yDd999FwAQERGBjz/+GN7e3hBCQKPR4Msvv4SDA+/MS5bTbWcI+fn5SE5ORmVl\nJZKTk7F3714kJyfj66+/xjvvvNMtxdoamb0MHhEeGLF5BCZenIiQvSEYcOcAXHrhErK8s3Bm0Rlc\n23MNzRWtl6HsDXbv3o24uDgAwDPPPIPRo0cjKioK165dgxACW7duxQ8//IDp06cjMjISgHHZz8bG\nRiiVShQUFCA8PByhoaF48cUXpeM+99xzOHz4MDQaTZcWxJkyZQouXLiAy5cvIyAgAEuWLEFISAgC\nAwMxc+ZMJCQkoKysDGvXrsXMmTNb7btRQ0MDsrOzMX78eADAHXfcgXHjxrX55n327FmMGjUKMplM\nCgMAqKmpgUqlkrZnzZqFTz75BIDxf9Lw8HCkp6d3+u9KZEk37XZ+8skn2LVrFzZu3Ijnn3++J2uy\nCTKZDC7BLnAJdsHQ54eioaQB+mQ9SneVIm9FHgZOHCidPTgNdbJ2uWhpacF3332HUaNG4d///jfy\n8/Nx9uxZXL16FUFBQVi+fDlWr16NN998E1qtFl5eXgCAAwcOYMaMGQCANWvW4Omnn8Zjjz2Gv/3t\nb9KxX331VWzatEk6Q8jPz8cjjzzSqgaZTAatVouBAwcCgPSbz969exEaGgoAuHDhAj744ANMmDAB\nBw4cgFarRXx8PLy8vLBlyxYEBQW12hcfH2/2Orm5udISp+3Zt28fZs2aJW2/8MIL+OCDD6BQKJCd\nnS3tnzBhAnbs2IGnn35a2j506BDmzJnTodch6hHiJgIDA8WVK1dESEiI0Ov1rX46YunSpcLb21sE\nBwffdMzq1avFiBEjRGhoqPj666/bHHOLMvul5upmce3f10T6jAyR4vCF2O2SLP54999F6l+0wmAw\nWKWmq1evipEjRwohhFizZo3YuXOn9Ni8efPEZ599JoQQwt/f3+zfx4oVK0R2drYQQgilUimam5uF\nEEJUVlYKV1dXIYQQGRkZYu7cuZ2qx9/fX4SEhIiwsDCxZMkSUVlZKQoKCsSwYcNajV2/fn2H9v1k\nz5494sknn2zzOZs2bTLbFx0dLUpKSlqNffnll8UTTzwhbZ89e1ZMmDBB2k5LSxMLFiy4aQ1E3aGz\n7503PUN46qmnEBkZiUuXLpktpA4Yf1O7dOlSu2GzdOlSrF69GosXL27z8dTUVFy4cAHnz5/H8ePH\nsWrVKrPfqmyV3FWOnAFnsaZgPwqa/oygpipMvqTDyGfPIeNPmfBbMBiqOBU8Ijxg59hzfQdh+o28\nM9clc3JysGPHjk69Tl5eHhYuXNjmY5mZmdIZws/PRACgrKwMLi4urZ7z0ksv3XLf559/LjWZ3333\n3Q7//Wpra1FRUYE777yz1WOPPvooZs+eLW0LUw/uJwaDgV9kpF7npu8m8fHxOHv2LJYuXYqCggKz\nn46EAWC8tuvp6XnTx5OSkrBkyRIAwMSJE1FRUXHLT4vYki1b0nHx4v/BABm+gzvewnAsapqDd0cf\ng9NQJxT+sRBZPlk4veA0SneVoqmsyaL1qFQq1NTUAACmTp2Kjz76CAaDASUlJcjIyJDGubm5oaqq\nCgBw+vRpjB49Wnrjmzx5Mvbs2QMA+PDDD82eU11dLW0HBAQgNze3zZ+fwqA7Pfjgg9Lxx44di6FD\nh+Lq1autxt0YEhkZGbj//vul7fPnz0t/TkxMhEajkbZLSkowdOjQm24T9QY3PUOorq6Gm5vbLX+7\n+2lMV125cgVDhgyRtv38/FBcXAwfH59WY9evXy/9OSIiAhEREV1+3b6goaHt/zQ/2DfgrnV34a51\nd6GxtBH6FD2ufXIN+b/Oh9tYN+kW3s53O3drPXK5HMHBwcjLy8NDDz2EgwcPIigoCHfddRcmTZok\njVuxYgUeeOABDB48GHPmzDG7vp6QkIBHH30Ur776KuLi4qSgUKvVkMvlCAsLw9KlS7FmzZp267nZ\nb9fd8Vu3Wq1GXl6etH316lWMHz8eVVVVsLOzQ0JCAk6fPo19+/ZhwYIF0rjf//73yMvLg1wux/Dh\nw7F9+3bpsZycHEydOtVsOyYm5rZrJfo5rVYLrVbb9QPc7FpSZGSk+PWvfy2++OILs2vCOp1OpKWl\niaeeekpERka2e02qoKDgpj2EuXPniiNHjpi95okTJ1qNu0WZ/dbMmS8IQLT6iY5+sc3xzdebxY+J\nP4pzy8+JI95HRE5wjrj4/EVRebxSGFq6p++wc+dO8corr3R4fFRUlLh69Wq3vHZPW7JkidT7uJl7\n7rlH6om0Z9q0aaK0tFQIIURLS4tQq9WiqanptuskupXOvnfe9JLRgQMHMH/+fHz88ceYPHky3N3d\n4e7ujvvuuw+ffvopHnnkERw4cKDrSQTA19dX+vIOABQXF8PX1/e2jtlfxMfPxPDhL5jtGz78eaxe\nHdXmeLlCDlWsCgHvBmDSD5Mw6u1RQAtw7olzOOZ3DHkr86BP0cNQb+hyTY8++ihSUlI63D9IT09v\n82yvL/jf//3fdnsfJ06cgFze/u3Qv/32W4wYMQLe3t4AjJ+Kevjhh2Fvz1uaUO9i8dtfFxYWIiYm\nBqdOnWr1WGpqKrZt24bU1FRkZ2dj7dq1bTaV+8sX0zorJeUQtm7dj/p6OZycWrB6dRTmzJna/hNv\nUHu+VlpXuuabGnhGehovLc1RwkHFL0YR9Ve9aj2ERYsWITMzEzqdDj4+PtiwYQOamozNz5UrVwIw\nfsEpLS0NLi4u2LlzJ+65557WRdpoIFhCk64J+hTjutLlB8rhqnaVVodTjFRYuzwi6ka9KhC6CwPB\nMgz1BpQfLDeuDpesh727vdSUHjhxIJcOJerjGAjUJcIgUP1VtXRpqfFaI5RzlVDFqeA5wxNyBZcO\nJeprGAjULeou1RnDIUmH6q+q4THdw3hpaa4SA3wGWLs8IuoABgJ1u6ayJuPSoYk6lKeXQxGkkC4t\nKUZz6VCi3oqBQBZlaDCgQlthXB0uSQ87ZzupKe0+yZ19B6JepNsXyFm3bl2H9pFtsHO0g1e0F0b9\ndRTu/f5eBO0Jgp2LHS7EX0DWnVk498Q5/PjvH9FS02LtUomok9o9Q9BoNMjNzTXbFxIS0ub3CiyF\nZwh9Q/3leuiTjU3pquNV8JjqAWWsEsoYJRwHcelQop7WbZeMtm/fjr/97W+4ePEihg8fLu2vrq7G\n5MmTzW5OZmkMhL6nubLZ2HdI0qEsrQzOI52hilNBFauCYgz7DkQ9odsCobKyEuXl5Xjuuefw6quv\nSgd1c3NrtRSipTEQ+jZDowGVh41Lh+qT9IAcxr5DrBIeUzwgs2c4EFkCm8rUqwkhcP3b68amdKIe\ndQV1UM5SQhmnhFe0F+wH8v4+RN2FgUB9SkNxA3TJxjOHyqOVcJ/kDmWcEqoYFRz92Hcguh0MBOqz\nmquaUZ5uupVGqh7Ow5yN60rHqeAS6sK+A1EnMRCoXxDNApVHKqFL0kGXqANaYAyHWBXcp7nDzqHn\nlg4l6qsYCNTvCCFQe6ZWakrX5tXC6wEvqOJU8HrAC/Ye7DsQtYWBQP1eQ0kD9Hv10CfqUXGoAgMn\nDpTOHpyGOlm7PKJeg4FANqWlpgVl+8ugT9JDv1cPR19HY1M6VgXXe1zZdyCbxkAgmyVaBKqOVUGX\naOw7GGoNUlPaI8IDdo7sO5BtYSAQmdSeq5Wa0rWna+E50xOqWBW8ZnvBwYtLh1L/x0AgakPjtUbo\n9xrvs1SRUQG3sW7SLbyd73a2dnlEFsFAIGpHS20Lyg+UGxcAStZhgPcA6dKS2zg3yOzYd6D+gYFA\n1AmiRaAqpwr6ROPqcM0VzVDGGJvSnpGesHMy7zuk7E/Bln9tQYNogKPMEfGPxmNO1BwrVU90awwE\nottQe75WWle65psaeEZ6Gi8tzVEiPTcda/66Bhc1F6Xxw3OHI+HpBIYC9UoMBKJu0qRrgj7VGA7l\nB8pR4FyAFHUKjgYcxRXlFWlc9PfRSPt7mhUrJWobA4HIAgz1BqycuxIDKwYiPD8c1x2v4+joo8gK\nyMIdjXcg4/0Ma5dI1Epn3zv5nX+iDrBzssP3Q75H+pR0yIQMAT8EYFLeJPw2+bfwqfJB3oA8KGOV\n8JzhCblCbu1yibqEZwhEHZSyP6V1D+Hr4dgyfwtCy0KhS9Kh+qtqeEz3MC4ANFeJAT4DrFgx2Tpe\nMiKyoJT9Kdi6ZyvqW+rhJHfC6oWrzRrKTWVNxqVDE3UoTy+HIkghfd9BMZpLh1LPYiAQ9RKGBgMq\ntBXG1eGS9LBztjOeOcQp4T7JHTI5w4Esi4FA1AsJIVCTWyPdwruhuAHKOaalQ6O8IHdl34G6HwOB\nqA+ov1wPfbLxI61Vx6vgMdUDylgllDFKOA7i0qHUPRgIRH1Mc2Wzse+QpENZWhmcRzpDFaeCKlYF\nxRj2HajrGAhEfZih0YDKw5XSpSXIYew7xCrhMcUDMnuGA3UcA4GonxBC4Pq3141N6UQ96grqoJyt\nhDJWaVw61I1fI6JbYyAQ9VMNxQ3QJRvPHCqPVsJ9krtxdbgYFRz92Heg1hgIRDaguaoZ5enlxktL\nqXo4D3OWbuHtEurCvgMBYCAQ2RzRLFB5pFJaHQ4tMIZDrAru09xh58ClQ20VA4HIhgkhUHumVmpK\n1+bVwusBL6jiVMa+gwf7DraEgUBEkoaSBuj36qFP1KPiUAUGThwonT04DXWydnlkYQwEImpTy/UW\nlKWXQZ+kh36vHo6+jsamdKwKrve4su/QDzEQiKhdokWg6lgVdInGvoOh1iA1pT0iPGDnyL5Df8BA\nIKJOqz1XKzWla0/XwnOmJ1SxKnjN9oKDl4O1y6MuYiAQ0W1pvNZo7Dsk6VF+sBxuY92kW3g73+1s\n7fKoExgIRNRtWmpbUP6fcugT9dAl6zDAe4B0acltnBsO70tF+pYtsG9oQLOjI2bGx2PqnDntH5h6\nBAOBiCxCGASqjldBn2S8S2ttaQ2Kmw9jVtU+eOJr2KEJLwwfjuiEBIZCL8FAIKIe8X/3LcTiowbo\nMBk1GA5PfA0VjuLt6Qr84eD/s3Z5hM6/d/JbKkTUJU32VzEEmRiCT9CEgdDjXugwGZMOTUDu1Fxp\ndTjFSIW1S6UO4mfLiKhLmh3/e0M9B1ThTqQjGC/h8PStuOu5u1B3oQ4np51ETlAOLj13CZXHKiFa\neKbfm/GSERF1yaGUFHyxZg3+7+JFad/zw4fjgZ/1EIRBoPpEtbEpnaRDY2kjVDHGTyx5zvCEXMGl\nQy2pV/UQ0tLSsHbtWrS0tOBXv/oV1q1bZ/a4VqtFXFwc7r77bgDA/Pnz8eKLL7YukoFA1CsdSknB\n/q1bIa+vR4uTE6JWr75lQ7nuUp2xKZ2kQ/VX1fCY7mG8tDRXiQE+A3qwctvQawKhpaUFAQEBOHDg\nAHx9fTF+/Hjs3r0bgYGB0hitVos333wTSUlJty6SgUDU7zSVNRmXDk3UoTy9HIoghXHp0DgVnAOc\neSuNbtBrmso5OTkYMWIE/P39AQALFy5EYmKiWSAA4Bs9kY1y8HKAzy994PNLHxgaDKjQVkCXpMM3\nUd/AztlO+jKc+yR3yOS3DoeUgwex5fPP0WBnB0eDAfEPPog599/fQ3+T/sNigXDlyhUMGTJE2vbz\n88Px48fNxshkMmRlZUGtVsPX1xebNm1CUFBQm8dbv3699OeIiAhERERYomwisgI7Rzt4RXvBK9oL\nYptATW4NdIk6XIi/gIbiBijnKKGMU8IrygtyV/O+Q8rBg1izezcu/vKX0r6LH34IADYXClqtFlqt\ntsvPt9glo88++wxpaWl45513AAC7du3C8ePHsXXrVmlMdXU15HI5FAoF9u3bhzVr1iA/P791kbxk\nRGSz6i/XQ59s/DJc1fEqeEz1gDJWCWWMEo6DHBEdH4/0efNaPS/688+R9pe/WKHi3qOz750W+9ip\nr68vioqKpO2ioiL4+fmZjXFzc4NCYfyM8qxZs9DU1ISysjJLlUREfZDTUCf4PuML9X41wovC4fOY\nDyq0FfhyzJc4MfEEJpwYDf8CADe879Vbpdq+zWKXjMaNG4fz58+jsLAQgwcPxkcffYTdu3ebjSkt\nLYW3tzexZmRyAAAJkUlEQVRkMhlycnIghICXl5elSiKiPs7e3R7eC73hvdAbhkYDKg9Xwv23uXj5\n90CLHMiaBBydDJwKAbj8T+dZLBDs7e2xbds2REdHo6WlBcuXL0dgYCDeeustAMDKlSvx6aefYvv2\n7bC3t4dCocCePXssVQ4R9TN2A+zgGemJwM13Y82/PgTu/SUmZQGrtgO+lxvgNCUO1z65Zlw61I03\nZegIfjGNiPq8lIMHsTUpCfUwnhnEh8dCXRYAfZIelUcr4T7J3bg6XIwKjn6O7R2u3+g130PoTgwE\nIuqq5upmlH9RDl2iDvpUPZyHOUu38HYJdenX33dgIBAR3YRoFqg8UimtDocWGMMhVgX3ae6wc+hf\nt3djIBARdYAQArVnao1nDkl61ObVwusBL6jiVMa+g0ff7zswEIiIuqChpMG4dGiiHhWHKjBw4kDp\n7MFpaN/8zBIDgYjoNrVcb0FZehn0SXro9+rh6OtobErHquB6j2uf6TswEIiIupFoEag6VgVdorHv\nYKg1SE1pjwgP2Dn23r4DA4GIyIJqz9VKTena07XwnOkJVawKXrO94ODlYO3yzDAQiIh6SOO1RmPf\nIUmP8oPlcBvrJt2l1fluZ2uXx0AgIrKGltoWlP+n3Lg6XLIOA7wHSJeW3Ma5QWbX830HBgIRkZUJ\ng0DV8Srj6nCJOjRXNEMZY2xKe0Z6ws6pZ/oODAQiol6m9nyttHRozckaeEZ6Gi8tzVHCQWW5vgMD\ngYioF2vSNUGfajxzKD9QDle1q9R3UIxUdOtrMRCIiPoIQ70B5QfLpbMHew97qGJVUMYpMXDCwHaX\nDm0PA4GIqA8SBoHqE9XGpnSSDo2ljVDFGM8cPGd4Qq6Qt3+QGzAQiIj6gbpLddLSodVfVcNjuofx\n7GGuEgN8BnToGAwEIqJ+pqm8CWWpZca+Q3o5FEEKqOJUUMWp4BzgfNNbaTAQiIj6MUODARXaCuiS\njHdptXO2k5rS7pPczfoODAQiIhshhEBNbo10C++G4gYo5yihjFPCK8q4dCgDgYjIBtV/Xy99Yqkq\nuwpTq6cyEIiIbF1zZTMcPBwYCERE1Pn3zt57I28iIupRDAQiIgLAQCAiIhMGAhERAWAgEBGRCQOB\niIgAMBCIiMiEgUBERAAYCEREZMJAICIiAAwEIiIyYSAQEREABgIREZkwEIiICAADgYiITBgIREQE\ngIFAREQmDAQiIgLAQCAiIhMGAhERAWAgEBGRCQOBiIgAMBCIiMiEgUBERAAYCEREZGLRQEhLS8Po\n0aMxcuRIvPrqq22OiY+Px8iRI6FWq5Gbm2vJcvosrVZr7RJ6Dc6FOc6HOc7H7bFYILS0tOCZZ55B\nWloazpw5g927d+Ps2bNmY1JTU3HhwgWcP38eb7/9NlatWmWpcvo0/iP/L86FOc6HOc7H7bFYIOTk\n5GDEiBHw9/eHg4MDFi5ciMTERLMxSUlJWLJkCQBg4sSJqKioQGlpqaVKIiKiW7BYIFy5cgVDhgyR\ntv38/HDlypV2xxQXF1uqJCIiugV7Sx1YJpN1aJwQokPP6+jx+qsNGzZYu4Reg3NhjvNhjvPRdRYL\nBF9fXxQVFUnbRUVF8PPzu+WY4uJi+Pr6tjrWjaFBRETdz2KXjMaNG4fz58+jsLAQjY2N+OijjxAb\nG2s2JjY2Fu+//z4AIDs7Gx4eHvDx8bFUSUREdAsWO0Owt7fHtm3bEB0djZaWFixfvhyBgYF46623\nAAArV67E7NmzkZqaihEjRsDFxQU7d+60VDlERNQOmeD1mF5j2bJlSElJgbe3N06dOgUAKCsrwyOP\nPILLly/D398fH3/8MTw8PKxcac8oKirC4sWLce3aNchkMqxYsQLx8fE2OSf19fWYNm0aGhoa0NjY\niLi4OLz88ss2ORc/19LSgnHjxsHPzw/Jyck2PR/+/v4YOHAg5HI5HBwckJOT0+n54DeVe5GlS5ci\nLS3NbN8rr7yCqKgo5OfnIzIyEq+88oqVqut5Dg4O2Lx5M06fPo3s7Gz89a9/xdmzZ21yTpycnJCR\nkYGTJ0/i22+/RUZGBo4cOWKTc/FzCQkJCAoKkj50YsvzIZPJoNVqkZubi5ycHABdmA9BvUpBQYEI\nDg6WtgMCAsTVq1eFEEKUlJSIgIAAa5VmdXFxcWL//v02PyfXr18X48aNE999951Nz0VRUZGIjIwU\nBw8eFHPnzhVC2Pb/L/7+/kKn05nt6+x88AyhlystLZUa7T4+Pjb7xb3CwkLk5uZi4sSJNjsnBoMB\nYWFh8PHxwfTp0zFmzBibnQsA+M1vfoPXX38ddnb/fRuz5fmQyWSYMWMGxo0bh3feeQdA5+fDYk1l\n6n4ymcwmv49RU1OD+fPnIyEhAW5ubmaP2dKc2NnZ4eTJk6isrER0dDQyMjLMHreludi7dy+8vb2h\n0WhuersKW5oPADh69CgGDRqEH3/8EVFRURg9erTZ4x2ZD54h9HI+Pj64evUqAKCkpATe3t5Wrqhn\nNTU1Yf78+Xj88cfx4IMPAuCcuLu7Y86cOThx4oTNzkVWVhaSkpIwbNgwLFq0CAcPHsTjjz9us/MB\nAIMGDQIA3HHHHXjooYeQk5PT6flgIPRysbGxeO+99wAA7733nvSmaAuEEFi+fDmCgoKwdu1aab8t\nzolOp0NFRQUAoK6uDvv374dGo7HJuQCAjRs3oqioCAUFBdizZw/uv/9+fPDBBzY7H7W1taiurgYA\nXL9+Henp6QgJCen8fFiqwUGdt3DhQjFo0CDh4OAg/Pz8xD/+8Q+h1+tFZGSkGDlypIiKihLl5eXW\nLrPHHD58WMhkMqFWq0VYWJgICwsT+/bts8k5+fbbb4VGoxFqtVqEhISI1157TQghbHIubqTVakVM\nTIwQwnbn49KlS0KtVgu1Wi3GjBkjNm7cKITo/HzwewhERASAl4yIiMiEgUBERAAYCEREZMJAICIi\nAAwEok6Ry+XQaDQICQnBggULUFdXZ+2SiLoNA4GoExQKBXJzc3Hq1CkMGDAAO3bsMHu8ubnZSpUR\n3T4GAlEXTZkyBRcuXEBmZiamTJmCuLg4jBkzxtplEXUZ72VE1AXNzc1ITU3F7NmzAQC5ubk4ffo0\nhg4dauXKiLqOZwhEnVBXVweNRoPx48fD398fy5YtgxACEyZMYBhQn8czBKJOcHZ2Rm5ubqv9Li4u\nVqiGqHvxDIGIiAAwEIg6pa37ydvaffep/+LN7YiICADPEIiIyISBQEREABgIRERkwkAgIiIADAQi\nIjJhIBAREQDg/wPa6rEVsfB01AAAAABJRU5ErkJggg==\n" } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.3 page NO.363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou=0.998\t # density in kg/cu.m\n", "cp=1009 \t\t# specific heat in J/(kg*K) \n", "v=20.76e-6 \t# viscosity in sq.m/s \n", "Pr=0.697 \t# Prandtl Number \n", "k=0.03003 \t# thermal conductivity in W/(m.K)\n", "a=0.2983e-4 \t# diffusivity in sq.m/s \n", "L=1.0 \t\t # Length of plate in m\n", "V=5.0 \t\t # velocity of air in m/s\n", "b=0.5 \t\t# width in m\n", "Re=V*L/v \t# Reynolds number at plate end\n", "\n", "h=k*0.664*Re**(0.5)*Pr**(1/3.0)/L\t # The average convection coefficient in W/(sq.m.K)\n", "Df=0.664*V*rou*v*b*(Re)**0.5 \t # drag force in N\n", "hx=(1/2.0)*h # local convective coefficient\n", "delta=5*L/(Re)**0.5 # The boundary-layer thickness at plate end\n", "delta_t=delta/(Pr)**(1/3.0)\n", "\n", "print\"The local convective coefficient is \",round(hx,2),\"W/(sq.m.K)\"\n", "print\"The boundary-layer thickness at plate end is \",round(delta*100,2),\"cm\"\n", "print\"The thermal-boundary-layer thickness is \",round(delta_t*100,2),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The local convective coefficient is 4.34 W/(sq.m.K)\n", "The boundary-layer thickness at plate end is 1.02 cm\n", "The thermal-boundary-layer thickness is 1.15 cm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.4 page NO. 364" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 0.0812 # density in Ibm/ft^3 \n", "cp=0.2918 # specific heat BTU/(lbm-degree Rankine) \n", "v= 17.07e-5 # viscosity in ft^2/s \n", "kf = 0.01546 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a = 0.8862 # diffusivity in ft^2/hr \n", "Pr = 0.709 # Prandtl Number\n", "\n", "qw=10/(1.5*10.125)*(1/.2918)*144 # The wall flux \n", "V_inf=20 # velocity in ft/s\n", "L=1.5/12 # length in ft\n", "Re_L=V_inf*10*L/v # Reynolds number at plate end\n", "T_inf=300 # free stream temperature in degree Rankine\n", "Tw=T_inf+(qw*L*10/(kf*0.453*(Re_L)**0.5*(Pr)**(1/3.0)))\n", "\n", "print\"The maximum heater surface temperature is \",round(Tw,0),\"R\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum heater surface temperature is 470.0 R\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.5 page NO. 368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 0.0812 # density in Ibm/ft**3 \n", "cp=0.2918 # specific heat BTU/(lbm-degree Rankine) \n", "v= 17.07e-5 # viscosity in ft**2/s \n", "kf = 0.01546 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a = 0.8862 # diffusivity in ft**2/hr \n", "Pr = 0.709 # Prandtl Number\n", "Tw=469 # maximum heater temperature in degree Rankine\n", "T_inf=300.0 # free-stream temperature in degree Rankine\n", "qw=324.0 # The wall flux in BTU/(hr.ft**2)\n", "V_inf=20 # velocity in ft/s\n", "\n", "hx=qw/(Tw-T_inf) # The convection coefficient\n", "LHS=(hx/3600.0)*(Pr)**(2/3.0)/(rou*cp*V_inf)\n", "Re_L=1.46e+005 # Reynolds number at plate end\n", "RHS=0.332*(Re_L)**(-0.5)\n", "err=(LHS-RHS)*100/LHS\n", "\n", "print\"The convection coefficient is BTU/(hr.sq.ft.degree R)\",hx\n", "print\"The error is \",round(err,0),\"percent\"\n", "print\"Since the error is only 3 percent, the agreement is quite good\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The convection coefficient is BTU/(hr.sq.ft.degree R) 1.91715976331\n", "The error is 3.0 percent\n", "Since the error is only 3 percent, the agreement is quite good\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.6 page NO. 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 62.4 # density in Ibm/cu.ft\n", "v= 1.083e-5 # viscosity in sq.ft/s \n", "V_inf=5*.5144/.3048 # barge velocity in ft/s using conversion factors from appendix table A1\n", "L=20 # Length of barge in ft\n", "Re_L=V_inf*L/v # Reynolds number at plate end\n", "Cd=0.003 #value of Coefficient of discharge figure 7.11\n", "gc=32.2\n", "b=12 # width in ft\n", "\n", "Df=(Cd*rou*V_inf**2*b*L)/(2*gc)\n", "\n", "print\"The drag force is \",round(Df,0),\"lbf\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drag force is 50.0 lbf\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.7 page NO. 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 1.0732 # density in kg/m**3 \n", "cp= 1013 # specific heat in J/(kg*K) \n", "v= 21.67e-6 # viscosity in m**2/s \n", "Pr = 0.702 # Prandtl Number \n", "k= 0.03352 # thermal conductivity in W/(m.K)\n", "a = 0.3084e-4 # diffusivity in m**2/s\n", "V_inf=60 # carbon dioxide velocity in m/s\n", "vel=60 #velocity\n", "\n", "x_cr=(5e5)*v/V_inf # The transition length in m\n", "w=4.0 # width of each heater in cm\n", "b=0.16 # effective heating length in m\n", "Tw=600 # temperature of heater surface in K\n", "T_inf=400 # temperature of carbon dioxide in K\n", "\n", "y=0.664*Pr**(1/3.0)*k*(vel/v)**(1/2.0) #y=h1*x1**(1/2)\n", "x1=0.04 # m\n", "h1=y/x1**(0.5)\n", "q1=h1*(Tw-T_inf)*x1*b\n", "\n", "x2=0.08\n", "h2=y/(x2)**(0.5)\n", "Q=h2*x2*(b)*(Tw-T_inf) #Q=q1+q2\n", "q2=Q-q1\n", "\n", "x3=0.12\n", "h3=y/(x3)**(0.5)\n", "Q1=h3*x3*(b)*(Tw-T_inf) #Q=q1+q2+q3\n", "q3=Q1-Q\n", "\n", "x4=0.16\n", "h4=y/(x4)**(0.5)\n", "Q2=h4*x4*(b)*(Tw-T_inf) #Q=q1+q2+q3+q4\n", "q4=Q2-Q1\n", "\n", "Re5=vel*5*x1/(v)\n", "\n", "h5=0.0359*(Re5**(0.8)-830)*Pr**(1/3.0)*(k/(11.9*x1))\n", "x5=0.2\n", "Q3=h5*x5*(b)*(Tw-T_inf) #Q3=q1+q2+q3+q4+q5\n", "q5=Q3-Q2\n", "\n", "Re6=vel*6*x1/(v)\n", "h6=0.0359*(Re5**(0.8)-830)*Pr**(1/3.0)*(k/(10.3*x1))\n", "x6=0.24\n", "Q4=h6*x6*(b)*(Tw-T_inf) #Q4=q1+q2+q3+q4+q5+q6\n", "q6=round(Q4,0)-round(Q3,0)\n", "\n", "print\"The wattage required for 1st heater is \",round(q1,0),\"W\"\n", "print\"The wattage required for 2nd heater is \",round(q2,0),\"W\"\n", "print\"The wattage required for 3rd heater is \",round(q3,1),\"W\"\n", "print\"The wattage required for 4th heater is \",round(q4,0),\"W\"\n", "print\"The wattage required for 5th heater is \",round(q5,0),\"W\"\n", "print\"The wattage required for 6th heater is \",round(q6,1),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wattage required for 1st heater is 211.0 W\n", "The wattage required for 2nd heater is 87.0 W\n", "The wattage required for 3rd heater is 67.0 W\n", "The wattage required for 4th heater is 56.0 W\n", "The wattage required for 5th heater is 132.0 W\n", "The wattage required for 6th heater is 213.0 W\n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.8 page NO. 302" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 0.0735 # density in Ibm/ft**3 \n", "v= 16.88e-5 # viscosity in ft**2/s \n", "V=20*5280/3600.0 # flow velocity in ft/s\n", "D=1.0 # diameter of pole in ft\n", "L=30.0 # length of pole in ft\n", "gc=32.2\n", "Re_D=V*D/v # Reynolds Number for flow past the pole\n", "Cd_cylinder=1.1 # value of Cd for smooth cylinder from figure 7.22\n", "A_cylinder=D*L # frontal area of pole\n", "\n", "Df_cylinder=Cd_cylinder*(0.5)*rou*V**2*A_cylinder/gc\n", "D_square=2/12.0 # length of square part of pole\n", "L_square=4\n", "Re_square=V*D_square/v # Reynolds Number for square part of pole\n", "Cd_square=2 # Corresponding value of Cd for square part from figure 7.23\n", "A_square=D_square*L_square # projected frontal area of square part\n", "Df_square=Cd_square*(0.5)*rou*V**2*A_square/gc\n", "Df_total=Df_cylinder+Df_square\n", "print\"The total drag force on the pole is \",round(Df_total,1),\"lbf\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total drag force on the pole is 33.7 lbf\n" ] } ], "prompt_number": 67 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.9 page NO. 387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 0.883 # density in kg/cu.m\n", "cp= 1014 # specific heat in J/(kg*K) \n", "v= 25.90e-6 # viscosity in sq.m/s \n", "Pr = 0.689 # Prandtl Number \n", "kf= 0.03365 # thermal conductivity in W/(m.K)\n", "a = 0.376e-4 # diffusivity in sq.m/s\n", "V_inf=1 # velocity in m/s\n", "D=0.00013 # diameter in m\n", "L=0.01 # length of wire in cm\n", "Re_D=V_inf*D/v # The Reynolds number of flow past the wire\n", "C=0.911 #value of C for cylinder from table 7.4\n", "m=0.385 #value of m for cylinder from table 7.4\n", "\n", "hc=kf*C*(Re_D)**m*(Pr)**(1/3)/D # the convection coefficient in W/(m**2.K)\n", "Tw=500 # air stream temperature in K\n", "T_inf=300 # wire surface temperature in K\n", "As=math.pi*D*L # cross sectional area in sq.m\n", "qw=hc*As*(Tw-T_inf) # The heat transferred to the air from the wire\n", "resistivity=17e-6 # resistivity in ohm cm\n", "Resistance=resistivity*(L/(math.pi*D**2)) # resistance in ohm\n", "i=(qw*100/Resistance)**0.5 # current in ampere\n", "\n", "print\"The current is %.1f A\",round(i,1),\"A\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The current is %.1f A 3.3 A\n" ] } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.10 page NO.393" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou= 0.0735 # density in Ibm/cu.ft \n", "cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n", "v= 16.88e-5 # viscosity in sq.ft/s \n", "kf = 0.01516 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a = 0.859 # diffusivity in sq.ft/hr \n", "Pr = 0.708 # Prandtl Number\n", "OD=0.875/12 # outer diameter in ft\n", "ID=0.06208 # inner diameter in ft\n", "A=0.003027 # cross sectional area in sq.ft\n", "L=2\n", "sL=1.5/12\n", "sT=1.3/12\n", "V_inf=12 # velocity of air in ft/s\n", "\n", "V1=(sT*V_inf)/(sT-OD) # velocity at area A1 in ft/s\n", "sD=((sL)**2+(sT/2)**2)**0.5 # diagonal pitch in inch\n", "V2=(sT*V_inf)/(2*(sD-OD))\n", "Vmax=V1\n", "Re_D=Vmax*OD/v # Reynolds Number\n", "sT_OD=1.3/0.875\n", "sT_sL=1.3/1.5\n", "f1=0.35 # value of f1 for above values of sT/Do and Re\n", "f2=1.05 #Corresponding value of f2 for above values of sT/sL and Re\n", "gc=32.2\n", "N=7\n", "dP=N*f1*f2*(rou*Vmax**2/(2*gc))\n", "sL_Do=sL/OD\n", "C1=0.438 #value of C1 for above values of sT/Do and sL/Do\n", "C2=0.97 #value of C2 for above values of sT/Do and sL/Do\n", "m=0.565 #value of m for above values of sT/Do and sL/Do\n", "hc=kf*1.13*C1*C2*(Re_D)**m*(Pr)**(1/3.0)/OD # The convection coefficient\n", "As=70*math.pi*OD*L # outside surface area of 70 tubes\n", "Tw=200 # outside surface temeperature in degree F\n", "T_inf=70 # air temperature in degree F\n", "q=hc*As*(Tw-T_inf) # heat transferred\n", "\n", "print\"The pressure drop is \",round(dP/147,3),\"psi\"\n", "print\"The heat transferred is\",round(q,1),\" BTU/hr\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pressure drop is 0.027 psi\n", "The heat transferred is 87571.6 BTU/hr\n" ] } ], "prompt_number": 77 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }