{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6: Convection Heat Transfer in a Closed Circuit" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.1 page No.301" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Cp_20=2382\n", "rou_20=1.116*1000\n", "v_20=19.18e-6\n", "kf_20=0.249\n", "a_20=0.939e-7\n", "Pr_20=204.0\n", "OD=1.588/100.0\n", "ID=1.446/100.0\n", "A=1.642e-4\n", "Q=3.25e-6\n", "\n", "V=Q/A\n", "Re=V*ID/v_20\n", "Z_h=0.05*ID*Re\n", "Tbi=20 # bulk-fluid inlet temperature in degree celsius\n", "qw=2200 # incident heat flux in W/m**2\n", "L=3 # Length of copper tube in m\n", "R=ID/2 # inner radius in m\n", "Tbo=Tbi+(2*qw*a_20*L)/(V*kf_20*R)\n", "Z_t=0.05*ID*Re*Pr_20\n", "Two=Tbo+(11*qw*ID)/(48*kf_20) # The wall temperature at outlet in degree celsius\n", "\n", "print\"The bulk-fluid outlet temperature is degree celsius\",round(Tbo,0),\"C\"\n", "print\"The wall temperature at outlet is degree celsius\",round(Two,0),\"C\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The bulk-fluid outlet temperature is degree celsius 55.0 C\n", "The wall temperature at outlet is degree celsius 84.0 C\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.2 page No.308" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "T_avg=(140+70)/2.0\n", "rou=0.994*62.4\n", "kf=0.363\n", "cp=0.9980\n", "a=5.86e-3\n", "v=0.708e-5\n", "Pr=4.34\n", "OD=1.125/12.0 # outer diameter in ft\n", "ID=0.8792 # inner diameter in ft\n", "A=0.006071 # cross sectional area in sq.ft\n", "m_flow=1.5 # mass flow rate in lbm/s\n", "V=m_flow*3600.0/(rou*A); # velocity in ft/hr\n", "import math\n", "L=20.0\n", "Tw=240.0\n", "Tbo=140.0\n", "Tbi=70.0\n", "hL=-(rou*V*ID*cp*math.log((Tw-Tbo)/(Tw-Tbi)))/(4*L)\n", "\n", "print\"The average convective coefficient is \",round(hL/10,1),\"BTU/(hr. sq.ft.degree Rankine\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity is 14340.4425132 ft/hr\n", "The average convective coefficient is 517.7 BTU/(hr. sq.ft.degree Rankine\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.3 page No. 310" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "kf=0.6 # thermal conductivity in W/(m-K)\n", "cp=3.85*1000 # specific heat in J/(kg*K)\n", "rou=1030 # density in kg/m**3\n", "mu=2.12e3 # viscosity in N s/m**2\n", "OD=1.588/100 # outer diameter in m\n", "ID=1.340/100 # inner diameter in m\n", "A=1.410e-4 # cross sectional area in m**2\n", "rou=1030\n", "V=0.1\n", "mu=2.12e-3\n", "\n", "Re=rou*V*ID/(mu)\n", "ze=0.05*ID*Re\n", "Tbo=71.7 # final temperature in degree celsius\n", "Tbi=20 # initial temperature in degree celsius\n", "L=6 # heating length in m\n", "qw=rou*V*ID*cp*(Tbo-Tbi)/(4*L)\n", "q=qw*math.pi*ID*L\n", "Pr=(cp*mu)/kf # Prandtl Number\n", "zf=0.05*ID*Re*Pr\n", "\n", "print\"The heat flux is \",round(qw,0),\"W/sq.m\"\n", "print\"The power required is \",round(q,0),\"W\"\n", "print\"The length required for flow to be thermally developed is\",round(zf,1),\"m\"\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "z1=[0,0.2,1,6]\n", "Twz=[20,40,60,125]\n", "z2=[-1,0,6]\n", "Twb=[20,20,72]\n", "z3=[0.2,1,2,6]\n", "hz=[112,72,58,40]\n", "plt.grid()\n", "xlabel(\"z (m)\") \n", "ylabel(\"T (C) \") \n", "plt.xlim((-1,6))\n", "plt.ylim((0,140))\n", "\n", "ax.annotate('(Twz)', xy=(6,125))\n", "ax.annotate('(Tbz)', xy=(6,72))\n", "ax.annotate('(hz)', xy=(6,40))\n", "a1=plot(z1,Twz)\n", "a2=plot(z2,Twb)\n", "a3=plot(z3,hz)\n", "show(a1)\n", "show(a2)\n", "show(a3)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat flux is 11447.0 W/sq.m\n", "The power required is 2891.0 W\n", "The length required for flow to be thermally developed is 5.9 m\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEPCAYAAACQmrmQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX6//HXwSUzTVwKF0hMIMINTMVMFFRUjkvuDjaj\nptl8NSvHEg3n1zLTJGbOpKXVlKIt41JOuUSEG2I0CqaU5YIYkApSiihiKMv9++OOk6jAYTnnvu9z\nrufj4cPOwjlvzzBc3Nfnc1+3SVEUBSGEEMIGXLQOIIQQwnFJkRFCCGEzUmSEEELYjBQZIYQQNiNF\nRgghhM1IkRFCCGEzNisy06ZNw83NjS5dutz02NKlS3FxcSE3N9dy36JFi/D29sbX15e4uDhbxRJC\nCGFHNisyjz76KLGxsTfdf+rUKbZv30779u0t9x05coQNGzZw5MgRYmNjmTVrFqWlpbaKJoQQwk5s\nVmSCgoJo3rz5TffPnTuXV199tdx9mzdvJjw8nAYNGuDp6YmXlxdJSUm2iiaEEMJO7Loms3nzZtzd\n3enatWu5+7OysnB3d7fcdnd358yZM/aMJoQQwgbq2+uNrly5wiuvvML27dst91U20cZkMtkjlhBC\nCBuyW5E5efIkGRkZdOvWDYDTp0/zwAMPsH//ftq1a8epU6cszz19+jTt2rW76TXatWtHVlaWvSIL\nIYRD6NixI2lpadq8uWJD6enpSufOnW/5mKenp3L+/HlFURTlhx9+ULp166ZcvXpV+fHHH5V7771X\nKS0tvelrbBzX5l544QWtI9SK5NeW5NeOkbMrirY/O222JhMeHk6fPn1ITU3Fw8OD6Ojoco9f3w7z\n8/NjwoQJ+Pn5ERYWxsqVKx2yXZaRkaF1hFqR/NqS/Noxcnat2axdtm7dukof//HHH8vdjoyMJDIy\n0lZxhBBCaEDO+LejqVOnah2hViS/tiS/doycXWum3/p1hmAymSrdkSaEEOJmWv7slCMZO4qPj9c6\nQq1Ifm1Jfu0YObvWpMgIIYSwGWmXCSGEg5N2mRBCCIckRcaOjN7XlfzakvzaMXJ2rUmREUIIYTOy\nJiOEEA5O1mSEEEI4JCkydmT0vq7k15bk146Rs2tNiowQQgibkTUZIYRwcCaTicLCQlq3bo2Hhwf1\n6tXjp59+olmzZjRr1oy77rqLuLi4ar3m8uXLad68OX/6058qf28pMkII4dhMJhOrVq3i/PnzzJs3\nD4BHH32UESNGMGbMmBq9Zn5+PgMHDiQpKanS50m7zI6M3teV/NqS/NoxcvYy69at4+GHHy53n6Io\nJCcnM3bsWAA2b95M48aNKS4uprCwkI4dO5KdnY2/vz8BAQEEBARQv359Tp06RdOmTWnZsiU//PBD\npe9rt8svCyGE0M7333+Pj49PuftMJhPdu3cnJSUFgL1799KlSxeSkpIoKiqid+/etGnTxvL4ihUr\n2Lt3Lx4eHgD06tWLhIQEOnXqVOH7SpGxo+DgYK0j1Irk15bk146Rs5dp2rTpLe+vV68eHTt25Nix\nYyQnJzN37lwSEhIoKSkhKCjI8rzExETee+89EhMTLfe1bdv2pgtQ3kjaZUII4QQqW8/u168fMTEx\nNGjQgIEDB7J3716++uorS5HJzs7mscce4+OPP6Zx48blXtNkMlX6vlJk7MjofV3Jry3Jrx0jZy9z\n+fLlm+4rKzxBQUG8/vrr9OnTh1atWnH+/HlSU1Pp1KkTRUVFjB8/nldffRUvL69yX5+dnY2np2el\n7ytFRgghHJCiwJdfwrBh6u3OnTtz/Pjxcs8pOwrp1asXP//8M/369QOgW7dudOnSBYCvv/6ab775\nhueff96y+H/27FkAkpKSyrXUbkW2MAshhAMpKID334fly6FhQ3j6aZg+3UR0dDQ5OTnMnz+/Tt7n\n0qVLDBw4kOTk5EqfJ0VGCCEcQGYmvPkmREdDUJBaXPr3B5NJ/dl59epVBg0axJ49e6pcR7HG8uXL\nadGiBX/84x8rfZ60y+zI6H1dya8tya8dvWZXFEhIgLFjoXt3KC2F5GT49FMIDlYLTJmGDRuSkJBQ\nJwUG4KmnnqqywIANi8y0adNwc3Oz9PUA5s2bx/3330+3bt0YM2YMFy9etDy2aNEivL298fX1rfZ4\nAyGEcCaFhbBmjVpYZsyAAQPUI5mlS6FDB63TlWezdtnevXtp0qQJkydP5vDhwwBs376dgQMH4uLi\nwoIFCwCIioriyJEjTJo0ieTkZM6cOcOgQYNITU3FxaV8DZR2mRDCmWVlwdtvw7//Df7+aktsyBBw\nqeJwwSGvJxMUFETz5s3L3RcaGmopHIGBgZw+fRpQRxmEh4fToEEDPD098fLyqnIejhBCOIukJHjk\nEejUCc6fh/h4iI2FsLCqC4zWNIu3evVqzGYzAFlZWbi7u1sec3d358yZM1pFsxm99nWtJfm1Jfm1\no0X2oiJYvx4efBAmTlRbY+npsGIF+PraPU6NaTJW5h//+AcNGzZk0qRJFT6nosWpqVOnWk7+cXV1\nxd/f3zLyoewbQa+3y+b/6CWP5NdXPskvtwE6dw7m3/+Gf/0rnnbt4IUXghk5EvbujSclxbrXi4+P\nZ82aNQBVnixpazbdwpyRkcGIESMsazIAa9as4d1332Xnzp00atQIUNdlAMs6zdChQ3nppZcIDAws\nH1bWZIQQDurwYVi2DDZtgtGj4amn1HWXuuCQazK3Ehsby5IlS9i8ebOlwACMHDmS9evXc+3aNdLT\n0zlx4gS9evWyZzQhhLC7khLYvFndHTZ0KHh6QmoqrF5ddwVGazYrMuHh4fTp04fjx4/j4eHB6tWr\nefLJJ7l8+TKhoaEEBAQwa9YsAPz8/JgwYQJ+fn6EhYWxcuXKOtvLrSdlh7NGJfm1Jfm1U9fZL16E\nf/4TvL3hlVfgscfU9Za//hXuuqtO30pzNluTWbdu3U33TZs2rcLnR0ZGEhkZaas4QgihudRUddzL\nf/6jbj3+z3+gd2+tU9mWjJURQggbUhSIi1PXWw4cgMcfh5kzoV07+2XQ8menXLRMCCFs4FaDKjdt\ngttv1zqZfen8NB7HYuSeNEh+rUl+7VQne2YmzJsH7durRzBvvQUpKTBtmvMVGJAiI4QQtVadQZXO\nRtZkhBCihgoL1bPyly2DK1fUc1umTIEmTbROVp6WPzulyAghRDXVdFClVpzmZExnZ+SeNEh+rUl+\n7ZRlN/KgSq3Ix6I3R4/ChQtapxBC/KaoCHbtMv6gSq1Iu0xvZs9WVxFXrNA6iRBO7dw5tR22ciV4\neaktsZEjoV49rZNVn6zJWMkpikxuLvj5QUyM+iuTEMKubDmoUiuyJuMkrOpJt2ihDjN64gl1H6SO\nGLmnDpJfa3rOX9WgSj1n1zspMno0daraMvvtehBCCNtwpkGVWpF2mV4dPAhms7oR4IbLWAshaufG\nQZVPP+3YgyqlXSZu1r07jBmj/kolhKg1RYEvv1R/d+vbF1xd1fWXdescu8BoTYqMHVW7r/vyy+rq\n48GDNslTXUbvS0t+bWmVv6BAnR/m5wcRETBunDpf7OWXrZ+EbPTPXktSZPRMx5sAhNA7GVSpD7Im\no3elpdCnj3oRikou+iaEUFtie/eqW5Dj49U9NLNnQ4cOWifTlpwnYyWnLDIgmwCEqIJRBlVqRRb+\nnUSN+7o62QRg9L605NeWLfJnZcHzz6vntaxfr3aXjx5VO8x1WWCM/tlrSYqMUehsE4AQWpJBlcYh\n7TIjWb0a3n0XEhPl/0nC6RQVqb9nLVsGZ8+qay3Tp6tbkUXlZE3GSk5fZGQTgHBCjjSoUiuyJuMk\nat3XdXFR/58WGanJ5QCM3peW/Nqqbv7Dh9UxL97ekJYG27apbbHRo+1fYIz+2WvJZkVm2rRpuLm5\n0aVLF8t9ubm5hIaG4uPjw+DBg8nLy7M8tmjRIry9vfH19SUuLs5WsYxPJ5sAhLCFqgZVCuOxWbts\n7969NGnShMmTJ3P48GEAIiIiaNWqFRERESxevJgLFy4QFRXFkSNHmDRpEsnJyZw5c4ZBgwaRmpqK\nyw3rDk7fLisjlwMQDubiRVi1Ct58Ux1M+fTT6pn5DRtqncwxOGS7LCgoiOY3nNOxZcsWpkyZAsCU\nKVP47LPPANi8eTPh4eE0aNAAT09PvLy8SEpKslU045NJAMJBpKb+frJkcrI6sHL/fpg0SQqMo7Dr\nmkxOTg5ubm4AuLm5kZOTA0BWVhbu7u6W57m7u3PmzBl7RrOLOu3ranA5AKP3pSW/tsryG3FQpdE/\ney3V1+qNTSYTJpOp0sdvZerUqXh6egLg6uqKv78/wcHBwO/fCHq9nZKSUnev5+JC/LRp8OyzBI8e\nDc2bGyu/Brclv7a39+9PYfNmiI0NpmFDGDIknqefhiFD9JHPkW7Hx8ez5rdfQMt+XmrFpluYMzIy\nGDFihGVNxtfXl/j4eFq3bk12djYhISEcO3aMqKgoABYsWADA0KFDeemllwgMDCwfVtZkbjZrFphM\nsGKF1kmEuKXMTHWtJToagoLU9Zb+/dVvW2EfDrkmcysjR45k7dq1AKxdu5ZRo0ZZ7l+/fj3Xrl0j\nPT2dEydO0KtXL3tGMy6ZBCB0SFEgIQHGjlX3ppSWqmsun34KwcFSYJyJzYpMeHg4ffr04fjx43h4\neBAdHc2CBQvYvn07Pj4+7Nq1y3Lk4ufnx4QJE/Dz8yMsLIyVK1dW2kozqrLD2Tplx00ANslvR5Lf\n9goL1WXC7t1hxgx1K3JmJixdCpmZ8VrHqzEjfPZ6ZbM1mXXr1t3y/h07dtzy/sjISCIjI20Vx7FN\nnaqeEr1mjUwCEJrIyoK331a/Df391d97hgyR6UdCxso4DrkcgNBAUpI6SywmRt12/OST4OurdSpx\nI5ldZiUpMlWQTQDCDmRQpfE4zcK/s7N5X9fGmwCM3peW/LVz7pzaBuvQQW2NRUSoM8Weeca6AqN1\n/towcnatSZFxJDIJQNiAngZVCuORdpmjkcsBiDpQUqIWk2XL4PhxmDkT/vxnda6YMB5Zk7GSFBkr\nySYAUUMyqNIxyZqMk7BbX9dGlwMwel9a8lfMHoMqjfz5Gzm71qTIOCqZBCCqYMRBlcJ4pF3myFav\nhnffhcREOStOWBQUwPvvw/Ll6lHK009DeDjcfrvWyYStSLtM2IYGlwMQ+pWZCfPmQfv2EBcHb70F\nKSnq/hApMMJWpMjYkd37ui4usHIlREaqV9OsJaP3pZ0xv54GVRr58zdydq1JkXF0ZZsA/t//0zqJ\nsKPKBlV26KB1OuFMZE3GGeTmgp+fOmCqe3et0wgbunFQpXpRMFmSc3ayJiNsSyYBOLykJHjkEejU\nCc6fV8/Ij42FsDApMEJb8u1nR5r2detgE4DR+9KOlr+oCNavhwcfhIkT1YPU9HR1PqoeJyEb+fM3\ncnat2ex6MkJnyjYBmM0wapR6dCMM6dw5tR22ciV4eamDKkeOlDliQp9kTcbZyOUADOvwYXWW2KZN\n6nDKp55S112EqIrMLrOSFJk6IJsADEUGVYq6IAv/TkIXfd1abALQRf5aMFL+ixfhn/9Ux+u/8oo6\nan/Nmnj++lfjFhgjff43MnJ2rUmRcUYyCUC3KhtU2aCB1umEqD5plzmrsssBHDkimwA0pijqmJdl\ny+DAAfVSQDNnQrt2WicTjkLWZKwkRaaOySYATcmgSmEvsibjJHTX163m5QB0l7+a9JK/poMq9ZK/\npoyc38jZtaZJkVm0aBGdOnWiS5cuTJo0iatXr5Kbm0toaCg+Pj4MHjyYvLw8LaI5F5kEYDd6GlQp\nhD3ZvV2WkZHBgAEDOHr0KLfddhsTJ07EbDbzww8/0KpVKyIiIli8eDEXLlwgKiqqfFhpl9W90lLo\n00ddCJg2Tes0DqewUD0rf9kyuHJFPbdlyhRo0kTrZMKZOFW77M4776RBgwZcuXKF4uJirly5Qtu2\nbdmyZQtTpkwBYMqUKXz22Wf2juac6vhyAEKVlQXPPw+enmqReeUVOHpUPWiUAiOcid2LTIsWLXjm\nmWe45557aNu2La6uroSGhpKTk4ObmxsAbm5u5OTk2Duazem2r2vl5QB0m99K9shvy0GV8vlrx8jZ\ntWb32WUnT57k9ddfJyMjg2bNmjF+/Hg+/PDDcs8xmUyYKmhST506FU9PTwBcXV3x9/cnODgY+P0b\nQa+3U1JSdJWn3O2XXybeywu6dSP48ceNl9+K27bK/9BDwWzaBH/7Wzy5uTBvXjArVkBKSjxnz4Kv\nr77zG/3zl9s3346Pj2fNb+fBlf281Ird12Q2bNjA9u3bee+99wD44IMP2LdvH7t27WL37t20bt2a\n7OxsQkJCOHbsWPmwsiZjW6tXw7vvQmKizIe3wo2DKp9+WgZVCn1yqjUZX19f9u3bx6+//oqiKOzY\nsQM/Pz9GjBjB2rVrAVi7di2jRo2ydzQhkwCscviwOubF2xvS0tTZYvHx6tBKKTBClGf3ItOtWzcm\nT55Mjx496Nq1KwCPP/44CxYsYPv27fj4+LBr1y4WLFhg72g2V3Y4q1sulW8C0H3+KtQmf0kJbN6s\nXsZ46FB1QT81VT34s9ckZGf+/LVm5Oxa0+R6MhEREURERJS7r0WLFuzYsUOLOOJ6128CkEkAXLwI\nq1bBm2+qgymffhrGjVPP0BdCVK3SNZmioiLi4uJISEggIyMDk8lE+/bt6devH0OGDKF+ffvWKFmT\nsRO5HACpqeq4l//8B4YMUYtL795apxKiZnS5JvP3v/+dnj17sm3bNnx9fZk2bRpTpkzhvvvuY+vW\nrfTo0YOXX37ZnlmFvTjpJABFgS+/VOeG9u0Lrq7q+su6dVJghPFdvXqV5s2b07VrVwICAmjZsiX3\n3nsvAQEBhIaGsmfPHkaMGGH1602YMIH09PSqn6hUYPPmzUppaWlFDyslJSXK5s2bK3zcFiqJawi7\nd+/WOoL1SkoUJTBQUVatstxlqPy3UFH+y5cVZeVKRfH1VZSuXdV/8pUr9s1mDUf9/I3AyNkVRf3Z\nuWrVKuXVV1+13Dd16lRl06ZNltu7d+9Whg8fbvVrxsXFKU8++WSVz6vwSOaee+6p8FyVt956CxcX\nF0aOHGl11RMGU8UmAEdQ00GVQhjRunXrePjhh8vdp1zXQjOZTFy6dInhw4fj6+vLzJkzURSFLVu2\nEBAQQEBAAPfddx/33nsvoJ6PExMTU/UbV1R9OnTooCQnJ990//PPP6/4+/tbXe3qUiVxha3MnKko\ns2ZpnaLOlJYqyp49ijJmjKK0aKEoc+cqyo8/ap1KCNsClNatW5e7b+rUqconn3xiub17926lUaNG\nSnp6ulJSUqKEhoaWe1xRFGXChAnKypUrLbf79eunHDlypNL3rvBI5uOPP2bChAl8/fXXAJSWlvJ/\n//d/7Nmzhz179lS/jApjqublAPSqsFA9/ad7d5gxQ92KnJkJS5eqV6EUwtE1bdq0yuf06tULT09P\nXFxcCA8P56uvvrI89uqrr9K4cWNmzpxpua9t27ZkZGRU+poVFpkHHniAzz77jD/96U/ExsYyfvx4\nfvnlF7788kvuvPNOK/5J4kaG3Gt/3SaA+F27tE5TbdcPqly5Mt7QgyoN+f1zHSPnN3L2MooVu8uu\nXyJRFMVye8eOHWzatIm33377ptd0qWI6SIWP5ubm4u7uzpo1a3jkkUdo0KAB77zzDgUFBeQ6aI9e\nVKBsEsBHH0FRkdZprHKrQZWvvlo3gyqFMIqCawVsS90GwOXLl6t8flJSEhkZGZSWlrJx40aCgoLI\nzMzkiSeeYOPGjdx2223lnp+dnU379u0rfc0KT3Tp3r27pYo1bdqU/fv307NnT0Ctdj/++GOVgUV5\nZYPsDMfFBdasIXjmTHWWyjPPqKvjd9yhdbJyiorUzt6yZZCdDU8+qZ5P6uqqPl42qNKoDPv98xsj\n5zdS9rTcNGJOxBBzIobEU4k80OYBADp37szx48e57777LM+9/sjFZDLRs2dPZs+eTVpaGgMGDGDU\nqFH87W9/Izc31zLqq127dmzbto2ioiJOnz6Nr69vpXnsPiCzNuRkTB3Yvx8WL4avvoLZs9W+U8uW\nmkaSQZXCmRUWF5KQmWApLPnX8jF7mTF7mxl07yCaNWqGyWQiOjqanJwc5s+fXyfvGxcXx+eff86y\nZcsqf2JFOwJOnjxZ5Y6FtLS0Kp9TlyqJawhG32tfLv/Ro4oybZqiNG+uKE8/rSiZmXbP8913ijJ9\nuqK4uirKo48qyqFDlT/foT5/AzJyfr1lz7iQobyV/JYy4j8jlKavNFX6rOqjvLznZeVg1kGlpLTk\npucDytWrV5WgoKBKz3+sjvHjxyvp6elVPq/Cdtlzzz1HQUEBI0eOpEePHrRp0wZFUcjOzubAgQNs\n2bKFpk2bsn79+jqpisJgfH3VoV4vvQSvv65OiRw5EiIi1JE0NlJSok49XrYMjh+HmTPVETB33WWz\ntxRCc0UlRSSeSrQcreQU5DDUayjhncOJfjialo2r7iY0bNiQhISEOsu0ceNGq55XabssLS2N9evX\nk5iYSGZmJgDt27enb9++hIeHW07KsRdpl+nYhQtqv2r5cggMhAULoE+fOnt5GVQpnE1WfhaxabHE\nnIhhx4878G7pbWmD9Wjbg3ou1veDtfzZKWsyom79+itER8OSJeDurhYbsxkqmB5RFRlUKZxFcWkx\n+0/vV49W0mLIzMsktGMoZi8zQ72G4tbErcavrcsBmaLuGX2vvVX5b78dZs2CEyfUvyMjoWtX+PBD\nq7c/22pQpVN8/jpm5Py2yv5LwS988O0HhG8Kx+01N56IeQIFhTfC3uDneT+zYdwGpvhPqVWB0Zom\n15MRTqB+fQgPhz/8Qa0YixfDX/9a6fbnggJ4/331yKVhQ/WoZdMmmSMmHEepUso3Wd9YjlaOnTvG\nwA4DMXubWRK6BPc73bWOWOekXSbsp4Ltz5mZ6lpLdDQEBanFpX//GnfYhNCVC79eIO5kHDFpMcSm\nxdLy9paYvdW1lb739KVhPdsvLMqajJWkyDiIY8dQXl1C8Sef8uXdk4k8N5fQ6fcwe7bMERPGpygK\n3+V8Zzla+fbst/Rr3w+zt5kwrzA6NLf/N7ku12SKDDI+xEiM3JOGuslfWAhr9vnS/dAqBrb6jnbt\n6/Otiz9Lz0+lw69Hah+yEvL5a8vI+avKfunqJT49+ikztszA/V/ujNk4huzL2SwMWkjOszlsm7SN\nWT1naVJgtFbhmkxgYCAHDT55V+hHVha8/bZ6Zr6/vzpzc8gQd1xcXoMLC9XtzyEhNtn+LERdUxSF\no+eOEnMihi/SviDpTBIPuj+I2dvMvIfm4d3Cu8LrcTmbCttlAQEBHDp0yN55KiXtMuNJSlJPnIyJ\ngUmT1HliFY46quPtz0LUpYJrBezO2G05IbJUKWWY9zDCvMMY0GEATRrqd6y3Ltdk3N3dmTt37i2D\nmUwm5s6da/Nwt3pfKTL6d6tBldOn/z6oskrFxfDxxxAVBaWlMH8+TJwIDRrYNLcQN7px2GSPtj0s\nJ0T63eVnmKMVXa7JlJSUkJ+fz+XLl2/6k5+fb8+MDsPIPWmoOv+5c2obrEMHtTUWEQEnT6q7lq0u\nMPD79ueUFPWoZtUqdfrzG2/AlSs2y693kt/2CosLiTsZx5zYOfi84UNQdBDfnv2WB4sf5PRfTrN7\nym7mPTSPTnd3MkyB0VqFazKtW7fmhRdesMmb5uXl8dhjj/HDDz9YpoN6e3szceJEMjMz8fT0ZOPG\njbhW6yeT0Mrhw+pRy6ZNMHq0OlvM378OXthkgqFD1T9l25///nfdTH8WjiEzL5Mv0r4g5kQM8Rnx\ndHHrgtnLzIZxG+jWuhsuJhfi4+Np1qiZ1lENSZM1mSlTptC/f3+mTZtGcXExBQUF/OMf/6BVq1ZE\nRESwePFiLly4QFRUVPmw0i7TjVsNqvzzn+0wqPLYMfXo5tNPYcoUmDsXPDxs/KbCkVQ0bNLsZWZw\nx8FWDZs0Gl2uyZw/f56WNvhN8eLFiwQEBNx00TNfX1/27NmDm5sbZ8+eJTg4mGPHjpUPK0VGc7oZ\nVHn6tDr9efVqu0x/FsZWl8MmjUiXazK2KDAA6enp3HXXXTz66KN0796dGTNmUFBQQE5ODm5u6nwe\nNzc3cnJybPL+WjJCT7oiWVkwenQ8HTpAcrI6sHL/fnXHmCaTkN3d4bXX1EUfb291+/PDD8PXX1f4\nJUb+/EHyV0dxaTGJPyWycOdCAt4JoPPKznx58ktG+Izg+OzjJM9I5qWQlwh0D7SqwBj9s9eS3WeX\nFRcXc/DgQd5880169uzJnDlzbtkWq2hRberUqXh6egLg6uqKv7+/5dKoZd8Ier2dkpKiqzzW3m7c\nOJjRo8HHJ4V33oHx4/WVL3jhQpg7l/jnnoMxYwj28YH584lv3BhMJsN//pLfutufffEZSWeSSG+e\nTtzJOJqfbU5gu0DeGP8Gvd1781XCV5CHZdik1p+HLW/Hx8ezZs0aAMvPS63YfazM2bNnefDBB0lP\nTwfgq6++YtGiRfz444/s3r2b1q1bk52dTUhIiLTLdGD9enUL8nvvqQcKuifbn51GZcMmh3oNdchh\nkzWlyzUZW+rXrx/vvfcePj4+vPjii1z5bVtqy5YtmT9/PlFRUeTl5cnCv4ZKS+HFF9WpyJs3Q7du\nWieqprLrBSxeDOnp6j7q8ePBzU1O7jQwPQybNCKnKzLffvstjz32GNeuXaNjx45ER0dTUlLChAkT\n+Omnnyrcwmz0IhMfH285tNWzggJ141Z2Nvz3v+rPZTBO/pvs3w9LlhC/fTvBAD4+cN996t9l/+3t\nDU30e8Y2GPjz/01N8utl2KTRP3stf3Zqcj2Zbt26kZycfNP9O3bs0CCNuN7p0+pmrc6dYedOaNRI\n60R1IDAQPvkE4uPVC6ilpqp/jh9XT+45fhzS0qBFi/KFp+xvT0/1BFFhF5euXmLnjzsthaVR/UYM\n8x7GwqCF9G/fn9sbyAWGjERG/QuLpCQYM0Zdg4mIcLKuUmmpWmGPH/+9AJUVo6wstdBcX3jKipG0\n32qtsmEBrS4QAAAWbElEQVSTZm+zDJusA07XLqspKTK2Y7gFfnsqLFS3Sl9feMr++9o1w7bftGTk\nYZNGJEXGSkYvMnrs61ZngV+P+avDJvlzc28uPDZqvxn98/9oy0ecdztvyGGTRv/snW5NRujD9Qv8\n+/f/vsAvqqFFC+jdW/1zvVu13778Uv07O9sp2m+FxYUkZCZYjlbOHTnH6KGjmdF9BhvGbZBZYE5C\njmSc1PUL/P/+t4Ms8BvFje2369twBm+/VTRs0uxttgybFPYn7TIrSZGpG069wK93dmy/1QVnHDZp\nRFJkrGT0IqOHvm5tFvj1kL82DJ2/tJT4jz8muEWLmwuQndtvNR02aeTP38jZQdZkhB1cv8C/Y4cB\nz+B3di4uasEIDobQ0PKP3dh+S0xUL2NdR+234tJi9p/ebzlvJTMvk9COoYzwGcEK8wrLLDAhbkWO\nZJxARWfwCydQ1n67cft1Fe23X65eUI9W0mKIOxmHx50elvNWerv3pr6L/H5qJNIus5IUmeo7fVpt\ni3XqJAv84jqlpXDqlKXwKMeOcenwAUqPH6PxuYtkNjeRd8/dNPLrinvPQbToFuhwu9+ciS6vJyPq\nXtkobntJSlJ31k6YAGvX1r7A2Dt/XZP813Fx4cLdd7KhTS5T2iXRuv1GHhx/kX+snc7/DsfQYcc3\n9IpcQVe/EFocPALPPQdduoCrK/TsCX/8I/ztb+oi36FDcPmyffPbmZGza02OeR2UnMEvblTZsMkX\n+79487DJrv43v8iN7bfrZ781b37rzQcdOsjsNycm7TIHY/gR/aJOVTRs0uxtrtthkze037Tc/SZu\nJmsyVpIiUzlZ4Be6HDbpwCefGoUUGSsZvcjYcq+9PRb4jX6ugKPmN8qwyVvmr2z3m47ab0b/3pHz\nZEStyBn8zictN81SVK4fNvn5pM91P2yynMpmv93Yfqto9tv1RUjab7ojRzIGJwv8zuHGYZP51/It\nZ9kPuneQcw2btKb9duO5P07efpN2mZWkyPxOFvgdnwybrAGDtN/sTYqMlYxeZOqqr6vVAr/R+9J6\nz1/VsMnDSYd1nb8qmn7+1dn9dov2m96/d6oiazLCatcv8O/cKWfwG11FwyZXjVxV6bBJUU0uLtC+\nvfqnqtlvX38Na9aUb781awYJCdJ+qwE5kjEQWeA3vlsNmxzccTBhXmEM9Roqwyb15sb2W9nfBmu/\nmUwmCgsLGTx4MC+88AL/+te/2Lp1q1VfO3fuXEaPHk1QUFCN3ltfn4SokCzwG9cvBb/cctjkG2Fv\nyLBJvbNm91tZ4dH57rePPvqI4cOHU69e9Y6OZ86cyTPPPFPjIiNHMnZUk76unhb4jd6Xtlf+UqWU\nb7K+sRytHDt3jIEdBmL2NjPUayjud7rX6HXl89dOtbLrcPebyWRi0KBBrFixguzsbF588UVatWrF\n999/zwMPPMCHH37IgQMHmDFjBgDFxcX88MMPlJaWAtC1a1cSEhJwdXWt9ntr9itUSUkJPXr0wN3d\nna1bt5Kbm8vEiRPJzMzE09OTjRs31ugf5EiuX+Dfv1/O4NezC79eIO5kHDFpMcSmxdLy9paYvc0s\nGriIvvf0pWG9hlpHFPbSqJG6aNqp082P3dh+++QTu7Xfvv/+e3x8fMjKyuLQoUMcOXKENm3a8NBD\nD5GYmMhDDz3EoUOHAIiIiMBsNlu+NiAggP/973+EhYVV+301KzLLli3Dz8+P/Px8AKKioggNDSUi\nIoLFixcTFRVFVFSUVvFsojq/xelxgd+ov4WWqcv81R42WQfk89dOnWXXsP3WtGlTy3/36tWLtm3b\nAuDv709GRgYPPfQQABs2bODgwYNs377d8vy2bduSkZFRo3+yJkXm9OnTxMTEsHDhQv75z38CsGXL\nFvbs2QPAlClTCA4OdrgiYy1Z4NenioZNLgxaWLfDJoXzqWr3W1ra7y23st1vx49DUZHV7bfrlxpu\nu+02y3/Xq1eP4uJiQD3aeemll9i7d2+5qRGKotR4ioQmReYvf/kLS5Ys4dKlS5b7cnJycPutH+Tm\n5kZOTo4W0WzKmr7uli0wfbo+F/iN3FOH6ue/1bDJPh59CPMKY95D8+w+bNLZPn890TR7o0bQubP6\n50bnz8OJE1W334DLVVzzJy8vj/DwcD744ANatmxZ7rHs7Owa//vtXmS2bdvG3XffTUBAQIUXAjKZ\nTBX+n3fq1Kl4enoC4Orqir+/v+UfX/Z6er2dkpJS5fPnzIGPPgpm8GDt89Ykv55vW5P/16JfKWlf\nQsyJGP77xX8pVUoZGzaWOYFzqP9TfW5vcDvBvfWbX8+3jZ5f17d791Zvh4YSHBxM/K5drFm5Ei5d\nwvOnnwDo3Lkzx48fv+XPV5PJxJYtW/jpp5947LHHLPcdPHgQgEOHDrF8+XJqwu67yyIjI/nggw+o\nX78+hYWFXLp0iTFjxpCcnEx8fDytW7cmOzubkJAQjh07Vj6swXeXVSUzU73oYHY2VHOXoaiFioZN\nmr3Nxho2KUQFTCYT0dHR5OTkMH/+/Gp9bWpqKs8++yxbtmyp2XtruYV5z549vPbaa2zdupWIiAha\ntmzJ/PnziYqKIi8v76Y1GUcvMm++CQcOqO1WYTsybFI4G5PJxNWrVxk0aBB79uyp1i9Oc+fOZcyY\nMfTt27dm7611kVm6dClbtmwhNzeXCRMm8NNPP1W4hdnoRSa+ir7u0KEwYwaMHWu/TNVRVX49y8zL\nZNmGZaTdmWbYYZNG/vzB2PmNnB2ceHZZ//796d+/PwAtWrRgx44dWsbRVH6+umlk40atkziGWw2b\n9C/0Z1qfaUQ/HE3Lxi2rfhEhRK3JGf868d//wttvQ1yc1kmM68Zhkz4tfQjzCsPsbZZhk8KpOe2R\njPjd1q0wYoTWKYylomGTI+8byQrzChk2KYQO6L8R7UDKthzeqKQEPv9c/0Wmovz29EvBL3zw7QeE\nbwrH7TU3noh5AgWFN8Le4Od5P7N+3Homd5t8ywKjh/y1Ifm1Y+TsWpMjGR1ISlKnQ/x2+o+4TmXD\nJpeELqnxsEkhhH3ImowOLFwIigKvvKJ1En2oaNik2dsswyaFqAG5/LKVHLXIdO2qLvr36aN1Em1U\nNmwyzCvMJsMmhXAmWv7slDUZO7pVXzczE86ehcBA++eprrrsS1+6eolPj37KjC0zcP+XO2M3jiX7\ncjYLgxaS82wO2yZtY1bPWXVaYIzeV5f82jFydq3JmozGtm4Fs9nxx8hUNGzS7GUm4qEIvFt6ax1R\nCGED0i7T2JAh8Pjj+j3LvzYKrhWwO2O35YTIUqWUYd7DMHubCekQQpOGtrsSoBDid7ImYyVHKzL5\n+dC2LWRlwXXXEzI0GTYphP7ImoyTuLGvu307PPigcQrMrfrShcWFxJ2MY07sHHze8CEoOohvz37L\njO4zOP2X0+yespt5D82j092dNC8wRu+rS37tGDm71mRNRkNGPcs/My+TL9K+IOZETLlhkxvGbTDM\nsEkhhH1Iu0wjJSXQpo16IqbeT8K81bDJoV5DMXuZGdxxsAybFELnZHaZE9L7Wf63GjZp9jaz+uHV\nPNDmARk2KYSwivQ17Oj6vq7eWmXFpcUk/pTIwp0LCXgngM4rOxN3Mo6R943k+OzjJM1IIphgerXr\nZdgCY/S+uuTXjpGza02OZDSybRu88462GX4p+EU9WkmLIe5kHB53emD2NvNG2Bv0du9NfRf59hBC\n1I6syWggMxN69oTsbPuehFnZsMmhXkNl2KQQDkrWZJyMPc/yr2jY5KKBi2TYpBDC5mRNxo7K+rq2\nXI9RFIVvz37Lor2LCIoOov3r7fnguw8IbBfIvun7OPLEEV4b/BoDOgyodoExel9a8mvLyPmNnF1r\nciRjZ/n58L//wSef1N1rXrp6iZ0/7rS0wW6vfzvDvIfx16C/0q99P25vcHvdvZkQQlSDrMnY2X//\nqy74f/llzV+jsmGTZm+zDJsUQpQjazJOZOtWGD68+l9X0bDJOYFzZNikEEK3ZE3GjnbujOfzz61f\nj0nLTWP5/uUM/XAorZe2Zun/ltLBtQOfT/qczDmZvDX8LUbcN8JuBcbofWnJry0j5zdydq3Z/Ujm\n1KlTTJ48mZ9//hmTycTjjz/OU089RW5uLhMnTiQzMxNPT082btyIq6urvePZ1LFjlZ/lX1hcSEJm\nguVoJf9aPmYvMzO6z2DDuA00a9TMrnmFEKK27L4mc/bsWc6ePYu/vz+XL1/mgQce4LPPPiM6OppW\nrVoRERHB4sWLuXDhAlFRUeXDGnxNJjJS/fuVV36/r6Jhk2ZvswybFELUCae+nsyoUaOYPXs2s2fP\nZs+ePbi5uXH27FmCg4M5duxYuecavch07Qor3iqipF35YZNhXmGEeYXJsEkhhE04bZHJyMigf//+\nfP/999xzzz1cuHABUHdPtWjRwnK7jMlkYua2mVpErbX8fFi/+jB3DDhsGTZp9jYbathkfHw8wcHB\nWseoMcmvLSPnN3J2cNLdZZcvX2bs2LEsW7aMpjdctctkMlV4gauDbx2kZRv1t/3bm96Ou487Pg/4\nAJD6TSqALm9fvA36tMjn6W5/YUzYGED9xt17Yq/lm7dscVGvt1NSUnSVR/LrK5+j5zfS7fj4eNas\nWQOAp8aj3jU5kikqKmL48OGEhYUxZ84cAHx9fYmPj6d169ZkZ2cTEhLicO0yIYTQglNdfllRFKZP\nn46fn5+lwACMHDmStWvXArB27VpGjRpl72hCCCHqmN2LTGJiIh9++CG7d+8mICCAgIAAYmNjWbBg\nAdu3b8fHx4ddu3axYMECe0ezubLDWaOS/NqS/Noxcnat2X1Npm/fvpSWlt7ysR07dtg5jRBCCFvS\nfAtzdciajBBCVJ9TrckIIYRwHlJk7MjofV3Jry3Jrx0jZ9eaFBkhhBA2I2syQgjh4GRNRgghhEOS\nImNHRu/rSn5tSX7tGDm71qTICCGEsBlZkxFCCAcnazJCCCEckhQZOzJ6X1fya0vya8fI2bUmRUYI\nIYTNyJqMEEI4OFmTEUII4ZCkyNiR0fu6kl9bkl87Rs6uNSkyQgghbEbWZIQQwsHJmowQQgiHJEXG\njoze15X82pL82jFydq1JkRFCCGEzsiYjhBAOTtZkhBBCOCRdFZnY2Fh8fX3x9vZm8eLFWsepc0bv\n60p+bUl+7Rg5u9Z0U2RKSkqYPXs2sbGxHDlyhHXr1nH06FGtY9WplJQUrSPUiuTXluTXjpGza003\nRSYpKQkvLy88PT1p0KABf/jDH9i8ebPWsepUXl6e1hFqRfJrS/Jrx8jZtaabInPmzBk8PDwst93d\n3Tlz5oyGiYQQQtSWboqMyWTSOoLNZWRkaB2hViS/tiS/doycXWu62cK8b98+XnzxRWJjYwFYtGgR\nLi4uzJ8/3/IcLy8vTp48qVVEIYQwpI4dO5KWlqbJe+umyBQXF3Pfffexc+dO2rZtS69evVi3bh33\n33+/1tGEEELUUH2tA5SpX78+b775JkOGDKGkpITp06dLgRFCCIPTzZGMEEIIx6ObhX9rffzxx3Tq\n1Il69epx8OBBreNYzcgnmk6bNg03Nze6dOmidZQaOXXqFCEhIXTq1InOnTuzfPlyrSNZrbCwkMDA\nQPz9/fHz8+O5557TOlKNlJSUEBAQwIgRI7SOUm2enp507dqVgIAAevXqpXWcasvLy2PcuHHcf//9\n+Pn5sW/fPvsGUAzm6NGjyvHjx5Xg4GDlm2++0TqOVYqLi5WOHTsq6enpyrVr15Ru3bopR44c0TqW\n1RISEpSDBw8qnTt31jpKjWRnZyuHDh1SFEVR8vPzFR8fH0N9/gUFBYqiKEpRUZESGBio7N27V+NE\n1bd06VJl0qRJyogRI7SOUm2enp7K+fPntY5RY5MnT1ZWrVqlKIr6PZSXl2fX9zfckYyvry8+Pj5a\nx6gWo59oGhQURPPmzbWOUWOtW7fG398fgCZNmnD//feTlZWlcSrrNW7cGIBr165RUlJCixYtNE5U\nPadPnyYmJobHHnvMsANujZr74sWL7N27l2nTpgHq2nezZs3smsFwRcaI5ERT/cjIyODQoUMEBgZq\nHcVqpaWl+Pv74+bmRkhICH5+flpHqpa//OUvLFmyBBcXY/64MZlMDBo0iB49evDuu+9qHada0tPT\nueuuu3j00Ufp3r07M2bM4MqVK3bNoMv/1UNDQ+nSpctNf7Zu3ap1tBpxhhNNjeDy5cuMGzeOZcuW\n0aRJE63jWM3FxYWUlBROnz5NQkKCoYY1btu2jbvvvpuAgADDHg0kJiZy6NAhvvjiC1asWMHevXu1\njmS14uJiDh48yKxZszh48CB33HEHUVFRds2gmy3M19u+fbvWEepUu3btOHXqlOX2qVOncHd31zCR\n8ykqKmLs2LH88Y9/ZNSoUVrHqZFmzZoxbNgwDhw4QHBwsNZxrPL111+zZcsWYmJiKCws5NKlS0ye\nPJn3339f62hWa9OmDQB33XUXo0ePJikpiaCgII1TWcfd3R13d3d69uwJwLhx4+xeZHR5JGMto/xm\n1KNHD06cOEFGRgbXrl1jw4YNjBw5UutYTkNRFKZPn46fnx9z5szROk61nDt3zjKc8ddff2X79u0E\nBARonMp6r7zyCqdOnSI9PZ3169czYMAAQxWYK1eukJ+fD0BBQQFxcXGG2mXZunVrPDw8SE1NBWDH\njh106tTJrhkMV2Q+/fRTPDw82LdvH8OGDSMsLEzrSFW6/kRTPz8/Jk6caKgTTcPDw+nTpw+pqal4\neHgQHR2tdaRqSUxM5MMPP2T37t0EBAQQEBBgGV+kd9nZ2QwYMAB/f38CAwMZMWIEAwcO1DpWjRmt\ndZyTk0NQUJDl8x8+fDiDBw/WOla1vPHGGzzyyCN069aN7777jsjISLu+v5yMKYQQwmYMdyQjhBDC\nOKTICCGEsBkpMkIIIWxGiowQQgibkSIjhBDCZqTICCGEsBkpMkLUgWeffbZa415ycnIwm822CySE\nTkiREaKW8vPzSUhIqNaoFzc3N5o3b26oayIJURNSZIS4wTvvvGOZDNChQwcGDBhQ6fM3b97MoEGD\nLLc9PT2JjIwkICCAHj16cPDgQQYPHoyXlxfvvPOO5XkjR45k3bp1Nvt3CKEHUmSEuMGf//xnDh06\nRHJyMh4eHjzzzDOVPj8xMZEePXpYbptMJtq3b8+hQ4fo168fU6dO5dNPP2Xfvn288MILluf16tWL\nhIQEm/07hNADXU5hFkIPnnrqKQYOHMiwYcMqfV5mZqZlUm+ZsgGoXbp0oaCggDvuuIM77riD2267\njUuXLnHnnXfSpk0bMjIybBVfCF2QIiPELaxZs4ZTp06xcuVKq55fWlpa7vZtt90GqNeCadiwoeV+\nFxcXiouLAXU6tNEGRgpRXVJkhLjBN998w9KlS62+OFX79u05e/bsLR+rbP5sdnY27du3r1FGIYxC\n1mSEuMGKFSu4cOECISEhBAQE8Pjjj1f6/L59+3LgwAHL7euPTkwm0023yyQlJdGvX786TC6E/sio\nfyFq6fLly4SEhJCcnFytr3vkkUd49tlnDXURMiGqS45khKilJk2aEBISwu7du63+mp9//pm8vDwp\nMMLhyZGMEEIIm5EjGSGEEDYjRUYIIYTNSJERQghhM1JkhBBC2IwUGSGEEDYjRUYIIYTN/H8Uvofb\nuXiDpAAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.4 page No. 313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "kf=0.04 # thermal conductivity in BTU/(hr.ft.\u00b0R) \n", "cp=0.2139 # specific heat in BTU/(lbm-\u00b0R)\n", "rou= 1.489*(62.4) # density in lbm/cu.ft\n", "v=0.272e-5 # viscosity in sq.ft/s\n", "a=2.04e-3 # diffusivity in sq.ft/hr\n", "Pr=4.8 # Prandtl Number\n", "OD=0.5/12.0 # outer diameter in ft\n", "ID=0.03350 # inner diameter in ft\n", "A=0.0008814 # cross sectional area in sq.ft\n", "z=5.0\n", "Tw=32.0\n", "Tbo=-4.0\n", "Tbi=-40.0\n", "L=5.0\n", "\n", "x=2*a*L/((kf*ID/2.0)*(math.log((Tw-Tbo)/(Tw-Tbi)))) #x=V/hl\n", "V=336.0 #ft/h\n", "V_final=V/3600.0 #ft/s\n", "hl_=V_final/(x) #\n", "\n", "Re=(V_final/3600.0)*ID/v\n", "m_Fr=rou*A*V_final\n", "As=math.pi*ID*L\n", "q=hl_*As*((Tw-Tbo)-(Tw-Tbi))/(log((Tw-Tbo)/(Tw-Tbi)))\n", "q_check=m_Fr*cp*(Tbo-Tbi)\n", "rou_water=1.002*62.4 # density of water in lbm/ft**3 from appendix table C11\n", "m_water=rou_water*L*(2/12.0)*(3/12.0)\n", "t=144*m_water/(-q*3600)\n", "\n", "print\"The mass flow rate of Freon-12 is \",round(m_Fr*3600,2),\"lbm/hr\"\n", "print\"The required time is \",round(t,0),\"hr\"\n", "\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "z1=[0,5]\n", "Tw=[32,32]\n", "z2=[0,0.185,0.74,1.85,2.77,3.70,5.0]\n", "Tbz=[-40,-34.7,-27.4,-18.5,-13.5,-8.9,-4.1]\n", "z3=[0.185,1,2,5.0]\n", "hz=[23,-13,-19,-25]\n", "\n", "plt.grid()\n", "xlabel(\"z (m)\") \n", "ylabel(\"T (F) \") \n", "plt.xlim((-2,5))\n", "plt.ylim((-40,35))\n", "\n", "ax.annotate('(Tw=32 F)', xy=(5,30))\n", "ax.annotate('(Tbz)', xy=(5,-5))\n", "ax.annotate('(hz)', xy=(5,-25))\n", "ax.annotate('(hydronamic entry\\n length)', xy=(-2,-40))\n", "a1=plot(z1,Tw)\n", "a2=plot(z2,Tbz)\n", "a3=plot(z3,hz)\n", "title('$Variation of Constant wall temprature with length$')\n", "show(a1)\n", "show(a2)\n", "show(a3)\n", "\n", "x1=[0.001,0.01,0.1,1]\n", "Nu1=[31,11,5.5,5.2]\n", "Nu2=[25,10,5.3,5.1]\n", "Nu3=[22,9,5.1,4.9]\n", "Nu4=[17,7,4.1,4]\n", "Nu5=[15,6.5,4,3.9]\n", "Nu6=[13.8,6,3.9,3.8]\n", "\n", "\n", "plt.grid()\n", "xlabel(\"1/Gz=z/(DRePr)\") \n", "ylabel(\"Nu \") \n", "\n", "plt.xlim((0.001,1))\n", "plt.ylim((0,35))\n", "ax.annotate('(Constant wall temprature)', xy=(0.1,30))\n", "ax.annotate('(Hydronamically and thermally developing laminar flow)', xy=(0.1,25))\n", "b1=plot(x1,Nu1,label='Pr=0.7')\n", "b2=plot(x1,Nu2,label='Pr=2')\n", "b3=plot(x1,Nu3,label='Pr=5')\n", "b4=plot(x1,Nu4,label='Pr=0.7')\n", "b5=plot(x1,Nu5,label='Pr=2')\n", "b6=plot(x1,Nu6,label='Pr=5')\n", "plt.legend(loc='upper right')\n", "title('$Variation of Nusslet number with dimensionless length$')\n", "show(b1)\n", "show(b2)\n", "show(b3)\n", "show(b4)\n", "show(b5)\n", "show(b6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mass flow rate of Freon-12 is 27.52 lbm/hr\n", "The required time is 9.0 hr\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEZCAYAAAD/ttB2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFOf6//H3UuwFS0QFAxIUxAYW7AoCYokl9i4mnhRP\nqonRtKPmRMVoEk39Gn9RjCaKJjFoYohEKXYsqFEUK0gTRUVDLCDM7489bECKoMDs7N6v6+K6mN2Z\n2c8Oy9w7zzPzjE5RFAUhhBBC4yzUDiCEEEKUByloQgghTIIUNCGEECZBCpoQQgiTIAVNCCGESZCC\nJoQQwiRIQRNCCGESpKAJIYQwCVLQKlBSUhKTJ0+mcePGrFmzxvD4mTNnaN26NW+++SbXr18v9fpm\nz57Ntm3bHirLoyxbWp988gnvvPMOy5cvNzy2ZcsW3nvvPb766iuCgoIIDg7m1Vdf5c6dOxWaRW3f\nf/89jz32WLHTorAHfUbj4uLo2bMnq1evLvRcZW3fkjIII6CICnXo0CHFycmpwGOJiYlKcHBwhb5u\n3759lezs7Ap9jfwyMjKUrl27Kvv371eOHz+u5OTkKM8884yyePHiAvNt2rRJ6du3b7m/fnm93/Ja\nz+HDh5WRI0cWO13Zf5+yMJZsReXo06ePEh8fX2je+7dvReYoLoNQn5XaBdXUOTo6kpiYSG5uLhYW\n+gPijRs38tprr1XYayYnJ6MoClZWlffn3b9/P+7u7nh6egIwZ84cAN54440C83Xr1o3Tp0+X62uX\n1/stz+22Y8cO+vbtW+S0Gn+f0jKWbEXluHXrFikpKTg4OBSa//7tXVE5Ssog1Gc5d+7cuWqHMGXV\nq1fn448/Zty4cdjY2PDjjz/i6+tLWloaS5cu5c6dO8ybN48qVarQsmVLDh8+TFRUFC+++CI3btxg\n+vTpDBgwgN9++43333+fUaNGAXD69Okilw8LC2PBggXUqVOHW7du0axZM0JCQgosm5yczLJly8jM\nzOT777+nWbNmxMfHs2nTJkJCQrh58yYnTpxgyZIlDB06tNhl6tevD+iL2YcffkjNmjXJycmhUaNG\njBw5kh9++IG6desW2B41a9akQ4cOXL58ucwZbt68yYoVK0hPT2fLli1069at0Ptt3759sdvm0KFD\n/Pzzz0WuP289devW5datW9StW5cdO3bw8ccfM2TIEGJiYli4cCEDBgzAx8eHrl270rBhw0KvVbVq\nVVq2bMnChQt57rnnaNiwIYBhOiYmplBegBMnTvDRRx+RlZXF+vXradiwIb/88gtr1qzh77//JjY2\n1rBcXFwc77//Pu3ataN+/focPXqUrVu3sn79em7dusXOnTs5ceIEOTk5REZGFvgsDRw4sNjP3v3b\nsn79+mzfvp3333+fkSNHkp2djb+/P5MnTy7yczpw4ECSkpIKvI8+ffoQHx9f4rZs0aIFe/bsMXxG\ni/qbAoSHh7Nv3z7s7e359ddfOXjwoOELVP7tff+27NOnT4l/e4CcnBwWLlzIlStXiIyM5Msvv6Rm\nzZqFcpSUQRgBFY8OzUaHDh2UHTt2KMnJycq6deuUzMxMpX379sr169cVRVEUb29vJS0tTVEURTl2\n7Jhy9OhRxcfHR1EURbl9+7YSFhamXL9+XenUqZOiKEqJyyuKoowbN045ePCgoihKkct27txZSU9P\nVxRFUbZu3ao8//zzym+//aZs375dGTZsmKIoipKbm2toKi1umfxGjBihHD9+XFEUfbOii4tLsdvj\nYTIoiqKsXr1aefPNN5Xr168rzzzzTJHvt6Rt86D151/Ptm3blDNnzigDBw5UFEVRFixYoAQFBSmK\noihfffWVcv78+WJf6969e4qrq6thvfdP538dRVGUtLQ0xcHBQbl8+bKiKIry1ltvKaGhocqhQ4cU\nb29vw3zOzs7KuXPnFEVRlOeff1759ddfFUVRlN9//13ZtWuXMnr0aMM2aNGihfLnn38qR44cMXyW\n7ty5U6bPzrZt25TExESlV69eiqIoys6dOw3b/f7P6Z07d4p8H6XZll9//XWBz2hR20hRFGXWrFnK\nhx9+qCiKouzdu9fQxJh/+xaX4UF/+9mzZxsyrV27Vvn444+LzFFcBmEc5KSQSuDk5MS5c+dYv349\nY8eO5aeffqJt27bY2Nhw584dMjMzadSoEQBt27YlLCzMcDRVrVo1fH19CQoKIiAgAKDE5RVFISYm\nho4dOwIUWjY4OJhOnTrRoEEDAGJjY6lRowb9+/cnLCyMSZMmAbB37146d+5c4jL5nTx5Ejc3NwAs\nLS0NR2/3++6779iwYUOZMwAMGDCA9PR02rZta3h/97/fkrZNSeu/fz1+fn6sXr2aMWPGABAZGYmv\nry8A9erVo3nz5sW+1oEDBwrkPnDgAJ06dSrydUDfBO3g4EBMTAzfffcdL730Ev7+/oSFhTFx4kQA\nzp07h5OTE05OTgDs2rWL7t27A9CvXz+2bdvG4MGDAYiJiaFhw4a0adOGP/74w/BZqlq1apk+O35+\nfgQFBRkybN++3bAN7v+cVq1atcj3UZpt+a9//avAZ7SobQQQERFhmOePP/4wNDHm397FZSjpb3/v\n3j2WL19uyBcREYGfn1+ROYrLIIyDFLRK4OjoyNdff81TTz0FQHp6uqEZ5Y8//qBr166EhoYa5v/j\njz/o169fgXWsW7eOiRMn8uuvv5a4fGxsLK1atQJg/fr1hZbNzs7G2dkZgNu3b/Pjjz8yY8YMQN+k\n4+PjA8C3337Lv/71L0JDQ0tcBiAtLY2GDRui0+kA8PHxIT09nUuXLhnmyc3NZcWKFfj7+5OVlVXm\nDNHR0bzzzjt88803HDp0iMjIyCLf74O2bXHrP3nyZKHtdvjwYUMhSkxMxM7Ojnv37hnWVdxrRUVF\n4eXlxaZNmwDYuXMn3t7ebNq0qcjXqV69OgMGDKBfv35MmDABgKysrAKfg7CwMPz9/QHYs2cP7u7u\nJCcnk5SUZHj9Pn36ALB69WpD3+X9n6Wyfnb27dtHz549DfN7e3vz+++/F7nuot5HdnZ2qbZl/s9o\nUdvoxo0bZGdnG85k3LhxI+PHj+fXX39l586dhu1dUobi/va3bt3Czs6OatWqkZWVxbFjx2jTpk2h\n7VFSBmEcpA+tEiQkJNCuXTvDP3/z5s3ZunUriqJw+fJlLl++bPhGrSgKK1asKHTSyI4dOwDo3bs3\nrVu3Lnb53Nxcdu3axe3bt/H29qZWrVoFlnV3dycsLIzbt2+zadMmZs2axRNPPMGtW7cICQlh2rRp\ngP6fv27dutjZ2eHt7V3kMvmzWVhYGHYW1tbW+Pn5sXDhQs6cOcPp06c5fvw4Q4YMoWHDhob+mrJk\neOyxx7h9+zYpKSlERUXx2muvUadOnQLv18vLi7Zt2xa7bUpaf+PGjQusp3bt2gBERUWRmppKzZo1\nuXHjBvv372fkyJFYW1sX+Xds0KABTZo04cyZM7Rq1QpHR0fS09MN082aNSv0Oq6urmzfvp1bt25x\n8uRJkpOTcXNz45tvvuGVV14B4OuvvyYgIIAGDRqQkpJCfHw8VapUoVu3bty4cYPPPvsMOzs7Dhw4\ngL29PRMmTCjys1TSZ6+oz86tW7eIiYkhNTWVK1eukJ2dTc+ePalZs2ahdRf3PvIUtS1HjRqFtbV1\ngc9otWrVCm2jffv2Ua1aNby8vAyfOZ1OR48ePbhz545h+/bv37/IDMX97e3t7XFyciIlJYWrV6/y\n008/YWVlxVNPPVXos3X8+PFiM+R9XoS6dIoiN/gUD+fQoUOsWLGC+vXrM2bMGMM3f1G5Nm3axL59\n+1i0aJHaUTTp0qVL2NjYUK1aNRYtWkSLFi0YPny42rHEQzC+84aFZlhaWmJvb0+NGjWkmKnk1KlT\nfPzxxzg7O3Pz5k3q1KmjdiTNeffdd+nQoQM2NjZYWlpKMdMwOUITQghhEuSkECGEECZBCpoQQgiT\noMk+NHd3d44ePap2DCGE0JT27dtz5MgRtWNUGE0eoR09ehRFUTT7M2fOHNUzSH71c0h+7f1oObui\nKCZ/IKDJgqZ18fHxakd4JJJfXZJfPVrObg6koAkhhDAJUtBUkDcWnFZJfnVJfvVoObs50OR1aDqd\nDg3GFkIIVZn6vlOO0FQQERGhdoRHIvnVJfnVo+Xs5kAKmhBCmJG7d+/Sp08fjh07hoeHBx4eHjRo\n0AAnJyc8PDwK3emjrKKjow3rbdeuHcHBwYD+bt+DBg2iVatWtGnThrfeeqvI5YOCgnjssccM68hr\n5p0xYwY7d+4s8bWlyVEIIcyETqfjm2++4erVq8ycOdPw+NSpUxk8eHC5jGN5+/ZtqlatioWFBZcu\nXaJNmzakpaWRlZVFdHQ0ffr0ITs7Gx8fH95++2369+9fYPnVq1dz6NAhPv300wKPnzlzhtdff53N\nmzcX+9pyhCbKTKeTH/mRHy3+gP7ec0OHDi30f60oCgcOHGDEiBEAhISEUKNGDe7du8edO3cK3DKq\nJNWrV8fCQl9abt++Td26dbG0tKR69eqGe/ZZW1vToUMHkpOTi1xHUQcsLVq0ID4+noyMjGJfW7WC\ndufOHbp06YK7uztubm6Gw89r167h5+dHy5Yt6devX4nhtUrr7fDh4REoCpr9kfyS3xyzK4r+//f4\n8eO0bNmy0P+1TqejQ4cOhpFEdu7cSdu2bYmOjmb//v107doVgCVLlhiaA/P/vPrqq4Z1RUdH07p1\na1q3bs3HH39c6LUyMjLYsmWL4R6K+SmKQnBwsGG9QUFBhuc8PDzYu3dvsfsm1Ya+qlatGuHh4YZv\nAD179mTXrl1s3rwZPz8/3nzzTRYtWkRgYCCBgYFqxRRCCJNS0s1ILS0teeKJJzh16hQHDhxgxowZ\nREVFkZOTQ69evQB44403DHdEL46npycnTpzg1KlT9O/fHy8vL+rWrQvAvXv3GDduHK+88gqOjo6F\nltXpdIwdO7ZQkyNA06ZNS7y4XdUmxxo1agD6283n5ORQr149Nm/ezJQpUwCYMmUKP//8s5oRK0Te\nHW+1SvKrS/KrR8vZ8zzo/IPevXuzdetWrK2t8fHxYefOnezatctQ0BYvXlzkEVre3dXzc3V15Ykn\nnuDs2bOGx5599llcXFx4+eWXy5xRURR0eW2nRVB1cOLc3Fw6dOjAuXPneOGFF2jdujVpaWnY2toC\nYGtrS1pampoRhRDCpGRmZhb5eF4R6dWrF5MmTSIgIICGDRty9epVrly5QuvWrQGYOXNmgRNK7hcf\nH4+9vT1WVlYkJCRw5swZWrRoAehvpnrz5k2++eabYpcvqeCmpqaW+KVC1YJmYWHBkSNHuHHjBv7+\n/oSHhxd4XqfTFVuNAwICDIerNjY2uLu7G95oXh+VsU4vXbpUU3klv3FNS371pvN+N5Y8pcmb1weV\nt79s06YNcXFxuLi4kF/evtbT05PLly/Tu3dvQD9Cf1kOLHbt2kVgYCDW1tZYW1vz9ddfU6dOHZKS\nkliwYAGtWrWiQ4cOALz00ks8/fTThXIUt9+PiYkpsinSQDES77//vrJ48WLFxcVFSU1NVRRFUVJS\nUhQXF5dC8xpR7IcSHh6udoRHIvnVJfnVo+XsiqLfd65atUoJDAxUO0qZxcXFKYMHDy5xHtWuQ0tP\nT8fKygobGxtu376Nv78/c+bM4ffff6dBgwbMmjWLwMBAMjIyCp0UItehCSFE2el0Ou7evYuvry+R\nkZEl9kcZmxkzZjB8+HB69uxZ7DyqFbQ///yTKVOmkJubS25uLpMmTWLmzJlcu3aN0aNHc/HiRRwd\nHdmwYQM2NjYFQ0tBE0KIMjP1faeMFKKCiIgIQ3u3Fkl+dUl+9Wg5O2h/3/kgMlKIEEIIkyBHaEII\nYSZMfd8pR2hCCCFMghQ0FeS/lkWLJL+6JL96tJzdHEhBE0IIYRKkD00IIcyEqe875QhNCCGESZCC\npgKtt8NLfnVJfvVoObs5kIImhBDCJEgfmhBCmAlT33fKEZoQQgiTIAVNBVpvh5f86pL86tFydnMg\nBU0IIYRJkD40IYQwE6a+75QjNCGEECZBCpoKtN4O/8D86emQmlopWR6GyW9/I6fl/FrObg6koIny\n9+WXsHCh2imEEGZG+tBE+Tt/Hrp1g6QksLZWO40Q4n9Mfd8pR2ii/Dk5QYsW8PvvaicRQpgRKWgq\n0Ho7fKnyT5oE335b4VkehllsfyOm5fxazm4OpKCJijF6tP4ILSND7SRCCDOhWh9aYmIikydP5vLl\ny+h0Op599llefvllrl27xpgxY0hISMDR0ZENGzZgY2NTMLSJtwObjBEjYMAAmDZN7SRCCEx/36na\nEZq1tTWffPIJJ06cYN++fXzxxRecPHmSwMBA/Pz8OH36ND4+PgQGBqoVUTyqSZNgzRq1UwghzIRq\nBa1x48a4u7sDUKtWLVq1akVycjKbN29mypQpAEyZMoWff/5ZrYgVRuvt8KXOP3AgxMZCfHxFxikz\ns9n+RkrL+bWc3RwYRR9afHw8MTExdOnShbS0NGxtbQGwtbUlLS1N5XTioVWpou9L++47tZMIIcyA\nldoBMjMzGTFiBMuWLaN27doFntPpdOh0uiKXCwgIwNHREQAbGxvc3d3x8vIC/vkWZazTeY8ZS54K\nzT9pEhGjR0P37nh5e2svvxFOS371pr28vIwqz4OmIyIiCAoKAjDsL02ZqhdWZ2dn8+STTzJgwABe\nffVVAFxdXYmIiKBx48akpqbi7e3NqVOnCixn6h2bJkVRwMUF1q4FT0+10whh1kx936lak6OiKDzz\nzDO4ubkZihnAkCFDWL16NQCrV69m2LBhakWsMHnfoLSqTPl1Opg40ahODjGr7W+EtJxfy9nNgWoF\nbffu3axdu5bw8HA8PDzw8PAgNDSU2bNnExYWRsuWLdmxYwezZ89WK6IoLxMnQnAwZGernUQIYcJk\nLEdROXr2hFmzYPBgtZMIYbZMfd9pFGc5CjMg16QJISqYFDQVaL0d/qHyjx4N27YZxVBYZrn9jYiW\n82s5uzmQgiYqR7164OsLP/ygdhIhhImSPjRReUJC4KOPICpK7SRCmCVT33dKQROVJysL7OzgwAEw\ng4s8hTA2pr7vlCZHFWi9Hf6h81f531BYa9eWa56yMtvtbyS0nF/L2c2BFDRRufLOdjThb4lCCHVI\nk6OoXDIUlhCqMfV9pxyhicql08k1aUKICiEFTQVab4d/5Px5Q2FlZZVLnrIy++2vMi3n13J2cyAF\nTVS+5s31zY6hoWonEUKYEOlDE+r4+msIC4ONG9VOIoTZMPV9pxQ0oY7r1/XXoiUkgI2N2mmEMAum\nvu+UJkcVaL0dvlzy16sHfn6qHKHJ9leXlvNrObs5kIIm1CNnOwohypE0OQr15A2FFR2tP1FECFGh\nTH3fKUdoQj1VqsCYMaoPhSWEMA1S0FSg9Xb4cs2vwlBYsv3VpeX8Ws5uDqSgCXXlDX8VHa1uDiGE\n5kkfmlDff/8LaWnw+edqJxHCpJn6vlMKmlDfhQv6I7XkZH2/mhCiQpj6vlPVJsenn34aW1tb2rZt\na3js2rVr+Pn50bJlS/r160dGRoaKCSuG1tvhyz1/8+bg6lppQ2HJ9leXlvNrObs5ULWgTZ06ldD7\ndmKBgYH4+flx+vRpfHx8CAwMVCmdqFRyTZoQ4hGp3uQYHx/P4MGD+fPPPwFwdXUlMjISW1tbLl26\nhJeXF6dOnSqwjKkfNpulvKGw4uP1o4gIIcqdqe87je4sx7S0NGxtbQGwtbUlLS1N5USiUtSrB/36\nyWDFQoiHZqV2gJLodDp0Ol2RzwUEBODo6AiAjY0N7u7ueHl5Af+0cxvr9NKlSzWVt9LyT5oEixcT\n0bKlNvNrfftL/gdO5/1uLHlKkzcoKAjAsL80aYrKLly4oLRp08Yw7eLioqSmpiqKoigpKSmKi4tL\noWWMIPYjCQ8PVzvCI6mw/HfvKkrDhopy/nzFrP9/ZPurS8v5tZxdUbS/73wQo+tDe/PNN2nQoAGz\nZs0iMDCQjIyMQieGmHo7sFl78UWwtYX33lM7iRAmx9T3naoWtHHjxhEZGUl6ejq2tra8//77DB06\nlNGjR3Px4kUcHR3ZsGEDNvfdL8vU/yhmbf9+/RmPcXFQTHOzEOLhmPq+U/UjtIeh9T9KRESEob1b\niyo0v6KAi4v+FP4uXSrkJWT7q0vL+bWcHbS/73wQozvLUZg5nQ4mT4Zvv1U7iRBCY+QITRif+Hjo\n3FmGwhKinJn6vlOO0ITxcXSEVq3gt9/UTiKE0BApaCrIfy2LFlVK/gocCku2v7q0nF/L2c2BFDRh\nnEaNgrAw/ZBYQghRCtKHJozXqFHg5wfPPqt2EiFMgqnvO+UITRivSZPkbEchRKlJQVOB1tvhKy1/\n//5w+jScP1+uq5Xtry4t59dydnMgBU0YrypVYMwYWLtW7SRCCA2QPjRh3KKjYcIE/ZGaDIUlxCMx\n9X2nHKEJ49a5M1hY6Md4FEKIEkhBU4HW2+ErNb9OV+7XpMn2V5eW82s5uzmQgiaM38SJsGEDZGWp\nnUQIYcSkD01oQ+/eMGMGDBumdhIhNMvU951yhCa0oQKHwhJCmAYpaCrQeju8KvlHjYI//iiXobBk\n+6tLy/m1nN0cSEET2mBjA/7++r40IYQogvShCe3YsgUWLYJdu9ROIoQmmfq+Uwqa0I7sbLCzg337\nwMlJ7TRCaI6p7zulyVEFWm+HVy2/tXW5DIUl219dWs6v5ezmwCgLWmhoKK6urrRo0YJFixapHUcY\nk7wR+E34W6YQ4uGU2OR4+PBh1q1bR1RUFPHx8eh0OhwcHOjduzfjx4/Hw8Oj3APl5OTg4uLCH3/8\ngZ2dHZ07d2bdunW0atXqn9AmftgsSqAo4OoKQUHQrZvaaYTQFFPfd1oV98TAgQOpV68eQ4YMYfr0\n6TRp0gRFUUhNTSU6OpolS5aQkZHBr7/+Wq6BoqOjcXZ2xtHREYCxY8cSEhJSoKAJM6bTweTJ+mvS\npKAJIfIptslx1apVfPfdd4wZM4bmzZtTrVo1qlevjpOTE2PHjuW7775j1apV5R4oOTmZZs2aGabt\n7e1JTk4u99dRk9bb4VXPP2HCIw2FpXr+RyT51aPl7Oag2IJ24cKFBy7cqFGjcg0D+kNiIUrk6Ait\nW8PWrWonEUIYkWIL2gsvvGD4vVslNu3Y2dmRmJhomE5MTMTe3r7QfAEBAcydO5e5c+eydOnSAt+c\nIiIijHo67zFjyaPJ/J6ehqGwNJlf69vfTPN7eXkZVZ4HTUdERBAQEGDYX5q6Yk8K8fDwICYmptDv\nFe3evXu4uLiwfft2mjZtiqenp5wUIgrLyAAHB7hwAerXVzuNEJpg6vvOYo/QcnJyuHbtGlevXjX8\nnv+nolhZWfH555/j7++Pm5sbY8aMMbkTQu7/tqo1RpH/EYbCMor8j0Dyq0fL2c1BsWc53rx5k44d\nOwKgKIrhd9BX+fPnz1dYqAEDBjBgwIAKW78wEZMmQWAgPP+82kmEEEZAhr4S2pU3FNbevfDEE2qn\nEcLomfq+s9gmx9IcgZ07d65cwwhRJtbWMHbsIw+FJYQwDcUWtLfeeosnn3ySr7/+msOHD5OamkpK\nSgqHDh1i+fLlDBo0iHfeeacys5oMrbfDG1X+vBt/luFbp1HlfwiSXz1azm4Oiu1DCw4O5uzZs6xf\nv5533nmHhIQEABwcHOjZsyefffYZTjLiuVBbp05gZaUfgV9GDhHige7evUvjxo1p1qwZlpaWXLx4\nkbp161K3bl0aNmzIu+++y5IlS9iyZUup1jd69GgWLVpE8+bNKzj5g0kfmtC++fMhKQm++krtJEIY\nNZ1OxzfffMPVq1eZOXMmAFOnTmXw4MEMHz4c0B+FfvTRR6UuaGFhYWzZsoVPP/20wnKXllGOti9E\nmUyYABs3wt27aicRwuitW7eOoUOHFngs/wGCTqfj5s2bPPnkk7i6uvLCCy+gKAqbN2/Gw8MDDw8P\nXFxcDC10Xl5ebDWSUXukoKlA6+3wRpe/jENhGV3+MpL86tFy9jzHjx+nZcuWxT6vKArR0dF8/vnn\nxMbGcu7cOX766SeGDBlCTEwMMTExuLu7G47wrK2tsbOz4+TJk5X1FoolBU2YhryTQ4QQBSiKQlx6\nHKti9IPJ165d+4HLeHp64ujoiIWFBePGjWPXrl2G5z788ENq1KhRYHjEpk2bEh8fX+7Zy6rYk0JE\nxfHy8lI7wiMxyvyjRsHrr8O1aw8cCsso85eB5FePFrLfuXeHgykH2ZO4h92Ju9mTuIca1jXo0awH\nQKnOP8g/SLyiKIbpP/74gx9//JGoqKgC8yuKgoWF+sdHxRa07OxsrK2tKzOLEA+vbl3o318/FJaM\nHCLMyOW/L+uL18Xd7E7czdG0o7Rq2IoezXowvs14vhj4BfZ19AO8r2MdmZmZD1xndHQ08fHxPP74\n42zYsIHnnnuOhIQE/v3vf7Nt2zaqVq1aYP7U1FQcHBwq5P2VRbEltUuXLpWZw6xovR3eaPOXstnR\naPOXkuRXj9rZc5VcYq/EsuLQCgJ+DqDFZy1o+VlL/u/g/1Gnah0+6PsBaW+kcfDZgywbsIwxbcYY\nilmeNm3aEBcXV+Cx/EdkOp2Ozp078+KLL+Lm5oaTkxPDhg0jKCiIa9euMWzYMDw8PHjyyScB/cFP\nUlISrq6uFb8BHqDYIzQ5LV5ojr8/PP00nD0Lzs5qpxHikd3KvsWB5APsTtQffe1N3ItNNRt6PN6D\nHs168Hq313F7zA1LC8tSr3PChAn8/PPPzJo1C6DQjZr79OlDZGRkoeXmzJnDnDlzCj0eHh5uKG5q\nK/Y6NHt7e2bMmFFkYdPpdMyYMaPCwxVHrkMTxXr5ZX0fmhnc+0mYntS/Ug39XrsTd3P88nHaNGpD\nj2b6Ata9WXea1G7y0OvX6XTcvXsXX19fIiMjy+WGyqNHj+bDDz/E0dHxkdf1qIotaE2aNOH5Evoi\niqrUlUUKmijWgQMwbhycOQNy93NhxHJyczhx5YSheO2+uJuMOxl0b9bdULw623WmhnWNcntNU993\nluoGn8Y+WzF6AAAgAElEQVRG63+UiIgITZwtVRyjzq8o0KoVrFwJ3bsXOYtR5y8Fya+eR8memZVJ\ndHK04eSNfUn7aFSzkaGA9Xi8B64NXbHQVdzZglrfdz6InLYvTItOB5Mn608OKaagCVEZkm4mGYrX\n7sTdnEo/RXvb9vRo1oPnOz3Pt099S6OajdSOaVKKPUK7evUqDRo0qOw8pWLq3zLEI0pIgI4dITkZ\n7ju9WIiKcC/3Hn+m/WkoXnsS93Ar+9Y/R1/NetCxaUeqWVVTNaep7ztlcGJhmry89CeI/G/AVSHK\n0827N9mXtM9wBBadHI1dHbsCJ2+0bNCyXE66KE+mvu+UgqYCLfchgEbyf/MN/PILbNpU6ClN5C+B\n5K9ciqKQcCOB3Rd3s/HXjcTXi+fstbN0aNLBULy6N+tOgxrG2aKVn9b3nQ8ifWjCNI0cCTNmwNWr\nYKRN58I4ZedkczTtaIH+r3u59+jRrAdNajdh9pOz6dCkA1Usq6gdVdxHjtCE6RozRt/0mG8QVSHu\nl3Eng72Jew3F62DKQRzqOhjOPOzRrAdO9ZyMrvnwYZj6vlOVgrZx40bmzp3LqVOnOHDgAB06dDA8\nt3DhQlauXImlpSWffvop/fr1K7S8qf9RRDn55RdYsAD27FE7iTAiyTeT2X5hu+EILD4jns52nQ39\nX13tu1Kvej21Y1YIU993qjI8ctu2bdm0aRO9e/cu8HhsbCzBwcHExsYSGhrK9OnTyc3NVSNihVJ7\nPLhHpZn8/v5w7px+KKx8NJO/GJK/bBRF4VjaMT6I+oDOKzrT9qu2bDm9BbfH3Fg1dBXXZ10nfEo4\nH/T9gAEtBpRYzLS+7U2dKn1oxQ1iGRISwrhx47C2tsbR0RFnZ2eio6Pp2rVrJScUJsHaGsaOhbVr\nZSgsM3Mv9x47E3YSEhfC5rjN5Cq5DHUZyiLfRfR6vBfWlnInEVNkVCeFpKSkFChe9vb2JCcnq5io\nYmjpDK+iaCr/pEn6vrQ5cwxDYWkqfxEkf9H+uvsXoWdDCYkL4bezv9HcpjlDXYby89ifaduobbn0\ngWl925u6Citofn5+XLp0qdDjCxYsYPDgwaVejyl0xAoVdewIVaro+9F69FA7jShnyTeT2XJ6CyFx\nIey+uJvuzboz1GUogb6BhW6bIkxfhRW0sLCwMi9jZ2dHYmKiYTopKQk7O7si5w0ICDCM7mxjY4O7\nu7vh21NeO7exTi9dulRTeTWdX6cjokcPWLQIr82btZe/iGlzzq8oCqs2rWJ34m6O1TjGuWvn6HBX\nfz1Y8Ixg6lStQ0REBGcPn8Xey77c8+fvQzOW7fmgvEFBQQBGMRp+hVNU5OXlpRw8eNAwfeLECaV9\n+/bK3bt3lfPnzytOTk5Kbm5uoeVUjv3IwsPD1Y7wSDSXPz5eUerXV5Q7dxRF0WD++5hb/uycbGXH\n+R3KK7+9ojRf2lxx+MRBeXnry8r289uVrHtZFROyGFrf9lrfdz6IKqftb9q0iZdffpn09HTq1q2L\nh4cHv/32G6Bvkly5ciVWVlYsW7YMf3//Qsub+qmnogLIUFia8tfdv/j93O+ExIWw9cxWQ3/YUNeh\n5dYfZo5Mfd8pF1YL81DCUFjCOKT8lcLmuM0F+sOGuAxhiMsQ6Q8rJ6a+71TlOjRzl78dXos0mX/k\nSNixA65e1Wb+fEwlv6Io/Jn2Jx9EfYDnCk/afNmGnRd3MtV9KkkzkgidGMr0ztONqphpfdubOqM6\nbV+IClO3LgwYAMHB4OamdhqzdS/3HkcuHSEkNISQuBDD9WGBvoFyfZh4ZNLkKMzHr7/CBx/A3r1q\nJzErxfWHDXEZQjvbdtIfVolMfd8pBU2Yj+xssLeHXbugRQu105i0vP6wzXGb2XVxF92adTMUMWNq\nQjQ3pr7vlD40FWi9HV6z+a2t4dln9delvfdeoTEetcIYt7+iKBy/fJz5UfML9IcFuAeQNCOJ3yf+\nbugPM8b8paXl7OZA+tCEefnvf8HBAY4fh+7doWVLCAiAUaP0/Wyi1BRFYX/yfjac2EBIXAg5uTnS\nHyZUJU2OwnxlZcFvv8Hq1fozIAcN0he3vn3B0lLtdEZJURQOphxkw4kNbIjdQE3rmoxuPZqnXJ+S\n/jANMPV9pxQ0IQDS02HdOggKgrQ0mDwZpkwBFxe1k6lOURSOXDpC8IlgNpzYgJWFFWNaj2FMmzG0\nfqy1FDENMfV9p/ShqUDr7fAmmb9hQ3jpJTh0SH/UlpUFffpAt26wfDlkZFR6zuJUxvbPu0bs3R3v\n4vK5CyM3jkSHjp/G/ETci3H8t+9/adOozUMVMy1/frSc3RxIH5oQ92vbFpYsgcBA+P13/VHbm2/q\nr2ObMgX8/MDKNP91Tl45SfCJYIJPBHM7+zajW4/m+xHf07FJRzkSE0ZPmhyFKI1r12D9en1xS0rS\n32dtyhSTuEj79NXTbDixgeATwVy/fZ3RrUczuvVouth1kSJmYkx93ykFTYiyio3Vn0iydi3Y2ekL\n27hxUL++2slK7fz18wQfD2ZD7AbSMtMY6TaSMa3H0K1ZNyx00hNhqkx93ymfXBVovR3e7PO7ucGi\nRZCQAO+/r79Qu3lz/an/v/wC9+6VS87iPGz+hIwEFu9eTOcVnen2TTcSbyay1H8pia8l8umAT+nx\neI9KKWZa/vxoObs5MM2OACEqg5UV9O+v/8nIgA0bYMECmDYNJkzQXwLQtq2qEZNuJrHxxEaCTwRz\n7vo5hrsOJ9AnkD6OfbCykH9/YVqkyVGI8hYXB99+q/9p1EjfJDl+vP5MykqQ+lcqP8T+QPCJYE6m\nn2SYyzDGtBmDt6O3XOxs5kx93ykFTYiKkpMD4eH6E0l++QW8vfVHbQMH6ofhKkdpmWn8ePJHNpzY\nwLG0Ywx2GcyY1mPwdfKlimWVcn0toV2mvu+UPjQVaL0dXvKXkqUl+PrqTx65eBGefFJ/OYCdHbz6\nKhw58lCrzcuffiudrw99je+3vrh+4cqexD3M6DaD1NdTWT1sNQNbDDTKYqblz4+Ws5sDaUQXojLU\nqQPPPKP/OXtW3xw5dCjY2OiP2iZM0DdPPsC129fYemYrC5MWsj9pP/2d+zO983QGOA+gunX1in8f\nQhgxaXIUQi25uRAZqW+SDAmB3r31xW3QIKha1TDbjTs3CIkLIfhEMLsu7sLPyY8xrccwsMVAalap\nqVp8oT2mvu+UgiaEMfjrL/jxR/31bcePkzVqONt7N+P/lGgiEiLp27wvo91GM9hlMLWq1FI7rdAo\nU993Sh+aCrTeDi/5K0Dt2hAQwKHvlvDvuZ4sPrMaj5cXsvq9w6Qxk029v2Rc23HUqlLLOPOXgZbz\nazm7OVCloM2cOZNWrVrRvn17hg8fzo0bNwzPLVy4kBYtWuDq6sq2bdvUiCdEpTuUcogh64YwdP1Q\nXDr5M31zKo0v/YXNyu+pduaC/mLuQYP017pduaI/g1IIUYAqTY5hYWH4+PhgYWHB7NmzAQgMDCQ2\nNpbx48dz4MABkpOT8fX15fTp01hYFKy7pn7YLMzHwZSDzIucR0xqDLN7zmZah2lUs6pWeMa//4ZN\nm/RnTP75J1y9qj9b0tGx6J+mTeWebqIQU993qnKWo5+fn+H3Ll268OOPPwIQEhLCuHHjsLa2xtHR\nEWdnZ6Kjo+natasaMYWoMPkL2Vs932LjqI1FF7I8NWvCxIn6H4A7dyAxEeLj//kJDdUPxxUfrz+K\nK67gOTjonzPROwYI86X6J3rlypWMGzcOgJSUlALFy97enuTkZLWiVZiIiAi8vLzUjvHQJP/DO5B8\ngHmR8zhy6UjpClkRDPlbtND/FOXu3cIFLyzsn98vX9YfxRVV7Bwdwd6+wgqelj8/Ws5uDiqsoPn5\n+XHp0qVCjy9YsIDBgwcDMH/+fKpUqcL48eOLXU9xt68ICAjA0dERABsbG9zd3Q0ftLyOW2OdPvK/\nC2qNJY/kr/jXP3nlJL9k/8KxtGOMqD6Cl9u/TD/PfhWf39lZP+3sXPD57Gy8nJwgPp6I0FA4dw6v\nc+f006dOwfXreP3vCC+iWjVo3BivPn3005cuwWOP4eXrW/H5ZfqRpiMiIggKCgIw7C9NmWqn7QcF\nBbFixQq2b99OtWr6b6iBgYEAhn61/v37M2/ePLp06VJgWVNvBxamIzo5mnmR8ziWdoy3er7FMx7P\nUNWq6oMXVFtWlv6+b/Hx/zRj5v+5dAkaNy58ZJf306xZuQ/vJR6dqe87VSlooaGhvP7660RGRtIw\n34CteSeFREdHG04KOXv2bKGjNFP/owjt25+0n3mR8/jz8p+83fNtnvZ4WhuFrLSys/UFr6hiFx8P\nqalga1t0scsreFWMb1guU2fq+05VClqLFi3Iysqi/v9uiNitWze+/PJLQN8kuXLlSqysrFi2bBn+\n/v6Fltf6HyVC4+3wkr94eYXs+OXjvN3rbaa6Ty33QqaJ7X/vHiQnF1nsIk6dwuvaNf1QX0UVu7yC\nV9X4vgBoYtuXQOv7zgdR5aSQM2fOFPvc22+/zdtvv12JaYR4dPuS9jEvch4nLp/g7V5vs2nMJtM6\nIisrKyt9sXJwgD59Cj4XEQE9e0JKSsFit2cPrFun/z0pSX+7neIuS3j8caMseEJdMvSVEI8gr5DF\nXonl7Z5vE+AeYN6FrLzk5BQuePmbNxMToUGD4i9LcHCAamU7e9QcmPq+UwqaEA9hb+Je5kXO42T6\nSSlkasjJ0ffTFVXs8gpevXrFX5bg4ADVze/uBKa+75SCpgKtt8Obc/78heydXu8Q4B5Q6fccM+ft\nX2q5uf8UvKJOXLl4UX/rnpIKXo0a6mSvQFrfdz6I6hdWC6EFexP3MjdyLqfST6lWyEQZWFjoR0Ox\ns4MePQo/n5sLaWkFi1xMjH54sbyCV6dO4WJ38+Y/J7PU1Oate+7evUu/fv2YM2cOn3zyCVu2bCnV\ncjNmzOCpp56iV69eFZzw4ckRmhAl2JO4h7kRczl99TTv9HqHKe5TpJCZg9xc/WgqRV2SkJCg/6lV\nq/jr8Bwc9M8bGZ1OxzfffMPVq1fx9PRkyZIlpS5oZ86c4fXXX2fz5s0VnPLhSUETogi7L+5mXuQ8\nKWSiaIpSdMHL37xZs2bx1+E5OOhvGVTJdDodvr6+fPHFF6SmpjJ37lwaNmzI8ePH6dixI2vXruXg\nwYP861//AuDevXucOHGC3NxcANq1a0dUVBQ2NjaVnr00pMlRBVpvhzfl/Lsv7mZu5FzOXjvLO73e\nYXL7yUZXyEx5+xs7Q3adTn/huK0t3DeSEaAveFeuFCx2J0/Cb7/9M12tWvGXJTg46Js8K8Dx48dp\n2bIlKSkpxMTEEBsbS5MmTejRowe7d++mR48exMTEAPDmm28ycOBAw7IeHh7s3buXAQMGVEi2RyUF\nTQhg18VdzIucZ9SFTGiITqfva2vUCDw9Cz+vKJCeXvDILi4Ofv/9n8eqVCm54NWt+1DRauc7MvT0\n9KRp06YAuLu7Ex8fT4//9TkGBwdz+PBhwsLCDPM3bdqU+Pj4h3rdyiAFTQVa/Xaax5Ty77q4i7kR\nczl3/Rzv9nqXye0nY21p3GMQmtL215pyy67TwWOP6X86dy78vKLo73mXvwnzzJmCd0ywsiq+2Dk6\n6s/iLEL+7pqq+S5Ot7S05N69e4D+KG7evHns3LmzwNCDiqIUO2C8MZCCJszSzoSdzIucp6lCJsyI\nTqcfKaVhQ+jYsfDzigLXrxds0jx3DrZv/2fawqJwsQMyMzNLfOmMjAzGjRvHmjVraNCgQYHnUlNT\njfoLiRQ0FWi5DwG0nX9nwk5e+b9XyGicwbu932VSu0maK2Ra3v6g7fxGk12ng/r19T8dOhR+XlEg\nI6NgwbtwAYA2bdoQFxeHTqcrcuD3zZs3c/HiRaZNm2Z47PDhwwDExMTw6aefVuAbezRS0IRZiEqI\nYl7kPC5cv8BIp5HMf3q+5gqZEKWm0+lHSqlXDzw8/nn800+ZMGECP//8M7NmzaJPvnE2P/vsM8Pv\nkydPLrTK06dP4+joSN2H7LurDHLavjBpUQlRzI2YS8KNBN7t9S4T202UQibMlk6n4+7du/j6+hIZ\nGVmm/rAZM2YwfPhwevbsWYEJH40UNGGSIuMjmRc5TwqZEPmY+r7TQu0A5ijvFulaZcz5I+Mj8V7t\nzTObn2Fy+8mc+vcppnpMLVDMjDl/aUh+9Wg5uzmQPjRhEiLiI5gbMZekm0m81/s9JrSbgJWFfLyF\nMCfS5Cg0LTI+kjkRc6SQCVEKpr7vlP98oUm5Si7/Cf8P3x79lv96/1cKmRBC+tDUoPV2eLXz37x7\nk6eCnyIqIYqDzx5kivuUMhUztfM/KsmvHi1nNwdS0ISmnLt2jm7fdKNxzcb8MfkPGtVspHYkIYSR\nkD40oRnbz29n/E/jmdNnDi90esGox5QTwhiZ+r5TlSO09957j/bt2+Pu7o6Pjw+JiYmG5xYuXEiL\nFi1wdXVl27ZtasQTRkZRFD7b/xkTfprA+hHrmd55uhQzIUQhqhS0N998k6NHj3LkyBGGDRvGvHnz\nAIiNjSU4OJjY2FhCQ0OZPn264cZypkTr7fCVmT8rJ4tntzzL14e/Zs8ze/Bu7v3I65Ttry4t59dy\ndnOgSkHLfz+ezMxMGjZsCEBISAjjxo3D2toaR0dHnJ2diY6OViOiMAJpmWn0Xd2X9Nvp7Hl6D071\nnNSOJIQwYqqd5/zOO++wZs0aqlevbihaKSkpdO3a1TCPvb09ycnJakWsMEYxWvcjqIz8MakxDAse\nxpT2U5jrNRcLXfl995Ltry4t59dydnNQYQXNz8+PS5cuFXp8wYIFDB48mPnz5zN//nwCAwN59dVX\nWbVqVZHrKa6vJCAgAMf/3d/HxsYGd3d3w4ctr1lAprU5PWfVHJbuX8r/e+n/Mar1KNXzyLRMa3U6\nIiKCoKAgAMP+0qQpKktISFBat26tKIqiLFy4UFm4cKHhOX9/f2Xfvn2FljGC2I8kPDxc7QiPpKLy\n5+TmKO9sf0dx+MRBiUmNqZDXUBTZ/mrTcn4tZ1cU7e87H0SVPrQzZ84Yfg8JCcHjf/frGTJkCOvX\nrycrK4sLFy5w5swZPD091YgoKtlfd/9iePBwIhMiif5XNO6N3dWOJITQGFWuQxs5ciRxcXFYWlry\nxBNP8NVXX9Gokf4C2QULFrBy5UqsrKxYtmwZ/v7+hUOb+LUU5ub89fMMWTeE7s268/nAz6liWUXt\nSEKYJFPfd8qF1UJVOy7sYPyP43mv93tyfZkQFczU950y9JUK8jpttao88iuKwufRnzP+x/F8P+J7\n/u3570orZrL91aXl/FrObg5keHJR6bJysvj3r/9mX/I+9jwj15cJIcqHNDmKSnX578uM2DCCBtUb\nsOapNdSuWvvBCwkhyoWp7zulyVFUmiOXjuC5whMvBy9+GvOTFDMhRLmSgqYCrbfDP0z+jSc24rfG\nj8V+i/lv3/+W68gfZWWO29+YaDm/lrObA+lDExUqV8llTvgc1hxbw7aJ2/Bo4qF2JCGEidJsH9qd\nO3fo168f4eHhREVF8dFHH7Fly5aHWl9QUBCHDh3is88+K+ekZbd8+XJq1KjBpEmTKmT9ISEhtGzZ\nklatWlXI+vP76+5fTNo0iau3r/Lj6B/lZpxCqEz60IzUd999x5NPPomFRcW9hZycnApbd3Gee+65\nCitmAJs2bSI2NrbI58rz/Z6/fp7uK7vzWI3H2D55uxQzIUSF02xBW7duHUOHDjVMZ2ZmMmrUKFq1\nasXEiRMB2LFjB0899ZRhnrCwMIYPHw7AqlWrcHFxoUuXLuzZs8cwT0BAAM8//zxdu3Zl1qxZHDly\nhK5du9K+fXuGDx9ORkYGoB/4c/bs2XTp0gUXFxd27doFQHx8PL1796Zjx4507NiRvXv3Avq29z59\n+jBs2DDs7OyYPXs2a9aswdPTk3bt2nH+/HkA5s6dy0cffQTA2bNn8fX1xd3dnY4dOxrmyW/t2rV0\n6dIFDw8Pnn/+ecP942rVqsW7776Lu7s73bp14/Lly+zZs4ctW7Ywc+ZMOnTowPnz5/Hy8uK1116j\nc+fOzJ8/HycnJ+7duwfAzZs3cXJyKlToHtSPsDdxL92/6c5zHZ/j68FfG93IH1rvB5H86tFydnOg\n2YJ2/PhxWrZsaZiOiYlh2bJlxMbGcv78efbs2UPfvn05deoUV69eBfRF7JlnniE1NZW5c+eyZ88e\ndu3aRWxsbIGLelNSUti7dy9Llixh8uTJLF68mKNHj9K2bVvDzUh1Oh05OTns37+fpUuXGh63tbUl\nLCyMQ4cOsX79el5++WXDeo8dO8by5csJCgpizZo1nDt3jujoaKZNm2Zo7tTpdIYsEyZM4KWXXuLI\nkSPs3buXJk2aFNgGJ0+eZMOGDezZs4eYmBgsLCz47rvvALh16xbdunXjyJEj9O7dmxUrVtC9e3eG\nDBnCkiVLOHz4ME5OTuh0OrKzszlw4AD/+c9/8PLy4tdffwVg/fr1jBgxAktLy1L/XbJyspjy8xS+\nHPQlL3q+KCN/CCEqjWYLWv6bhAJ4enrStGlTdDod7u7uXLhwAYBJkyaxZs0aMjIy2LdvHwMGDGD/\n/v14e3vToEEDrK2tGTNmjKFdWafTMWrUKHQ6HTdu3ODGjRv06tULgClTphAVFWV4zbyjvQ4dOhAf\nHw9AVlYW06ZNo127dowePZqTJ08a5u/cuTO2trb4+fnh7OxsGKeyTZs2huXzZGZmkpKSYjgKrVKl\nCtWrVy8wz/bt2zl06BCdOnXCw8ODHTt2GN53lSpVGDRoEAAdO3YssP7729DHjBlj+H3atGmGW/kE\nBQUxderUQts+7zYVRfnqwFc8Uf8JhrcaXuw8aispvxZIfvVoObs50OxZjvfvlKtWrWr43dLS0tBs\nNnXqVAYPHky1atUYPXo0FhYWhTpG719XjRo1yvSa+V/vk08+oUmTJqxZs4acnByqVatWZEYLCwvD\ntIWFhWH5spoyZQoLFiwo9Li1tXWB18q//vuPmmrWrGn4vXv37sTHxxMREUFOTg5ubm6lznLt9jXm\n75xP+JTwsrwFIYQoF5o9QsvMzCzVfE2aNKFp06Z88MEHhqMNT09PIiMjuXbtGtnZ2WzcuLHIprG6\ndetSr149Q//YmjVrHvgN7ebNmzRu3BiAb7/9tsgTLUpqh1cUBUVRqFWrFvb29oSEhABw9+5dbt++\nXWBeHx8ffvjhB65cuQLAtWvXuHjxYon5ateuzc2bN0ucZ/LkyUyYMIGnn366yOeLy/9B1AcMbzWc\n1o1al7h+tWm9H0Tyq0fL2c2BZgtamzZtiIuLAwr2O+XJPz1+/Hgef/xxXFxcAH2Rmzt3Lt26daNn\nz560bt262GVXr17NzJkzad++PceOHeM///lPkXnylpk+fTqrV6/G3d2duLg4atWqVeR6718277n8\nv69Zs4ZPP/2U9u3b06NHD9LS0gos16pVKz744AP69etH+/bt6devn+Eu4flfK/86x44dy+LFi4s9\nySRve12/fp1x48YV+XxRzl47y7dHv2We17xSLyOEEOVJs9ehrVq1irS0NGbNmvXA+V988UU6duxY\nZH+QKOyHH35gy5YtrF69utTLjNgwgk5NOvFWr7cqMJkQ4lGY+nVomi1od+/exdfXl8jIyBLPpOvY\nsSO1a9cmLCysQL+SKNpLL73E77//ztatW3F2di7VMlEJUUzaNIlT/z5FdevqD15ACKEKUy9omm1y\nrFKlClFRUQ88LfzQoUNEREQYVTEz5nb4zz77jNOnT5dYzPLnz1VyeX3b6yz0WaiZYmbM2780JL96\ntJzdHGi2oOXn6OjItWvXynWdCQkJrFu3zjAdFBTESy+9VOS8Pj4+/PXXX+X6+lrx/Z/fY6GzYGyb\nsWpHEUKYOZMoaBVx8e6FCxf4/vvvS/UaY8eOZcWKFaVet9avZcnLfyv7Fm9vf5uP+32s6uj5ZWUq\n21+rtJxfy9nNgXb2QqVUlqGgAM6dO0fXrl1p164d7777ruGC7dmzZ7Nz5048PDxYunQpoB9BZMCA\nAbRs2bLAyShDhgxh/fr1lfxO1ffJ3k/oYt+FHo/3UDuKEEKoW9A++ugjLCwsCjQXLly4kBYtWuDq\n6sq2bdvKtL6yDgUF8Morr/Daa69x7NgxmjVrZljXokWL6NWrFzExMbz66qsoisKRI0fYsGEDf/75\nJ8HBwSQlJQH64a7S09P5+++/S5VT6+3wERERXMq8xCf7PiHQJ1DtOGVmCttfy7ScX8vZzYFqBS0x\nMZGwsDAcHBwMj8XGxhIcHExsbCyhoaFMnz7dcIT1IIqiPNRQUPv27WPUqFEABa67uv9MIJ1Oh4+P\nD7Vr16Zq1aq4ubmRkJBgeN7W1pbExMRSZT1y5Eip5jNWR44c4T/h/2Gq+1SeqP+E2nHKzBS2v5Zp\nOb+Ws5sD1Ya+mjFjBh9++GGBEfNDQkIYN24c1tbWODo64uzsTHR0NF27di31eh9mKKjSun94rfyj\ngCiKUuq+vLwR+7UqLimOkHshxL0Yp3aUh6L17S/51aPl7OZAlSO0kJAQ7O3tadeuXYHHU1JSsLe3\nN0zb29uTnJxcqnXmHUGVdSiorl278sMPPwAU6AerXbt2gTMXi7p2I/9jaWlpBbKbKkVR2HZuG+/1\nfg+bajZqxxFCCIMKO0Lz8/MzDMOU3/z581m4cGGB/rGSLvQrzVFP3jz5h4LKzc3F2tqaL7/8kscf\nf7zYoaCWLl3KxIkTWbBgAf7+/tStWxeA9u3bY2lpibu7OwEBAdSrV6/Y4bUuXbpEgwYNCgzyW5L7\nR9bXktCzoaSnpPNcx+fUjvLQtLz9QfKrScvZzUGljxRy/PhxfHx8DCPaJyUlYWdnx/79+w23LZk9\nezYA/fv3Z968eXTp0qXAOpydnTl37lxlxhZCCM174oknOHv2rNoxKozqQ181b96cQ4cOUb9+fWJj\nYz3NXVUAAAaoSURBVBk/fjzR0dEkJyfj6+vL2bNnK/Qmkbt27eLFF19EURTq1avHypUrcXJyKtM6\nfHx8CAkJKTAQsRBCiMql+v3Q8hcrNzc3Ro8ejZubG1ZWVnz55ZcVfsfjnj17PvKZS9u3by+nNEII\nIR6W6kdoQgghRHnQ7EghM2fOpFWrVrRv357hw4dz48YNtSOVycaNG2ndujWWlpYcPnxY7TilFhoa\niqurKy1atGDRokVqxymTp59+GltbW9q2bat2lDJLTEzE29ub1q1b06ZNGz799FO1I5XJnTt36NKl\nC+7u7ri5ufHWW9q8zVBOTg4eHh4MHjxY7Shl5ujoSLt27fDw8MDT01PtOBVCswWtX79+nDhxgqNH\nj9KyZUsWLlyodqQyadu2LZs2baJ3795qRym1nJwcXnzxRUJDQ4mNjWXdunWcPHlS7VilNnXqVEJD\nQ9WO8VCsra355JNPOHHiBPv27eOLL77Q1LavVq0a4eHhHDlyhGPHjhEeHm64E7yWLFu2DDc3twrv\nCqkIOp2OiIgIYmJiiI6OVjtOhdBsQfPz88PCQh+/S5cuhmGotMLV1ZWWLVuqHaNMoqOjcXZ2xtHR\nEWtra8aOHUtISIjasUqtV69e1KtXT+0YD6Vx48a4u7sD+nFJW7VqRUpKisqpyibvzOasrCxycnKo\nX7++yonKJikpia1btzJt2jTN3lNMq7lLS7MFLb+VK1cycOBAtWOYvOTk5ALjXZblwndRfuLj44mJ\niSl0OYuxy83Nxd3dHVtbW7y9vXFzc1M7Upm89tprLF682PBFWmt0Oh2+vr506tSpTHcH0RLVz3Is\nSXEXZy9YsMDQhj1//nyqVKnC+PHjKzveA5Umv5ZosZnF1GRmZjJy5EiWLVumuctELCwsOHLkCDdu\n3MDf35+IiAjN3I7ll19+oVGjRnh4eGh2gOLdu3fTpEkTrly5gp+fH66urvTq1UvtWOXKqAtaWFhY\nic8HBQWxdetWoz1t/kH5tcbOzq7AAMyJiYlmMdyXscjOzmbEiBFMnDiRYcOGqR3nodWtW5dBgwZx\n8OBBzRS0PXv2sHnzZrZu3cqdO3e4efMmkydP5ttvv1U7Wqk1adIEgMcee4ynnnqK6Ohokyto2jx2\nRn+23eLFiwkJCaFatWpqx3kkWmnX7tSpE2fOnCE+Pp6srCyCg4MZMmSI2rHMgqIoPPPMM7i5ufHq\nq6+qHafM0tPTDQP73r59m7CwMDw8PFROVXoLFiwgMTGRCxcusH79evr27aupYnbr1i3D2LR///03\n27Zt0+TZvg+i2YL20ksvkZmZiZ+fHx4eHkyfPl3tSGWyadMmmjVrxr59+xg0aBADBgxQO9IDWVlZ\n8fnnn+Pv74+bmxtjxoyhVatWascqtXHjxtG9e3dOnz5Ns2bNDEOtacHu3btZu3Yt4eHheHh44OHh\noakzNlNTU+nbty/u7u506dKFwYMH4+Pjo3ash6a15ve0tDR69epl2P5PPvkk/fr1UztWuZMLq4UQ\nQpgEzR6hCSGEEPlJQRNCCGESpKAJIYQwCVLQhBBCmAQpaEIIIUyCFDQhhBAmQQqaEOXojTfeKNPQ\nSGlpaTIOqRDlRAqaEOXkr7/+IioqqkzDOdna2lKvXj1N3RNPCGMlBU2IYixfvtwwKkfz5s3p27dv\nifOHhITg6+trmHZ0dOTtt9/Gw8ODTp06cfjwYfr164ezszPLly83zDdkyBDWrVtXYe9DCHMhBU2I\nYjz33HPExMRw4MABmjVrxuuvv17i/Lt376ZTp06GaZ1Oh4ODAzExMfTu3ZuAgAA2bdrEvn37mDNn\njmE+T09PoqKiKux9CGEujHq0fSGMwcsvv4yPjw+DBg0qcb6EhATDiOZ58gZvbtu2LX///Tc1a9ak\nZs2aVK1alZs3b1KnTh2aNGlCfHx8RcUXwmxIQROiBEFBQSQmJvLll1+Wav7c3NwC01WrVgX09wKr\nUqWK4XELCwvu3bsH6EfS19pgt0IYIyloQhTj0KFDfPTRR+zcubNU8zs4OBR5Q1co+RZBqampODg4\nPFRGIcQ/pA9NiGJ88cUXXL9+HW9vbzw8PHj22WdLnL9nz54cPHjQMJ3/qEun0xWazhMdHU3v3r3L\nMbkQ5kluHyNEOcnMzMTb25sDBw6UabkJEybwxhtvaOqGl0IYIzlCE6Kc1KpVC29vb8LDw0u9zOXL\nl8nIyJBiJkQ5kCM0IYQQJkGO0IQQQpgEKWhCCCFMghQ0IYQQJkEKmhBCCJMgBU0IIYRJkIImhBDC\nJPx/NycoLOaJwxIAAAAASUVORK5CYII=\n", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFOf6N/DvLL0XC0REARULCItd0QgaC7HEKDF6kliP\nqcYYzbEkJ7GkqIknJjEnv1cTI5ZYYuxGOaKCvYRmTdSoKCKiCEhnd9nn/WNgZhcWWGDLAPfnuvZi\nn6n33LvsPfvMzgzHGGMghBDSZMnMHQAhhBDzokJACCFNHBUCQghp4qgQEEJIE0eFgBBCmjgqBIQQ\n0sRRISCEkCaOCgEhhDRxVAjK3L9/H5MmTYKnpyc2bdokDL958yYCAgIwb948ZGdn6728BQsW4PDh\nw3WKpT7z6mvVqlX46KOPsGbNGgDA+fPn8eKLL6J169ZQqVQAgIyMDEyYMAEjR47EmTNnDLbuLVu2\noEWLFgZbniGo1Wp88MEHCA8PN+p6anptr1+/jv79+2PDhg3VLic2NhatWrVCamqqXss1hfrGYIz3\nhanea/q+bpLFiCAhIYH5+flpDUtNTWXbt2836noHDRrElEqlUdehKScnh/Xp04edP3+eXblyRRj+\n//7f/2Ph4eFs27ZtwrBNmzaxwsJCg64/MTGRRUZG1jidqfOybt06tnTpUpOtr1zF7Rw4cCBLSUmp\ndh6lUsnkcrmxQzMpfd8X5l5mubq8blJF3wg0+Pj4IDU1FWq1Whi2Y8cOjB8/3mjrTEtLA2MMlpaW\nRltHRefPn4dcLkevXr0QEBAAgN8jtrKywqxZs/Ddd98J0xYUFMDOzs6g6z927BgGDRpU7TTmyEts\nbCwGDhxosvUBlbezsLAQDx48QNu2baudLyEhAT179jRFiCajz/tCCssE6v66SZXF4sWLF5s7CKmw\ns7PD119/jYkTJ8LV1RU7d+7Ec889h4yMDHzzzTcoLi7GkiVLYG1tDX9/fyQmJuLEiROYOXMmnj59\nirfffhsRERE4dOgQli5dipdeegkAcOPGDZ3zx8TE4IsvvoCzszMKCwvh7e2NvXv3as2blpaGb7/9\nFvn5+diyZQu8vb2RkpKC3bt3Y+/evcjNzcXVq1excuVKvPDCC1XO4+7uDoAvAl9++SUcHBxQWlqK\nzp07A+A/WLy9vTFgwAB88cUXGDBgAJ555hkkJiaiZcuWOHr0KJYuXYrIyEgolUoMGzYMkyZNAgDk\n5ubixx9/RGZmJvbv34++fftWO3zZsmV444030Lx5c1y9ehX/+c9/oFAosG3bNgwcOFDIi4uLCwoL\nC1FaWlrl9qamplYZ25UrV3DgwAFs2rQJBQUFuHbtmpDv69evY+nSpQgKChJyM3v2bPTo0QOXL1/G\nsWPH0KdPn0rxOTk54fjx45Ve8+zsbBw7dgxff/01Ro8ejaSkJCxbtgwREREYPHgwOnTogDNnzmi9\nthVf/+DgYMTGxuLcuXNo3bo1fv/9d8THx6NXr15a7yOFQoFvvvkGo0ePRqtWrbTeM7XdZl3bV917\nS9drmpWVhX379tX7fav5vtAV28CBAw3+XktISMCePXuqjKm0tBTLli3D48ePcfz4cfzwww9wcHCo\n1evWIJj3C4n0dOvWjR07doylpaWxrVu3svz8fBYcHMyys7MZY4yFh4ezjIwMxhhjly5dYhcvXmSD\nBw9mjDFWVFTEYmJiWHZ2NuvRowdjjFU7P2OMTZw4kcXHxzPGmM55e/bsyTIzMxljjB08eJC9+eab\n7NChQ+zo0aNszJgxjDHG1Gq10KVV1Tyaxo0bp9UlxBjfLVLuq6++YlOmTGF//fUXi4uLY4cPH2ap\nqalswIABjDHGTp48yaZNmyZMv2HDBjZv3jyWnZ3Npk+fXu1wlUrFOnXqxBhjLCMjg7Vt25Y9evSI\nMcbYwoULdealuu3VFVv5ug4dOsQSEhJYeHi4sNz27duzW7duMcYYe/PNN9nvv//OGGPsxo0bLCws\nTJiudevW7NGjR5Xiu3z5MktOThZe8+LiYiGOmzdvsueff54xxtgXX3zBoqKiGGOM/d///R9bu3at\n1murazsZY2z+/Pnsyy+/ZIwxdvbsWaFbQ9f76NGjR5XeM7XZZl35ry7XVb2mhnjfar4vqoqtqvVX\nNVyf91pN27tgwQLhddy8eTP7+uuva/W6NRTUNVSBn58fbt26hW3btmHChAnYtWsXunbtCldXVxQX\nFyM/Px8tW7YEAHTt2hUxMTHCXpCtrS2ee+45REVFYcqUKQBQ7fyMMSQlJaF79+4AUGne7du3o0eP\nHmjWrBkA4Nq1a7C3t8fw4cMRExOD1157DQBw9uxZoZugqnk0/fnnn+jSpYvWMM3usH/+85/Yv38/\n9u3bh759+2LIkCGIiorCq6++CgA4evQohgwZIkwfERGBzMxMdO3aVdiWisN79OgBAPjjjz+EWHfs\n2IG2bdsiKSkJv/zyC959912dealue3XF9txzz2nNVz7u1q1b8PPzg5+fHwDg1KlT6Nevn/B8xIgR\nAPgDf87OztixYwfatGmjFV9gYCCOHDkivOY2NjZCHBs2bMDLL78MADh+/LgQh5ubG2bMmKH12ura\nTgCIi4sTpjly5IjQraHrfdSiRYtK75nabLOu/FeX66pea0O8bzXfF9W9Nwz9XqsuJpVKhTVr1giv\naVxcHIYMGVKr162hoEJQgY+PD9auXYsXX3wRAJCZmYng4GAA/Avcp08fREdHC9MfOXIEQ4cO1VrG\n1q1b8eqrr+L333+vdv5r164JXTPbtm2rNK9SqUT79u0BAEVFRdi5cyfmzJkDgO/PHjx4MABg48aN\nmDFjBqKjo6udB+B/CdS8eXNwHCcMUyqVsLa2Ftqurq6IjIxEbGysMPzcuXPo37+/sB3h4eH43//+\nhwsXLuCjjz7CunXrkJCQgOPHjwPgu6A0h8fFxQEATp48ibCwMOzevRt2dnaIiIjA0KFD8corrwix\n6MpLVdtbXWwVX5+YmBgMGzYMAHDmzBnI5XKkpaXh/v37yM7ORmBgIABg8+bN+Ne//gVbW1s8//zz\nWvEpFAqdrzkAJCYmCh9Cqamp8PLyEn6BVfG11fX6P336FEqlUviVy44dO/CPf/yj0vsoJiZG631U\ncbn6brOu/CsUiipzXdVrXTGGurxvNd8XAHTGVvE9ZYj3WnUxFRYWwsvLC7a2tlAoFLh06RICAwNr\n9bo1FHSMoIK7d+8iKChI+Efy9fXFwYMHwRjDo0eP8OjRIzRv3hyBgYFgjOHHH3/E+++/r7WMY8eO\nAQCeffZZBAQEVDm/Wq3GqVOnUFRUhPDwcDg6OmrNK5fLERMTg6KiIuzevRvz589Hu3btUFhYiL17\n9+Kf//wnAP6N7OLiAi8vL4SHh+ucRzM2mUwmvPH/+OMPvPfee7h37x569+4NZ2dnAPw3o6KiIgwY\nMAAAfzAsKSkJ6enpePz4MZRKJUJDQ2FjY4OioiI8ePAAJ06cwPvvvw9nZ2colUqdwzMzM3Hz5k10\n7twZw4cPx9GjR1FYWIg///wTaWlp6NKlS6W8yGSyKrfXy8tLZ2z9+/eHvb091q9fj1mzZgEA1q5d\niylTpqBZs2Z48OABUlJSYG1tjb59+6JNmzbYv38/UlJSYGNjg9dffx2dOnWqFF9AQADWrl2rVVw1\nnThxAunp6XBwcMDTp09x/vx5vPTSS7CystJ6bR0cHLS2MywsDFeuXIGtrS3CwsKE14rjOISGhqJr\n165a76MnT56gZcuWCAgIEJY7cOBA2Nra6r3NurbPz8+vyly3aNFC52ta8T1fl/etjY2N8L7w8fGp\nMjZDv9eqiql169bw8/PDgwcP8OTJE+zatQuWlpZ48cUXa/W6OTk51fyhIwEcY8a5MU1xcTEGDhyI\nkpISKBQKvPDCC1i2bBkWL16Mn376Saiey5Ytw/Dhw40RAtGQkJCAH3/8Ee7u7nj55ZeFvUtCiG4P\nHz6Eq6srbG1tsWLFCnTo0AFjx441d1hGYbTf5tna2iI2Nhb29vZQqVTo378/Tp06BY7jMGfOnCr3\nqIhxWFhYoHXr1rC3t6ciQIge/v3vf6Nbt25wdXWFhYVFoy0CgBELAQDhIKVCoUBpaSnc3NwA8AfJ\niGnJ5XLI5XJzh0FIg/HTTz+ZOwSTMerBYrVaDblcDg8PD4SHhwsnL61evRrBwcGYPn06cnJyjBkC\nIYSQGhjtGIGmp0+fYtiwYVi+fDm6dOkiHB/4+OOPkZ6ejnXr1hk7BEIIIVUwyfn7Li4uGDFiBOLj\n44Uj6wD/e/VRo0ZVmr59+/a4deuWKUIjhJBGo127dvj7779rPZ/RuoYyMzOFbp+ioiLExMQgJCQE\nDx8+FKbZvXs3unbtWmneW7dugTFGD8awaNEis8cglQflgnJBuaj+UdcdaKN9I0hPT8fkyZOhVquh\nVqvx2muvYfDgwZg0aRKSk5PBcRx8fX2FyyAT3VJSUswdgmRQLkSUCxHlov6MVgi6du2KxMTESsM3\nbtxorFUSQgipA7rEhMRpXpumqaNciCgXIspF/ZnkV0O1xXEcJBgWIYRIWl0/O+kbgcSVX0CLUC40\nNdRcuLu7g+M4etTzUX4/CUMx3e2fCCFNXnZ2Nn3bNwDNqwcbZHnUNUQIMRX63zaMqvJIXUOEEELq\nhAqBxDXUvmBjoFyIKBfEkKgQEEJIE0eFQOI0r83U1FEuRJQLw/Px8YG9vT2cnJzg6emJqVOnoqCg\noF7LTElJQXh4OBwcHNC5c2ccPXq0ymkjIiLg5OQkPGxsbBAUFFSv9euLCgEhhIA/0HrgwAHk5eUh\nMTER8fHx+Oyzz7Sm0bwHtT4mTpyI7t27IysrC59//jkiIyORmZmpc9pDhw4hLy9PePTr1w/jx4+v\n8/bUBhUCiaO+YBHlQkS5MK5WrVohIiICV65cgUwmww8//IAOHTqgY8eOei/jxo0bSEpKwpIlS2Bj\nY4OxY8ciKCgIO3furHHelJQUnDx5EpMmTarPZuiNCgEhhJQp/+llamoqDh48iJCQEADA3r178ccf\nf+DatWsAgKCgILi5uel8zJw5EwBw9epV+Pn5wcHBQVh+cHAwrl69WmMcGzduxLPPPos2bdoYehN1\nohPKJI76gkWUC1FjzoWhzpWq7c/pGWMYM2YMLC0t4eLigpEjR+LDDz/EZ599hoULF8LV1VWY9tKl\nSzUuLz8/Hy4uLlrDnJ2dkZaWVuO8GzduxCeffFK7DagHKgSEEEkx1/lmHMdh7969GDRoUKVx3t7e\ntV6eo6MjcnNztYbl5OTA2dm52vlOnTqFjIwMREZG1nqddUVdQxJHfcEiyoWIcmFaFS/pEBAQoPUL\nH83H22+/LUxz+/Zt5OfnC/NdvHhRuHd7VTZs2IBx48bB3t7e8BtSBfpGQAghtaRPP7+/vz/kcjmW\nLFmCTz/9FAcPHsSVK1cwbty4KucpKirCjh07sGfPHkOGWyP6RiBxjbkvuLYoFyLKhenU5wJv27Zt\nQ3x8PNzd3fHRRx9h586daNasGQDg5MmTcHJy0pp+z549cHNzM/nrSxedI4SYDP1vGwZddK6Job5g\nEeVCRLkghkSFgBBCmjjqGiKEmAz9bxsGdQ0RQggxKMkWAtpp4FFfsIhyIaJcEEMyWiEoLi5G7969\nIZfL0aVLFyxcuBAAkJWVhSFDhsDf3x9Dhw5FTk6OzvlreZE/QgghdWTUYwSFhYWwt7eHSqVC//79\nsXLlSuzbtw/NmzfHvHnzsGLFCmRnZ2P58uXaQXEc8vMZNK7VRAhpBOgYgWE0qGME5adIKxQKlJaW\nws3NDfv27cPkyZMBAJMnT67yDDqFwpiREUIIKWfUQqBWqyGXy+Hh4YHw8HAEBAQgIyMDHh4eAAAP\nDw9kZGTonJcKAY/6gkWUCxHlghiSUa81JJPJkJycjKdPn2LYsGGIjY3VGs9xXJWnb8+cOQUBAT4A\nAFdXV8jlcuG06/J/Amo3rXY5qcRjznZycrKk4qlNW6p8fHzw6NEjWFhYwMHBAREREfj++++17idQ\nG48fP8asWbNw4sQJFBQUIDAwEF9//TV69eplsJjj4uIQFRUlxF9nzESWLl3KvvrqK9axY0eWnp7O\nGGPswYMHrGPHjpWmBcD+/ttUkRFCTMWEHzm15uPjw44ePcoYYywtLY0FBgayBQsWaE2jVCr1Xt7t\n27fZqlWr2MOHD5larWZr165lzZs3Z/n5+fWOtao81jW/RusayszMFH4RVFRUhJiYGISEhGD06NHY\nsGEDAP5yq2PGjNE5P3UNEULMxRC3qvT19cXs2bPh4eEBjuMwY8YMKBQK3Lhxw4iR143RCkF6ejoG\nDRoEuVyO3r17Y9SoURg8eDAWLFiAmJgY+Pv749ixY1iwYIHO+akQ8KgvWES5EFEujIMZ8FaVFSUn\nJ0OhUKB9+/am2ZhaMNoxgq5duyIxMbHScHd3dxw5cqTG+UtKjBEVIUTquCWGuVclW1S7n1EyA9+q\nUlNubi5ee+01LF68uNKlp6VAstcaOnmSoX9/c0dCCDEkKZ9H4Ovri3Xr1lW6VaVMJsPNmzfRrl27\nOi23qKgIw4cPR6dOnbBmzRpDhNqwziOoD+oaIoRIRV1uVQkAJSUlGDNmDNq0aWOwImAMVAgkjvqC\nRZQLEeXCvK5evYq8vDydjx9++AEAoFQqERkZCXt7e+EnnlIl2XsWUyEghEhBXW9VeebMGfz++++w\nt7fXOr4QHR2N0NBQQ4VnEJI9RrBjB0NkpLkjIYQYkpSPETQkdIyAEEKIQVEhkDjqCxZRLkSUC2JI\nVAgIIaSJk+wxgtWrGao4QY8Q0kDRMQLDoGMEhBBCDIoKgcRRX7CIciGiXBBDokJACCFNnGSPEXz0\nEcNnn5k7EkKIIdExAsOgYwSEEEIMigqBxFFfsIhyIaJcGJ6Pjw/s7e3h5OQET09PTJ06FQUFBQZb\nppOTE4YPH26gaA2LCgEhhIDvVjlw4ADy8vKQmJiI+Ph4fFahf1qlUtV5mXl5eYiOjjZkyAZDhUDi\npH7Db1OiXIgoF8ZliFtVlmsIx0SoEBBCSBlj3KrylVdeQcuWLTFs2LBa39nMZOp0y3sjA8DGjzd3\nFNIQGxtr7hAkg3Ihaqi50OsjBzDMo5batm3LHB0dmaurK2vbti175513WFFREeM4rs75PnPmDCsu\nLmaFhYVs2bJlzNPTk+Xk5NRpWZqqymNdP9LpGwEhRFoMVQpqieM47N27F9nZ2UhJScH3338PW1tb\nAIC3t3edNqVv376wsbGBnZ0dFixYAFdXV5w8ebJOyzImKgQSR33BIsqFiHJhWnW9VWVNy5EKukMZ\nIYTU0tWrV2ucJjU1Fffu3UPPnj2hVquxevVqPHnyRHJ3JwPoG4Hk0e/FRZQLEeXCdOq6F5+Xl4e3\n334b7u7uaN26NQ4fPoxDhw7Bzc3NwBHWn9G+EaSmpmLSpEl49OgROI7D66+/jlmzZmHx4sX46aef\n0KJFCwDAsmXLdJ5kQYWAEGJKd+7c0Tm8tLS0Tsvr0qULLl68WJ+QTMZo1xp6+PAhHj58CLlcjvz8\nfHTv3h179uzBr7/+CicnJ8yZM6fqoDgO3boxJCQYIzJCiLnQtYYMw9DXGjLaNwJPT094enoCABwd\nHdG5c2ekpaUB0O8EC/pGQAghpmGSYwQpKSlISkpCnz59AACrV69GcHAwpk+fjpycHJ3zUCHgUV+w\niHIholwQQzL6r4by8/MRGRmJb7/9Fo6OjnjrrbfwySefAAA+/vhjzJ07F+vWras0X1raFCxe7AMA\ncHV1hVwuF34yV/5PQO2m1S4nlXjM2U5OTpZUPLVpE8OJi4tDVFQUAP4Cd3Vl1PsRKJVKjBw5EhER\nEZg9e3al8SkpKRg1ahQuX76sHRTH4ZlWajxIk+ZvbgkhdUPHCAyjwdyPgDGG6dOno0uXLlpFID09\nXXi+e/dudO3aVef8itISY4VGCCFEg9EKwenTp7F582bExsYiJCQEISEhOHToEObPn4+goCAEBwfj\n+PHjWLVqlc75FepiY4XWoFBfsIhyIaJcEEMy2jGC/v37Q61WVxoeERGh1/xUCAghxDQke89izu0O\n1Fk+5g6FEGJAdIzAMBrMMYJ6syxGHU/oI4SQWjPGrSpTUlIQHh4OBwcHdO7cGUePHq1y2oiICK2L\n19nY2CAoKKhe69eXZAuBlV0xnUsA6gvWRLkQUS4Mzxi3qpw4cSK6d++OrKwsfP7554iMjERmZqbO\naQ8dOiTc0jIvLw/9+vXD+PHj67w9tSHZQmBJhYAQYiaGuFXljRs3kJSUhCVLlsDGxgZjx45FUFAQ\ndu7cWeO8KSkpOHnyJCZNmlSfzdCbdAuBLRUCgE7C0US5EFEujKO8f90Qt6q8evUq/Pz84ODgICw/\nODhYr0tYb9y4Ec8++yzatGlj6E3USbL3I7C0LUIJnUpASJPDGajbi9WyWDLGMGbMGFhaWsLFxQUj\nR47Ehx9+iM8++wwLFy6Eq6urMK0+9x7Oz8+Hi4uL1jBnZ2fhmmvV2bhxo3AFBlOQcCGgbwQA3xdM\ne388yoWoMeeith/ghlJ+q8pBgwZVGleXW1U6OjoiNzdXa1hOTg6cnZ2rne/UqVPIyMhAZGRkrddZ\nV5LtGrKwoUJACJGGutyqMiAgALdv30Z+fr4w38WLFxEQEFDtujZs2IBx48bB3t7e8BtSBcl+I5BZ\nUyEAqC9YE+VCRLkwL336+f39/SGXy7FkyRJ8+umnOHjwIK5cuYJx48ZVOU9RURF27NiBPXv2GDLc\nGkn3GwEVAkKIBNTnhvPbtm1DfHw83N3d8dFHH2Hnzp1o1qwZAODkyZNwcnLSmn7Pnj1wc3MzeaGX\n7JnFbSd8jS3vvo9+/cwdjXk15r7g2qJciBpqLujMYsNoMmcWy6zoGwEhhJiCZAsBR4UAAPUFa6Jc\niCgXxJAkWwhAhYAQQkxCsoWAs6RCANA1ZTRRLkSUC2JIki0EzKKICgEhhJiAZAuBDQqoEID6gjVR\nLkSUC2JIki0EtowKASGEmIJkC4G1mgoBQH3BmigXIsoFMSTJFgIbdSEVAkIIMQHpFgIVHSwGqC9Y\nE+VCRLkwPEPfqvLx48eYOHEivLy84Orqiv79++PChQsGjNhwJFsIrEvp56OEENMx9K0q8/Pz0bt3\nbyQmJiI7OxuTJ0/GiBEj6n0fZGOQbCGwoUIAgPqCNVEuRJQL4zLErSp9fX0xe/ZseHh4gOM4zJgx\nAwqFAjdu3DBi5HVjtEKQmpqK8PBwBAQEIDAwEN999x0AICsrC0OGDIG/vz+GDh2KnJwcnfNbq0ro\nDmWEEJMy5K0qK0pOToZCoUD79u1NszG1YLSrjz58+BAPHz6EXC5Hfn4+unfvjj179mD9+vVo3rw5\n5s2bhxUrViA7OxvLly/XDorjMGl8M7i3ysSqVcaIjhBiDvpcHTOOizPIusJYWK2m9/HxwZMnT7Ru\nVbly5UrY29vj2LFj9Touk5ubi9DQULz66quYP39+nZdTztBXHzXajWk8PT3h6ekJgL9lW+fOnZGW\nloZ9+/bh+PHjAIDJkycjLCysUiEAAGuVgrqGCGmCavsBbiiGvlVluaKiIowaNQr9+vUzSBEwBpMc\nI0hJSUFSUhJ69+6NjIwMeHh4AAA8PDyQkZGhcx5rJRUCgPqCNVEuRJQL06rLrSoBoKSkBGPGjEGb\nNm2wZs0aU4etN6PfqjI/Px/jxo3Dt99+W+luPBzHVXn3n9iEElg1X4zFiwFXV1fI5XLhq1n5PwG1\nm1a7nFTiMWc7OTlZUvHUpt0Y6HOrSqVSicjISNjb2yMqKsooccTFxQnL9vHxqfNyjHqHMqVSiZEj\nRyIiIgKzZ88GAHTq1AlxcXHw9PREeno6wsPD8ddff2kHxXFYOBi41UKF7VstjBUeIcTEpHyHMl9f\nX6xbt65S15CFhQVu3rwJPz+/Wi3v+PHjCA8Ph729vdYOb3R0NEJDQ+sVa4M5RsAYw/Tp09GlSxeh\nCADA6NGjsWHDBsyfPx8bNmzAmDFjdM7voLJEsbIEgL2xQiSEEMGdO3d0Di8tLa3T8gYOHAi1Wl2f\nkEzGaMcITp8+jc2bNyM2NhYhISEICQlBdHQ0FixYgJiYGPj7++PYsWNYsGCBzvmdVBYoVhUbK7wG\ng/qCRZQLEeWCGJLRvhH079+/ymp45MiRGud3oEJACCEmYdRjBHXFcRy2dnfENy2Sce5QO3OHQwgx\nECkfI2hIDH2MQLKXmHBQyVBSSt8ICCHE2CRbCOxVHErUVAioL1hEuRBRLoghSbgQAAr6RkAIIUYn\n2WMEye1cMKr1TtyLG2zucAghBkLHCAyjyRwjsFUyKKlriBBCjK7GQuDo6ChcQ8PGxgYymQzOzs5G\nD8xOxaBgVAioL1hEuRBRLogh1VgI8vPzkZeXh7y8PBQVFWHXrl1aF1UyFluFGioqBIQQEzH0rSor\nLtPJyQnDhw83ULSGVauuIZlMhjFjxiA6OtpY8QhslKVQggpBY7pQV31RLkSUC8Mz9K0qKy4zLy/P\nJJ+ddVHjmcU7d+4UnqvVaiQkJMDOzs6oQQGAtaIUKioEhBAzqHiryu+//x6rVq2CWq3GrVu3arWs\nhnBwvMZvBPv378eBAwdw4MABHD58GE5OTti7d6/RA7MuUVEhAPUFa6JciCgXxmGMW1W+8soraNmy\nJYYNG4ZLly6ZdoP0VOM3AmNdR1sfFihAaSlgQVeiJqTJiIvTfY+S2goLq92eOGMMY8aM0bpV5Ycf\nfojPPvsMCxcuhKurqzCtvh/oW7ZsQbdu3aBWq/Htt99i2LBh+Ouvv+Di4lKr2IytyvMIlixZonuG\nsutqf/LJJ8YLiuNQbGcNj97v4eGhL2Fra7RVEUJMSMrnEVR1PwKZTIabN2+iXbv6X/esc+fO+Oqr\nrzBy5Mh6Lcdk5xE4ODjA0dFR68FxHNatW4cVK1bUekW1pbK1hqNlHt2ukhBidnW9VWVNy5GKKruG\nPvjgA+F5bm4uvvvuO6xfvx4TJkzA3LlzjR5YqY01HC0KmnwhiIuLo1+IlKFciCgX5qXPrSpTU1Nx\n79499Oy+W6gJAAAgAElEQVTZE2q1GqtXr8aTJ0/qfXcyY6j2GMGTJ0+watUq/PLLL5g0aRISExPh\n5uZmksCKHexgz1EhIISYV1334vPy8vD222/j1q1bsLW1RUhICA4dOmSyz9DaqPIYwQcffIDdu3fj\n9ddfx9tvv13pxvNGDYrjcKtbZ0zybIvN/z2EetyTmRAiIVI+RtCQGPoYQZWFQCaTwdraGlZWVjpX\nlpubW+uV6R0UxyE5vA/m2dlg9ao4+PsbbVWEEBOiQmAYJjtYrFarUVxcLJwRp/kwZhEol+/sDFsU\nNfmuIfq9uIhyIaJcEEOS7NVH852cYceKm3whIIQQY5NsISh0doKdmgoB/TJERLkQUS6IIUm3EDg4\nwY6VNPlCQAghxibZQlDg6ATbUioE1BcsolyIKBfEkIxaCKZNmwYPDw907dpVGLZ48WK0bt0aISEh\nCAkJqfKyrIUOjrBTK5p8ISCkMXFzcwPHcfSo58PQ5yLUeNG5+pg6dSreffddTJo0SRjGcRzmzJmD\nOXPmVDtvkZ09bFTKJl8IqC9YRLkQNdRcZGVlmTsEooNRvxEMGDBAZ+XS53euhXYOsC2lQkAIIcZm\nlmMEq1evRnBwMKZPn46cnByd0xTa2cFWpWryhYD6gkWUCxHlQkS5qD+jdg3p8tZbbwmXsP74448x\nd+5crFu3rtJ0B9b8CP97KnC/LkJmphvkcrnwdbj8had202qXk0o85mwnJydLKh5ztpOTkyUVjynb\ncXFxwj1jfOpxLZ4qLzFhKCkpKRg1ahQuX76s9ziO4zDltwMYtHQUct8swTtvVb7MBSGEEG0Gv8SE\nsaSnpwvPd+/erfWLIk3KEks4KmXIL6HbVRJCiDEZtRBMnDgR/fr1w/Xr1+Ht7Y2ff/4Z8+fPR1BQ\nEIKDg3H8+HGsWrVK57wqhSXslDIUKpp2IajYLdKUUS5ElAsR5aL+jHqMYOvWrZWGTZs2Ta95S4tk\nsFdxTb4QEEKIsUn2zGJWxMFByaFI2bQLQfkBIkK50ES5EFEu6k+yhQCFHOxUaPKFgBBCjE2yhYAr\nAOyUQHETLwTU/ymiXIgoFyLKRf1JthBYFqhgq2IoVjXtQkAIIcYm2ULgoCyEVSlQXNq0CwH1f4oo\nFyLKhYhyUX+SLQTNS/NRamGDEvpGQAghRiXZQuDGCqGwsYFCVWjuUMyK+j9FlAsR5UJEuag/yRYC\nZ1aAHEcHMGWuuUMhhJBGTbKFwAH5yHJyBFeSZ+5QzIr6P0WUCxHlQkS5qD/JFgJ7WT6eOjpCpso3\ndyiEENKoSbYQ2Mry8dTJEZbKpv2NgPo/RZQLEeVCRLmoP8kWAkvLfOQ6OsJSWWDuUAghpFEz+v0I\n6oLjOMTMfgnx2dY49dACB6I3mDskQgiRvAZzPwJ9WVjnI8/BEdal9I2AEEKMSbKFAE4FKLZ2hpWq\nyNyRmBX1f4ooFyLKhYhyUX+SLQTMuQAKS2dYlzbtQkAIIcYm2WMER9d3xG/X3oTy9Hb8ePqsuUMi\nhBDJa3THCOBQADXsYaOmaw0RQogxSbYQcPb5YGp72DTxq49S/6eIciGiXIgoF/Un2UIA23yg1Aa2\npSXmjoQQQho1yRYCjlnASg3YqRVITTV3NOZD11ERUS5ElAsR5aL+JFsIoHSCDVOgub0CI0YAuXQR\nUkIIMQrJFgJZqRNsWRGcLZQIDQVefhlQqcwdlelR/6eIciGiXIgoF/Vn1EIwbdo0eHh4oGvXrsKw\nrKwsDBkyBP7+/hg6dChycnJ0B8ZcYMuKYFWiwurV/LCZMwHp/diVEEIaNqMWgqlTpyI6Olpr2PLl\nyzFkyBDcuHEDgwcPxvLly3XOa8k5wxaFsFKoYGkJbN8OnDkDfP21MSOWHur/FFEuRJQLEeWi/oxa\nCAYMGAA3NzetYfv27cPkyZMBAJMnT8aePXt0zmtl4Qo7FMBCoQYAODsDv/8OrFoF7NplzKgJIaRp\nMfkxgoyMDHh4eAAAPDw8kJGRoXM6S0sXOMryAVhCpeYPDnh7A3v3Am+8AVy4YKqIzYv6P0WUCxHl\nQkS5qD9Lc66c4zhwHKdz3KL//AGrHHs4ZFvjk2k9sXLSSgweNBjduwPvvx+HiAggISEMPj7iG6H8\nKyK1G2e7nFTiMWc7OTlZUvGYs52cnCypeEzZjouLQ1RUFADAx8cHdWX0aw2lpKRg1KhRuHz5MgCg\nU6dOiIuLg6enJ9LT0xEeHo6//vpLOyiOw/Vzn+Cv3/5Gx4uP8d4kGVxsXfDL2F9gKeNr13ffAWvW\nAKdPA66uxtwCQghpGBrMtYZGjx6NDRv4G81s2LABY8aM0TmdlZ0rrK0KUMgY9kzYg9ySXPxj5z+g\nLFUCAGbNAgYPBl56CVAqTRY+IYQ0OkYtBBMnTkS/fv1w/fp1eHt7Y/369ViwYAFiYmLg7++PY8eO\nYcGCBTrntXZwh6V1PvI5DraWttj98m4UKAswcedEoRisWgXY2gJvvdV4f1ZasVukKaNciCgXIspF\n/Rn1GMHWrVt1Dj9y5EiN81o7ucHCtgB5cAYA2FraYtf4XRj36zhM2DkB28Ztg5WFFbZuBZ59Flix\nAqiiphBCCKmGZO9HkJ19Eom/vIXMPb4YH7NPGFeiKkHkjkhYyaywLXIbrC2skZYG9O0LrFwJjB9v\nxsAJIcSMGswxAn1ZWroATgUosmvGHxUuY2Npg99e+g0qtQov//YyFKUKeHkB+/fzZx6fpXvYEEJI\nrUi4ELgCjgUonvIO8M03/Kd82VFhG0sb/Db+NzDGMH7HeChKFQgOBjZsAMaOBW7fNnPwBkT9nyLK\nhYhyIaJc1J+EC4ELOPs8lFg4A+fO8Z/uw4cDWVkAAGsLa/z60q/gOA6Rv0aiRFWCiAjgk0+A558X\nJiOEEFIDyR4jUKtLEXfMGgkPEvHBa0FAaSl/NHj3br4fqHNnAICyVImXf3sZSrUSv730G2wsbTB3\nLpCQABw+DFhbm3ljCCHERBrdMQKOk4Ep7cHyn/IDLCyAr74CPv4YGDgQOHgQAGBlYYXtkdthY2GD\ncb+OQ4mqBF9+Cbi5ATNmNN6flRJCiKFIthAAABRO4AorXKZ68mT+gkP//Cf/MyHG+J+RjtsKOys7\njP11LJSsGJs3A9euAZ99Zp7QDYX6P0WUCxHlQkS5qD9pFwKVEyyKn1Ye3rcvcP48sGULMGUKUFwM\nKwsrbBm7BQ5WDnhx+4uwsCnG/v3AunXAL7+YPHJCCGkwpF0ImBMslFXco9LbGzh5EigqAsLDgYcP\n+WIwbgtcbFwwZtsYuDYvxoEDwPvv85M2ROUXmiKUC02UCxHlov4kXQhkzBmWqmpuVuzgwN+xJiIC\n6NULSEyEpcwSm8duhpudG17Y9gLadSzCL7/w1yS6ccN0sRNCSEMh7UIgc4G1Oq/6iTiO/83oqlXA\nsGHAr7/CUmaJTS9uQjO7Znhh2wvoH1aETz8FRowAMjNNE7uhUP+niHIholyIKBf1J+lCYGXpAivU\nUAjKjRsHxMQA//oX8MknsIQMG1/ciJYOLTF622i8MqUQ48YBY8YAxcXGjZsQQhoSyZ5HwBhDfPQc\n3DyZg4mf/6z/zBkZ/OnFHh7Axo0otbfDlL1T8CDvAfa+vB/TXrOHpSV/ALmKe+IQQkiD1OjOIwAA\nO1s3WFnmobQ2G+bhARw7xt+tJjQUFqn3EfVCFLycvDB620j88GMB7twBFi0yXtyEENKQSLsQ2LvD\nwaoQfRITEZ9bzUHjimxs+N+NTpkC9OkDizNnsf6F9Wjj0gYv7RmJLb8V4Jdf+GsTSR31f4ooFyLK\nhYhyUX+SLgQ2ju5wsCnETC8vjLx8GTNv3ECOvrcj4zj+d6NRUcDYsbBYH4V1o9fB19UXU2NG4Nc9\nBZg3D4iNNeomEEKI5En6GMHje9G4tvvfGPhePLKUSiy8fRv7nzzBynbtMLFlyypvfF/J9evAqFHA\n889D/dWXmHHwLfyd/Tfmt/4dU19xRFyccOkiQghpsBrlMQIb52aASwGujL0Cm5sKrOnYEbsCAvDl\nvXt47uJFXC8s1G9BHTvyZyJfuwbZyFH4ccCX6ODeActTn8eSZfkYMQJ49Mi420IIIVIl6UJgae0K\nm44quIS6IDksGX9N/QvyHBvEd++OUc2aITQxER/fuYOi0tKaF+bmxl+ornNnyPr2w1r/uejYrCN+\n4SIQ+UoeXniBP0lZaqj/U0S5EFEuRJSL+pN2IbB0Rak6B95zvdH7Zm/YeNsgvls87rx/C2/beOBi\nz564XliIgD/+wMEnT/RZIH+Tm3/9C7JnB2KN9Vh0ad4FZ3wj4N0uD5MnA2q18beLEEKkRNLHCNRq\nJc6caQlPzynw8poFOztfKB4pcPfzu8jYnAGvd7zgPdcbR1RPMfPmTQQ7OuLb9u3R2ta25pWcPAmM\nHw/1vHl4p/11JGdcBjYfQlhfZyxbZvxtJIQQQ2uUxwhkMiv06HEJHGeNhISeuHIlEkU28Wj/TXv0\nSOyBktQSnPc/jy7rC3AxsBsCHRwgj4/Hf1JToaxp137AAODsWciiovDDbgV6Ng+EasIwbN/7FD/9\nZJrtI4QQKZB0IQAAW1tvtGu3An36pMDVNQx//jkJiYl9kGu3F/7r2kMeK0fumVxc6pyAN47Y4HRQ\nCKKzstA9IQFnnuq4hLUmHx/g9Glw2dn4duVVDHbuDOe3h+HDpU8RE2OSzasR9X+KKBciyoWIclF/\nZusa8vHxgbOzMywsLGBlZYULFy6IQVXz9YaxUmRm7sf9+6tQXJwCL6938cwz/0RRogy3P7yNktQS\n+Hzqg7iBwJzbtxDh7o4V7dqhmZVV1cGo1cCiRWCbNmHF3D7YqLqDh1/9D518XCGTATIZf1qC5t+q\nnht6/IMHcWjTJsxs69dnvKnWeeFCHPr2DTPK8huauLg4uvxyGcqFqK5dQ2YrBL6+vkhISIC7u3ul\ncfpuTG5uPO7fX4WsrEPw8JiE1q1noei0K+4svANWyuDxaVus7JCNbY8fY5mfH6Z4ekJW3X/99u1g\nM2fi5zd6YZXHQ/R2HQ0wDgDH/y17zhgHruwvGAcOMuG55rSswjzieJn2eI3nDBygFudhanH5rHy4\nxnioxXmYsJyy5as1lsvE5WkNU/PTs7LlMHX5MH68uvy5WnMZ/PLVGtOqNf4K06o5qBkHqGXawyo8\n15pPzUFdvvxSMYby+dWlFZ6Xjy+VCcPUFceXissQl8XX//K3mRQKnZTGSzGmxjbeGDsgDbIQxMfH\no1mzZpXG1XZjiovvIy3te6Sn/wRX14Fo3fp9KI76I+XfKbBqaQXlx5541+0BrDgO/+fvj66OjlUv\nLCEBbMwYJEXIkRDUgv+cBqDmGBjjP7fVABjHoAYrew6owcRpwcR5ysaXMjU/TAaoGdOaR2iXTc8v\nl4njy5ala77yeUqZWnxeYTkVp2VgUDM1GGNgYDX+rc20jJVNr+e0xl5+xWmF9xg4cBxX/V+tYbJK\n46A5Xdk4oML00BhW/pzTHs7/lekYVvVfDjJhx6J8ePmDYxrPIe6sCNMwHdNqDBOmrziuwjQVd4zK\nd0Aq7/hw4k4O03zItKct35HRNaxselZpWOWdHWGYWlbluIo7RCjbwRGfa+886d4xkmktR+eOkeay\nSrWnF98rGg9wZTurHGSQCcNlFceXDZNpvGdlnAzpF0IbViHw8/ODi4sLLCws8MYbb2DGjBliUHWs\naipVPjIyNuD+/W9gaekOr1bvQX2oP+4uSYNDsCMSZjlgvl06Jnt6YlHbtnC0tNS9oPR04J13gAcP\n+F3Gqh7lu5T6PuowfZxCgTBLS8OsQ1P5LknFXRR9HmaaPi4/H2HOzvVePpPJ+M8zcGDCcPDPgcrD\nOACcTHiuPZ3GX2i0ZZx2u2w842fVGIaymMrHcWU7FJz4Oaq1Ln7c6QcP0a/1M0IbXNkXSZRPoxkn\n+OWXPy9fvrDzwmmsp/zBaSyn5r9qjgPT2PHhdzjE52oOGusT4xOGQ3vHSXteJk4v7ByJ0167+QAd\nOzwjxqKxAyXsSEFdaUdNe1pWFovGDhS0d84qttUyCDthOnfsKixH2KEDv1NXviNZysTpSjWHl+/Y\nqcWdGTUr26kRdqLEthoMSe+cbViFID09Hc888wweP36MIUOGYPXq1RgwYAAfFMdh8uTJ8PHxAQC4\nurpCLpcL/YDlB4eqasfGHkVu7lm0aXMExcW3cffOcOBcX3j/6g+7wa5YKj+PM/ZFWDN+PMY0b47j\nx49XuzxztjUPhBlk+YwhLjYWYAxhAwfyxaZ8/IAB/PjyfPTvz7dPnODboaH89KdO8fP368ePP32a\nb/fty7fPnOHbffrw0589y7d79+bHnzvHt3v14tvnz/Ptnj212z168O0//hAKWVi3boiLj+fHd+vG\nj4+P58fJ5Xw7MZFvBwfz7aQkvh0UxLeTk/n5u3bl25cu8e3AQL59+TLfDgjQbnfpwrevXuXbnTvz\n7WvX+HanTtrtjh359l9/8W1/f759/Trf7tCBb9+4wbfbtePbN2/y8fr58e2//+bbvr58+9YtJD94\ngNnl+b5zh5+/bVu+nZLCt9u04dt37wJqNcK8vfn2vXv8+Nat+XZqKt/28uLb9+/z07dqxbfT0vjx\nzzzDt8t2kMI8Pfl2ejrfbtmSbz98yMfbogXfzsjg282b8+2y0/jD3N35dmYmP395+8kTvu3mxrez\nsvi2iwvfzs7Wan+Tlga5vT2/k8AY4p4+5cc7OvLt3Fztdl4e33Zw4Nv5+Xzb3p5/vxYU8PHZ2vLj\ny65gEGZjw7fLzjwNs7bmpy8p4ee3suLHKxR8u2wHLk6p5NsWFvz0KhXflsn48aWlfJvj+HbZzlxY\n2f99+SdAWNkOTxxjAMchzMICcYwhquyEWh8LCyxRKhtWIdC0ZMkSODo6Yu7cuQDq/o1Al7y8BKSm\nrkJW1kG0cH8Fsv0vIeMrGVQvumDB2EI097LD6g4d4GtnZ5D1EUKIwejbE1D24Jyc6vTZKTNC6DUq\nLCxEXh5/57GCggIcPnwYXbt2Ncq6nJy6o0uXzejZ8zKsbB2REToWzv9biRZtr+KrVxWYsKYUA+Pi\n8cXdu1DQacWEECkp7/q0sOCvjGBlBVhb85fat7UF7OwAe3v+/u3VHfusgVkKQUZGBgYMGAC5XI7e\nvXtj5MiRGDp0qFHXaWPjBT+/Zejb9y6aeQ5F/pCPYXtgNgKeOYZNU0uh+iYDPU79gdjsbKPGUVv0\nG2kR5UJEuRBRLuqviqOlxuXr64vk5GRzrBoWFg7w8nobrVq9iSdPDuC+3SpYPrsKw0+9jP5Tn8OG\ncVex/lV3fNWpPTysrc0SIyGEmJIkjhFUZMhjBPrIy0vE/furkJlxABZ/DEfOr2Pw07BnkN+u7CQ0\nToxLs635V/hNcBXTaI2vNE7/ebhK6+YqDReey8qf6J6Xk1VYLyrPW2ke8L+24H/WVlUMNcdUcZN1\nxSRMIyyP0950jb/Vjatq3urGVZy3NsttLDHVZrl1iak2y20sMRn7PdHHxaXhHiyuyNSFoFxJSRrS\n0v6LtLtrgb8DwB568j/vKw9F/O1f2V9dw7jK87AK8wi/G6zQ1loW025rrVPHMipMyyrOrzMmaM2j\nNa5SbGXDyk5mq7xNOtrq6uLXFbfY5qrIrebidf+7lJOVTVthOKs8D6swT+VlcRXm01hc1f+WOsZV\nPw/TGlax11ZzudrLrLi8ym3NZci0h5X/xLTC9pX/lLX65Wuvn/+5qvg6l/80Vnue8vUzcVu4yq8V\nY7rmLfu5L9OOXzMfusarNednmiFqxl2WA047Z0wjhvKYND+ZGFd+foQ4rTANp5l7Jvwsl59PM39M\nnFbXv19V/2Y6hv/71/5UCAyltLQAjx/vgkqVjfI0i/FofYpVMw4Vxlc3Tve8jDGcO5eCPn3a1mJe\n48dU83K1YzFUTBcuZKBXz5YVhqvFacuWzyq2NddbxTSVl6HWGFzFuGrXW/0264pJGFdFbJrDExKf\nons35xrXU/vXrPyvfq+ZXq+dzuEVcwcd01TYjirGJSUrECK3qrA+PePWWm9t4q8wDycuqRIdOx8V\n/3KalUBrvI5hTJyHlc9bNmTgc7l1+uw0yzECqbOwcICn52vmDgMAcPduHHx9w8wdhiQ8ehSHLgFh\n5g5DEgqUcegZGmbuMCShlIvDgLJzZqRCVwE1ZkEWC3HlS/bog74REEJII9Eo70dACCHE+KgQSBz9\nRlpEuRBRLkSUi/qjQkAIIU0cHSMghJBGgo4REEIIqRMqBBJH/Z8iyoWIciGiXNQfFQJCCGni6BgB\nIYQ0EnSMgBBCSJ1QIZA46v8UUS5ElAsR5aL+qBAQQkgTR8cICCGkkaBjBIQQQuqECoHEUf+niHIh\nolyIKBf1R4WAEEKaODpGQAghjQQdIyCEEFInZikE0dHR6NSpEzp06IAVK1aYI4QGg/o/RZQLEeVC\nRLmoP5MXgtLSUsycORPR0dG4du0atm7dij///NPUYTQYycnJ5g5BMigXIsqFiHJRfyYvBBcuXED7\n9u3h4+MDKysrTJgwAXv37jV1GA1GTk6OuUOQDMqFiHIholzUn8kLQVpaGry9vYV269atkZaWZuow\nCCGElDF5IeA4ztSrbNBSUlLMHYJkUC5ElAsR5aL+LE29Qi8vL6Smpgrt1NRUtG7dWmua4OBgKhga\nNmzYYO4QJINyIaJciCgXvHbt2tVpPpOfR6BSqdCxY0ccPXoUrVq1Qq9evbB161Z07tzZlGEQQggp\nY/JvBJaWlvj+++8xbNgwlJaWYvr06VQECCHEjCR5ZjEhhBDTMeuZxfqcWDZr1ix06NABwcHBSEpK\nMnGEplNTLn755RcEBwcjKCgIoaGhuHTpkhmiNA19Tzj8448/YGlpiV27dpkwOtPSJxdxcXEICQlB\nYGAgwsLCTBugCdWUi8zMTAwfPhxyuRyBgYGIiooyfZAmMG3aNHh4eKBr165VTlPrz01mJiqVirVr\n147duXOHKRQKFhwczK5du6Y1ze+//84iIiIYY4ydO3eO9e7d2xyhGp0+uThz5gzLyclhjDF26NCh\nJp2L8unCw8PZiBEj2G+//WaGSI1Pn1xkZ2ezLl26sNTUVMYYY48fPzZHqEanTy4WLVrEFixYwBjj\n8+Du7s6USqU5wjWqEydOsMTERBYYGKhzfF0+N832jUCfE8v27duHyZMnAwB69+6NnJwcZGRkmCNc\no9InF3379oWLiwsAPhf37983R6hGp+8Jh6tXr0ZkZCRatGhhhihNQ59cbNmyBePGjRN+ede8eXNz\nhGp0+uTimWeeQW5uLgAgNzcXzZo1g6WlyQ+DGt2AAQPg5uZW5fi6fG6arRDoc2KZrmka4wdgbU+y\nW7duHZ5//nlThGZy+r4v9u7di7feegtA4z03RZ9c3Lx5E1lZWQgPD0ePHj2wadMmU4dpEvrkYsaM\nGbh69SpatWqF4OBgfPvtt6YOUxLq8rlptnKp7z8vq3AsuzH+09dmm2JjY/Hzzz/j9OnTRozIfPTJ\nxezZs7F8+XLhkrsV3yONhT65UCqVSExMxNGjR1FYWIi+ffuiT58+6NChgwkiNB19cvHFF19ALpcj\nLi4Ot27dwpAhQ3Dx4kU4OTmZIEJpqe3nptkKgT4nllWc5v79+/Dy8jJZjKaiTy4A4NKlS5gxYwai\no6Or/WrYkOmTi4SEBEyYMAEAf4Dw0KFDsLKywujRo00aq7Hpkwtvb280b94cdnZ2sLOzw7PPPouL\nFy82ukKgTy7OnDmDjz76CAB/YpWvry+uX7+OHj16mDRWc6vT56bBjmDUklKpZH5+fuzOnTuspKSk\nxoPFZ8+ebbQHSPXJxd27d1m7du3Y2bNnzRSlaeiTC01TpkxhO3fuNGGEpqNPLv788082ePBgplKp\nWEFBAQsMDGRXr141U8TGo08u3n//fbZ48WLGGGMPHz5kXl5e7MmTJ+YI1+ju3Lmj18FifT83zfaN\noKoTy9asWQMAeOONN/D888/j4MGDaN++PRwcHLB+/XpzhWtU+uRi6dKlyM7OFvrFrayscOHCBXOG\nbRT65KKp0CcXnTp1wvDhwxEUFASZTIYZM2agS5cuZo7c8PTJxYcffoipU6ciODgYarUaX375Jdzd\n3c0cueFNnDgRx48fR2ZmJry9vbFkyRIolUoAdf/cpBPKCCGkiaNbVRJCSBNHhYAQQpo4KgSEENLE\nUSEghJAmjgoBIYQ0cVQICCGkiaNCQCSrqsvtnjt3Dq+//joA/mJkYWFh8Pf3R/fu3TFy5EhcuXLF\nKPEsX74cW7ZsAQB8//33wmWOp0yZAj8/P8jlcnTs2BGTJ0/Wug6Oj48PgoKCIJfL8dxzz+HBgwfV\nricqKgotWrRASEgIAgIC8NNPP+mcbt++ffj0008Ns3GkaTPgyW6EGFRVl9v95JNP2K5du9jDhw+Z\nj4+P1tnWp06dYnv27DFKPOHh4SwzM5Op1Woml8uFSxxXPLt51apVzN/fXxjv4+MjnOG6aNEiNnPm\nzGrXExUVxd59913GGGOPHj1iLVq0YI8ePdKaRqVSMbVazYKDg5lCoTDYNpKmib4REMmq6nK7x44d\nw+DBg/H9999jypQp6NOnjzAuNDQUL7zwAgAgJCREeNjb2+PkyZM1rnPNmjXCPL6+vhg0aBAA/rLG\nCoUCzZo1w+nTp9GpUyetSxwzjfMyZ8+eDU9PTxw8eLDS8vv06YNbt24BAB4/fozIyEj06tULvXr1\nwpkzZyotr0WLFmjXrh1SUlIwZcoUvPnmm+jTpw/mz58PjuPQt29fHD58uMbtIqQ6je9i3aRRy8zM\nhJWVFZydnXHt2jVMmTKlymnL78y0f/9+rFy5Ev369UNsbCzmzJlTaVoHBwecOnUKb7zxBt544w2o\nVCoMGjQIc+fOBQAcOXIEzz33HADg1KlT6NmzZ7VxduvWDdevXxfa5R/s0dHRCAwMBAC89957eP/9\n9wPNYKUAAANISURBVBEaGop79+5h+PDhuHbtmlZRuX37Nm7fvo327dsDAB48eICzZ88KV5Ps1asX\nTpw4gREjRlQbDyHVoUJAGpTDhw9j2LBhQlvzQ7N3797Iy8vD0KFD8c033wDgr9c/b948xMXFwcLC\nAuHh4Xrdum/WrFkYPHiw8AH7v//9D9OmTQMA3Lt3D/379692fs24GGMIDw9HVlYWLC0thWMYR44c\nwZ9//ilMl5eXh4KCAgDA9u3bcerUKdjY2GDt2rVwc3MDx3F46aWXtC4p3KpVK0RHR9e4PYRUh7qG\nSIMSHR2N4cOHAwACAgKQmJgojDt//jw+/fRTPH36FACQn5+Pl19+GT/99BM8PDwA8Pdz0OwyKn+E\nhoYKy4mKikJqaioWLVokDLtw4QJ69eoltFkN13tPTExE586dhXFxcXG4e/cu+vTpgx9//FFYxvnz\n55GUlISkpCSkpqbCwcEBHMdhwoQJSEpKwrlz54SuLgCwt7fXWo9arW6U9+ggpkXfCEiDwRjDpUuX\nEBwcDAB455130Lt3bwwbNgx9+/YFABQUFAgfjNOmTcPUqVO1PuRr+kaQkJCA//znP1rHE65evYpO\nnToJy23bti0ePnxYKbbyv6tXr0ZGRoZQsMpZWFjgm2++QY8ePTBjxgwMHToU3333HT744AMAQHJy\nMuRyea1utpOeno62bdvqNS0hVaFvBESyJk6ciH79+uH69evw9vbGV199hW7dugnjPTw8sH37dixc\nuBAdOnRAaGgodu3ahZkzZ+Lu3bvYuXMnfv75Z2GvX/PbQ1X++9//Ijs7G+Hh4QgJCRFuBBQRESFM\n079/f8THx2vN969//Uv4+WhCQgJiY2OFg8mae+yenp4YO3Ys/vvf/+K7775DfHw8goODERAQgLVr\n1wrTV7WXX3H4hQsX8Oyzz9a4XYRUhy5DTRqMzz//HB06dMD48eNNut6hQ4di06ZNQvcSYwzdunXD\n+fPnYW1tbdJYNKnVanTr1g3x8fGN8ibtxHSoEBBSBz/88APs7OwwdepUs8Wwb98+XLp0Cf/+97/N\nFgNpHKgQEEJIE0fHCAghpImjQkAIIU0cFQJCCGniqBAQQkgTR4WAEEKaOCoEhBDSxP1/o1tSnXUj\nCSwAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.5 page No.320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "OD = 2.858/100.0 # outer diameter in m \n", "ID = 2.528/100.0 # inner diameter in m \n", "A = 5.019e-4 # cross sectional area in sq.m\n", "Q=80*2.957e-5/120 # The volume flow rate of water (at 20\u00b0C) in cu.m/s\n", "p_20= 1.000*1000 # density of water at 20\u00b0C in kg/cu.m\n", "p_50= 0.990*(1000) # density in kg/m3 \n", "cp= 4181 # specific heat in J/(kg*K) \n", "v = 0.586e-6 # viscosity in sq.m/s \n", "kf = 0.640 # thermal conductivity in W/(m.K) \n", "a = 1.533e-7 # diffusivity in sq.m/s \n", "Pr = 3.68 # Prandtl number\n", "\n", "import math\n", "mass_flow=p_20*Q # mass flow rate through the tube in kg/s\n", "L=3 # length of tube in m\n", "As=math.pi*ID*L\n", "Tbo=80 # final temperature in \u00b0C\n", "Tbi=20 # initial temperature in \u00b0C\n", "qw=mass_flow*cp*(Tbo-Tbi)/(As)\n", "q=qw*As\n", "A=math.pi*(ID/2)**2\n", "print\"The power required is\",round(q,0),\"W\"\n", "V=mass_flow/(p_50*A) # average velocity at 50 \u00b0C\n", "Re=(V*ID)/v # Reynold's Number\n", "inv_Gz=L/(Re*ID*Pr) # The inverse Graetz number at tube end, based on 50\u00b0C conditions\n", "Nu=6.9 #value of corresponding Nusselts Number from figure 6.12\n", "hz=(Nu*kf)/ID\n", "Two=(qw/hz)+Tbo # The outlet wall temperature in \u00b0C\n", "print\"\\nThe outlet wall temperature is\",round(Two,0),\"C\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The power required is 4945.0 W\n", "\n", "The outlet wall temperature is 199.0 C\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.6 page No.325" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "p = 0.077 # density in lbm/ft^3 \n", "cp = 0.240 # specific heat in BTU/(lbm.degree Rankine) \n", "v = 15.28e-5 # viscosity in ft^2/s \n", "kf = 0.0146 # thermal conductivity in BTU/(hr.ft.\"R) \n", "a = 0.776 # diffusivity in ft^2/hr \n", "Pr = 0.711 # prandtl number \n", "D=7/12.0 # diameter in ft\n", "L=40 # length in ft\n", "Tbo=72 # outlet temperature in degree Fahrenheit\n", "Tbi=45 # inlet temperature in degree Fahrenheit\n", "A=math.pi*(D**2)/4 # cross sectional area of duct in ft^2\n", "rou_o=.0748\n", "V=10 # average velocity in ft/s\n", "mass_flow=rou_o*A*V\n", "\n", "V_avg=mass_flow/(p*A)\n", "Re=(V_avg*D)/v\n", "q=mass_flow*cp*(Tbo-Tbi)\n", "hc=1 # convection coefficient between the outside duct wall \n", "T_inf=105 # The temperature of attic air surrounding the duct in degree Fahrenheit\n", "hz=(0.023*Re**(0.8)*Pr**0.4)*kf/D \n", "qw=(T_inf-Tbo)/((1/hc)+(1/hz)) \n", "Two=qw*(1/hz)+Tbo # The wall temperature at exit in degree Fahrenheit\n", "\n", "print\"The heat gained by air is\",round(q,3),\"BTU\"\n", "print\"The wall temperature at exit is \",round(Two,1),\"F\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat gained by air is 1.295 BTU\n", "The wall temperature at exit is 82.1 F\n" ] } ], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }