{ "metadata": { "name": "CHAPTER10" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10: Condensation and Vaporization Heat Transfer" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 10.1 Page NO.527" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou_f=0.909*62.4 # density in lbm/ft**3 \n", "cp=1.037 # specific heat BTU/(lbm-degree Rankine) \n", "v_f=0.204e-5 # viscosity in ft**2/s \n", "kf=0.393 # thermal conductivity in BTU/(lbm.ft.degree Rankine) \n", "a=6.70e-3 # diffusivity in ft**2/hr \n", "Pr=1.099 # Prandtl Number \n", "V_v=4.937 # specific volume in ft**3/lbm from superheated steam tables\n", "rou_v=1/V_v # vapour density\n", "g=32.2\n", "hfg=888.8 # from saturated steam tables\n", "Tg=327.81\n", "Tw=325\n", "L=2.0 # length in ft\n", "W=3.0 # width in ft\n", "z=0.204*10**-5 # distance from entry of plate in ft\n", "\n", "y=((4*kf*v_f*(Tg-Tw)/3600.0)/(rou_f*g*hfg*(1-(rou_v/rou_f))))**(1/4.0) #let y=delta/z**(1/4)\n", "hz=1665 #From Table 10.1\n", "hL=(4/3.0)*hz # at plate end\n", "mf=(hL*L*W*(Tg-Tw))/hfg\n", "q=mf*hfg\n", "Re=(4*mf/3600)/(W*rou_f*v_f)\n", "\n", "print\"The amount of steam condensed is \",round(mf,1),\"lbm/h\"\n", "print\"The heat transfer rate is \",round(q,0),\"BTU/hr\"\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "x1=[0.0017,0.0018,0.0023,0.0030,0.0035]\n", "z1=[2,1.6,0.6,0.3,0.1]\n", "\n", "x2=[0.0023,0.0022,0.0017,0.0011,0.0006,0]\n", "z2=[2,1.6,0.6,0.3,0.1,0]\n", "\n", "xlabel(\"d (m)\") \n", "ylabel(\"z (m)\") \n", "plt.xlim((0,0.004))\n", "plt.ylim((2,0))\n", "\n", "ax.annotate('(infinity)', xy=(0.0035,0.1))\n", "ax.annotate('(hl=2220)', xy=(0.0005,1.7))\n", "a1=plot(x1,z1)\n", "a1=plot(x2,z2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amount of steam condensed is 42.1 lbm/h\n", "The heat transfer rate is 37429.0 BTU/hr\n" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEMCAYAAAA8vjqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVPX+B/D3gICh5JI/UcFEAUEEBshEc8PUa27c3H6u\nN7HNaDFbbLv+DL1JWlo3skxbJNPHLOu6S91SLG8iLmiapqggizqh5hW8xfr9/UHMBZmBmWHOnO39\neh6eR2bOmflwonnzPd/zOV+DEEKAiIjIDm5yF0BEROrD8CAiIrsxPIiIyG4MDyIishvDg4iI7Mbw\nICIiu0kaHmlpaQgNDUVwcDCWLFlicZvZs2cjODgYRqMRWVlZUpZDREROIll4VFZW4vHHH0daWhpO\nnDiB9evX4+TJk3W22bFjB86cOYPs7GysWrUKiYmJUpVDREROJFl4ZGZmIigoCAEBAfDw8MDkyZOx\nefPmOtts2bIFM2bMAADExsbi2rVrMJlMUpVEREROIll4FBYWonPnzubv/f39UVhY2Og2BQUFUpVE\nRERO0kyqFzYYDDZtd/PdUSztZ+trERFRXVLdgUqykYefnx/y8/PN3+fn58Pf37/BbQoKCuDn52fx\n9YQQEEKgqqoKPxf9jNVZq/Hw1ocR8W4EWixqgX4f9sOzXz+LL058gQvXL5i3d+XXyy+/LMv7arFO\nNdTIOlmn0r+kJNnIo1evXsjOzkZubi46deqEDRs2YP369XW2iY+Px/LlyzF58mRkZGSgdevW8PX1\nbfB1DQYDQtqFIKRdCBKiEgAA10uvI7MwExkFGfgw60M8tPUh+Hj6oG/nvujr3xd9/PsgqkMUPN09\npfpxiYh0RbKRR7NmzbB8+XIMHz4cYWFhmDRpEnr06IGVK1di5cqVAICRI0eiW7duCAoKwqxZs/Du\nu+869F63et2Kod2GYt7Aedg+dTsuz72Mr6Z/heGBw/FT0U94cMuDaLukLfp/1B9z/zkXX578EheL\nLzrzxyUinSktLcWgQYNw4cIFTJw4sdHtP//8c4SFhWHIkCE4dOgQnnzyyUb36devHwDg/Pnz9f74\ntmTLli3429/+1njxTmAQUo9tnMBgMDR5CFZ7dLKvYB8yCjKcPjpJT09HXFxck+p0BTXUqYYaAdbp\nbGqq89y5c7hy5Qrmzp1r0z733HMP5s+fj7vuusuh91u2bBm2bt3a4HZCCERHR+PAgQPw8PBwymen\nNboJj5sJIXD6ymnsK9hX/ZW/D+d+PYeoDlHmQOnr3xcdfTo69X2JSBuGDRuGd955B56enhgzZgyO\nHTuG1NRUbNmyBb/99hvOnj2LsWPHYsmSJVi4cCFef/11+Pn5IT4+HqNGjcLSpUuxdetWJCUlIS8v\nDzk5OcjLy8OcOXPwxBNPAABatmyJkpIS9OnTBz///DO6du2KGTNm4B//+AdSUlJgNBoBAP3798eK\nFSsQERGBxMREjB49GqNGjZI0PCSb81A6R+ZO+vr3hbGDkXMnRDpXWVmJ48ePo3v37sjNza3z3NGj\nR3HkyBF4enoiJCQEs2fPxvz587F7924sW7YMMTExSE9Pr7PP6dOnsXv3bly/fh0hISF49NFH4e7u\nbr7SdMmSJeawAYC2bdsiNTUVb775Jk6fPo3S0lJEREQAAHr37o3vvvsOo0aNkvQY6DY8LKmZOxna\nbSiA+qOTDw5/wNEJEeHy5cvw8fGx+NyQIUPMz4WFheH8+fNWryIFqv+QHTVqFDw8PHDbbbehffv2\nMJlM6NSpk3mbm0cPEyZMwN/+9je8/vrr+OijjzBz5kzzc506dUJaWlpTfjybMDwawNEJEVlj7XSQ\nl5eX+d/u7u6oqKho9LU8Pf/7eWHLPt7e3hg2bBg2bdqEzz//HIcPHzY/V1VV5ZLeOIaHnTg6IaJ2\n7dqhpKTEKa9ly5yEj48PiouL6zz24IMPYvTo0Rg0aBBatWplfvzixYvo0qWLU2prCG/J3kQ1o5OE\nqASsHL0SPyb+iAvPXEBSXBJaebXCh1kfInxFOAL+HoCnvnoKv9z4Re6SichBp08D//u/wOHD7ggP\nD8epU6cA/PcuGAaDwaa/+mtv19A+NY8bjUa4u7sjKioKb731FgAgJiYGrVq1qnPKCqi+r+DAgQMd\n+wHtoNurrVxJCIFTV07h3QPvYt2xdXii9xN4pu8z8PGyfM6UiJSlsBBYuBD44gvgmWeA2bOBzz9P\nhclkwvPPPy9LTRcuXMDgwYPNAQZUn7KKiYnBwYMH0axZM0k/OznycAGDwYDQdqFIGZGCgw8dxNlf\nzyL47WC8lfEWSitK5S6PiKz49VfghReAyEigVavqkceLLwItWgBTp07F9u3bZfnDds2aNejTpw+S\nk5PrPL5t2zZMmDABzZpJPyPBkYdMfjT9iJe+fQnHfzmOhYMXYlrENLi7uctdFhEB+M9/gLffBpYu\nBe69F3j5ZeCmW/OpApsENRgeNb4//z1e+PYFXC+9jleHvIpRwaN4F2EimZSXA6tXV5+i6tMHeOUV\nIDRU7qocx/DQcHgA1XMiW09vxUvfvoTWzVtj8dDF6H97f7nLItINIYCNG4F58wA/P2DxYqB3b7mr\najqGh8bDo0ZlVSXW/rgW89PnI9I3Esl3JyPCN0Lusog07Ztvquc1qqqqQ2PYMEArg3+Gh07Co0Zp\nRSlWHFyBV/e+iuGBw7Fw8EIEtA6QuywiTTl4sHryOze3+vTUxImAm8YuIeLVVjrj1cwLc/rMQfYT\n2ejapivuWHUH5qTNQdGNIrlLI1K9ml6N+Hhg/HjgxAlg0iTtBYfUeLgU7FavW7EgbgFOPnYSVaIK\nPd7pgQXpC1BcWtz4zkRUR2EhMGsWcNddQHQ0kJ0NPPII4OEhd2XqxPBQgfYt2iNlRAoOPHQAZ349\ng+C3g5GyP4U9IkQ2aKhXgxzH8FCRrm264pOxn+Drv3yNr89+jdB3QvHJ0U9QWVUpd2lEivOf/wBL\nlgDduwNXrgBHjwKvvQa0bSt3ZdrACXMVq+kRKS4tRvKQZPaIEEF7vRpNwautGB5W1e4RaXNLGywe\nshj9bu8nd1lELqfVXo2mYHgwPBpVu0fE6GvEorsXsUeEdEPLvRpNwfBgeNisdo/IPUH3YEHcAvaI\nkGbpoVejKdjnQTar0yPSuit6rerFHhHSHPZqyI+HWqNu9boVSXFJOPHYCQgI9oiQJrBXQzkYHhrX\nvkV7vHXPWzjw0AHzOiLsESG1qenViIio7tU4dYq9GnJjeOhE1zZdsWbsGvaIkKrU7tW4fBn48cfq\nXo3bbpO7MuKEuU6xR4SUrHavRmwssGiRfns1moJXWzE8JCGEwLbT2/Dity+yR4QUgb0azsXwYHhI\nqrKqEuuOrcP83dXriLw+7HWEtAuRuyzSmd27gblz2avhTAwPhodLlFaU4p0D7+DVva/ihX4vYE6f\nOVxXnSR35kx1aBw5Arz6avUluLzk1jkYHgwPlzr36zncv/l+lFWWYfWfV3MUQpL497+rG/tWrwae\nfRaYMwdo3lzuqrSFTYLkUt3adMOuGbswLWIa+q/uj2U/LONVWeQ0lZXAqlVASAhw9Spw7Fj1ZbgM\nDnXhyIMaxFEIOdOuXcBTT1X3avz970BMjNwVaRtHHiQbjkLIGc6cAcaOBR54APi//wP27GFwqB1H\nHmQzjkLIXpzXkBdHHqQIHIWQrTivoX0ceZBDOAohazivoRwceZDicBRCN+O8hr5w5EFNxlGIvnFe\nQ7k48iBF4yhEnzivoW8ceZBTcRSiD5zXUAeOPEg1OArRNs5rUA2OPEgyHIVoB+c11IkjD1IljkLU\nj/MaZA1HHuQSHIWoD+c11I8jD1I9jkLUg/MaZAuOPMjlOApRJs5raA9HHqQpHIUoC+c1yBGShkda\nWhpCQ0MRHByMJUuW1Hs+PT0drVq1QnR0NKKjo/HKK69IWQ4piJvBDY/1fgz7H9yPrae3YsDqATh1\n+ZTcZenOrl3Vp6TWrgV27AA+/BDo2FHuqkgVhEQqKipEYGCgyMnJEWVlZcJoNIoTJ07U2Wb37t1i\nzJgxjb6WhGWSAlRWVYrl+5eLdq+1E0v/tVRUVFbIXZLmZWcLce+9QgQECPH550JUVcldEUlBys9O\nyUYemZmZCAoKQkBAADw8PDB58mRs3rzZUnhJVQKpBEchrvPvfwNz5wJ9+gCxscDJk8CECYDBIHdl\npDbNpHrhwsJCdO7c2fy9v78/9u/fX2cbg8GAH374AUajEX5+fli6dCnCwsIsvl5SUpL533FxcYiL\ni5OibJJRzVzIigMr0H91f7zQ7wXM6TMH7m7ucpemepWV1aek5s8HRo2qntfg6SntSU9PR3p6ukve\nS7Krrb744gukpaXh/fffBwCsXbsW+/fvx9tvv23epri4GO7u7vD29sbOnTvx5JNP4vTp0/WL5NVW\nusMrspyH/Rr6pcqrrfz8/JCfn2/+Pj8/H/7+/nW28fHxgbe3NwBgxIgRKC8vx9WrV6UqiVSEV2Q1\nHfs1SEqShUevXr2QnZ2N3NxclJWVYcOGDYiPj6+zjclkMqdiZmYmhBBo27atVCWRynAuxDGc1yBX\nkCw8mjVrhuXLl2P48OEICwvDpEmT0KNHD6xcuRIrV64EAGzcuBERERGIiorCnDlz8Omnn0pVDqkY\nRyG2Yb8GuRI7zElVOBdiGec1yBJVznkQSYGjkLo4r0Fy4ciDVEvPoxDeh4pswZEHkQV6HIVwXoOU\ngiMP0gQ9jEI4r0H24siDqBFaHoVwXoOUiCMP0pxzv57DzM0zEfY/YVgxaoXc5TTJTz8BAwdW921w\nXoPsJeVnJ8ODNMlUYkLI8hAUPF2Alp4t5S7HYU8/DXh7V0+OE9mLp62I7OTb0hcDuwzExhMb5S7F\nYeXlwLp1wIwZcldCVB/DgzQrISoBqUdS5S7DYTt3AsHB1V9ESsPwIM0a3X00fir6Ced+PSd3KQ5J\nTQUSEuSugsgyhgdplqe7J6aET8Gao2vkLsVuRUXVl+ZOnCh3JUSWMTxI0xKiEvDx0Y9RJarkLsUu\n69cDo0dX93QQKRHDgzQtukM0fDx98N357+QuxS48ZUVKx/AgTTMYDKqbOD96FLh8GRg8WO5KiKxj\neJDmTYuYhk0/b0JJWYncpdjk44+B++4D3Ll0OykYw4M0T009H+ztILVgeJAuqOXUFXs7SC0YHqQL\naun54EQ5qQXDg3RBDT0f7O0gNWF4kG4oveeDvR2kJgwP0g2l93zwlBWpCcODdEPJPR/s7SC1YXiQ\nrii154O9HaQ2DA/SFSX2fLC3g9SI4UG6o7RTV+ztIDVieJDuKK3ngxPlpEYMD9IdJfV8sLeD1Irh\nQbqklJ4P9naQWjE8SJeU0vPBU1akVgwP0iUl9Hywt4PUjOFBuiV3zwd7O0jNGB6kW3L2fLC3g9SO\n4UG6JtepK/Z2kNoxPEjX5Or54EQ5qR3Dg3RNjp4P9naQFjA8SPdc3fPB3g7SAoYH6Z6rez54yoq0\ngOFBuufKng/2dpBWNBgehw8fxty5cxEbGwtfX1906NABsbGxmDt3LrKyslxVI5HkXNXzwd4O0gqD\nEEJYemLkyJFo06YN4uPj0bt3b3Ts2BFCCFy8eBGZmZnYunUrrl27hu3bt0tfpMEAK2USOU38+niM\n6zEOCVEJkrx+eTng7w/s3ctLdMk1pPzstBoeJpMJvr6+De78yy+/oH379pIUVhvDg1zhy5NfImV/\nCtIT0iV5/S1bgNdeqw4PIleQ8rPT6mmrm4Pj+vXruHr1qvkLgEuCg8hVpO754EQ5aYnVkUeNlStX\n4uWXX4aXlxfc3KqzxmAw4Nw51zVVceRBrjJ752y0vaUtkuKSnPq6RUXVp6rOn+cluuQ6spy2qhEU\nFISMjAy0a9dOkgJswfAgVzl88TDGfzYeZ2efhZvBeRcjpqQAmZnA2rVOe0miRsly2qpGt27dcMst\nt0jy5kRKI1XPB09ZkdY0a2yDxYsXo2/fvujbty88PT0BVKdZSkqK5MURuVrtno+4gDinvCZ7O0iL\nGg2Phx9+GEOHDkVERATc3NwghIDBYHBFbUSymBYxDQv3LERJWQlaerZs8uuxt4O0qNE5j+joaIcb\nAu+//35s374d7du3x7FjxyxuM3v2bOzcuRPe3t5ITU1FdHR0/SI550Eu5qyeD/Z2kJxknfMYMWIE\nVq5ciYsXL9a7VLcxM2fORFpamtXnd+zYgTNnziA7OxurVq1CYmKi7ZUTSchZtyvhuh2kVY2OPAIC\nAuqdprLnUt3c3FyMGTPG4sjjkUceweDBgzFp0iQAQGhoKPbs2VOvx4QjD3K1ssoy+L3hh/0P7ke3\nNt0cfp1x44CRI4EHH3RicUQ2kvKzs9E5j9zcXEneGAAKCwvRuXNn8/f+/v4oKCiw2NmelJRk/ndc\nXBzi4uIkq4uo9jofjvZ81KzbsXq1c2sjsiY9PR3p6ekueS+r4ZGent7oB/Tu3bsxuImXkNycitYm\n42uHB5ErJEQlYPxn4zF/0HyHej64bge52s1/WC9YsECy97IaHtu2bcNzzz2HoUOHolevXujYsSOq\nqqpw6dIlHDx4EN988w0GDx7cpPDw8/NDfn6++fuCggL4+fk5/HpEzlS758ORy3ZTU6vvZUWkRVbD\nY+nSpSguLsbmzZvxz3/+E+fPnwcAdOnSBf3798df//pXtGzZtMsY4+PjsXz5ckyePBkZGRlo3bp1\nozdjJHKVpvR8sLeDtK7RCfOmmDJlCvbs2YPLly/D19cXCxYsQHl5OQBg1qxZAIDHH38caWlpaNGi\nBVavXo2YmJj6RXLCnGRiKjEhZHkICp4usKvn4+mnAW9v4JVXJCyOqBGy3ttKCRgeJCd7ez7Y20FK\nIWufB5He2dvzwd4O0gOGB1Ej7F3ngzdBJD1geBA1onbPR2NqejsmTnRBYUQyYngQ2SAhKgEfH/0Y\nVaKqwe3Y20F6wfAgsoGt63zwlBXpRaPhcffdd2P79u11Hnv44YclK4hIiWr3fFjD3g7Sk0bDIycn\nB0uWLKnT5n7gwAFJiyJSomkR07Dp500oKSux+DzX7SA9aTQ8WrdujV27dsFkMmHMmDG4du2aK+oi\nUhzflr4Y2GUgNp7YWO+58nJg3TpgxgwZCiOSgU1zHs2aNcO7776L8ePHY8CAASgqKpK6LiJFsnbq\nir0dpDeNhscjjzxi/ndCQgJSU1Pxpz/9SdKiiJTKWs8HJ8pJb3h7EiI7zd45G21vaWte56OoqHrE\ncf48L9ElZeHtSYgU5OaeD/Z2kB4xPIjsdHPPB09ZkR4xPIjsVLvng70dpFec8yByQM06H9N/KUBr\n75Zct4MUiXMeRArj29IXA24fiDUHN7K3g3SJ4UHkoPCKBBiiU9nbQbrE8CBy0MnNo1HVzvZ1Poi0\nhOFB5ICiIiD9W09Mi7RtnQ8irWF4EDmgprfj4d62rfNBpDUMDyIH1PR22LrOB5HWMDyI7FS7t8OW\ndT6ItIjhQWSnm9ftaGydDyItYngQ2cHSuh0NrfNBpFUMDyI7WFu3g6euSG8YHkR2sHYTRGvrfBBp\nFcODyEZFRcCuXcDEifWf83T3xJRw9nyQfjA8iGzU2LodN6/zQaRlDA8iGzW2bgd7PkhPGB5ENrBl\n3Q72fJCeMDyIbHBzb4c17PkgvWB4EDXCUm+HNez5IL1geBA1wlpvhzU8dUV6wPAgakRjE+U3Y88H\n6QHDg6gBDfV2WMOeD9IDhgdRAxrr7bCGPR+kdQwPogbYe8qqBns+SOsYHkRW2NLbYQ17PkjrGB5E\nVtja22ENez5IyxgeRBbY09thDXs+SMsYHkQW2NvbYQ1PXZFWMTyILHB0ovxm7PkgrWJ4EN3Ekd4O\na9jzQVrF8CC6iaO9Hdaw54O0iOFBdBNnnbKqwZ4P0iKGB1EtTentsIY9H6RFDA+iWpra22ENez5I\nayQNj/vvvx++vr6IiIiw+Hx6ejpatWqF6OhoREdH45VXXpGyHKIGOaO3wxr2fJDWSBoeM2fORFpa\nWoPbDBo0CFlZWcjKysK8efOkLIeoQc7q7bCGp65ISyQNjwEDBqBNmzYNbiOEkLIEIps5e6L8Zuz5\nIC1pJuebGwwG/PDDDzAajfDz88PSpUsRFhZmcdukpCTzv+Pi4hAXF+eaIkkXano7Vq+W7j1q93wk\nxSVJ90akW+np6UhPT3fJexmExH/65+bmYsyYMTh27Fi954qLi+Hu7g5vb2/s3LkTTz75JE6fPl2/\nSIOBIxSSVEoKkJkJrF0r7fscvngY4z8bj7Ozz8LNwOtVSFpSfnbK+tvr4+MDb29vAMCIESNQXl6O\nq1evylkS6ZTUp6xqsOeDtELW8DCZTOZUzMzMhBACbdu2lbMk0iEpejusYc8HaYWkcx5TpkzBnj17\ncPnyZXTu3BkLFixAeXk5AGDWrFnYuHEjVqxYgWbNmsHb2xuffvqplOUQWSRVb4c10yKmYeGehSgp\nK0FLz5aueVMiJ5N8zsMZOOdBUikvB/z9gb17pbtE15L49fEY12McEqISXPempDuanfMgkpvUvR3W\n8NQVqR3Dg3TNVRPlN2PPB6kdw4N0y5nrdtiL63yQ2jE8SLecvW6HvbjOB6kZw4N0S65TVjVqej72\n5O6RrwgiBzE8SJdMJiA31zW9HdYYDAZMCJuAnWd2ylcEkYMYHqRLR44AUVGu6+2wJqZjDI6ajspb\nBJEDGB6kSzXhIbeoDlHIupjFPiZSHYYH6ZJSwsPPxw9VogqXSi7JXQqRXRgeTlZaWopBgwZh165d\nGDNmjMVt4uLicOjQIZte74033kDPnj1hNBoxdOhQ5OXlAQCOHDmCu+66C+Hh4TAajfjss8/M+0yb\nNg2hoaGIiIjAAw88gIqKCvNzs2fPRnBwMIxGI7Kyssw1Dxw4EFVV+rnqRynhYTAYENUhCkcuHZG7\nFCK7MDycbN26dRg9ejTcGziZbjAYYDAYbHq9mJgYHDp0CEePHsWECRPw3HPPAQBatGiBTz75BMeP\nH0daWhrmzJmD69evAwCmT5+On3/+GceOHcNvv/2GDz74AACwY8cOnDlzBtnZ2Vi1ahUSExMBAF5e\nXhgwYAA2bdrUlB9dNW7cAM6fB0JD5a6kGsOD1Ijh4WTr16/Hn//8ZwBASUkJJk6ciB49emD69OkO\nvV5cXByaN28OAIiNjUVBQQEAIDg4GIGBgQCAjh07on379igqKgJQfXv7GnfeeScKCwsBAJs3b8aM\nPxbojo2NxbVr12AymQAA8fHxWL9+vUM1qs3x49XB4ekpdyXVojpE4YiJ4UHqwvBwosrKShw/fhzd\nu3eHEAJZWVl46623cOLECZw7dw4//PBDvX0mT56M6Ojoel9rLaxK9OGHH2LkyJH1Hs/MzER5ebk5\nTGqUl5dj7dq1uOeeewAAFy5cQOfOnc3P+/v7m8MoKirKYn1apJRTVjU48iA1knUZWq25fPkyfHx8\nzN/37t0bnTp1AlD94Zybm4u77rqrzj623oZ+7dq1OHz4MN588806j1+8eBH33Xcf1qypf5uLRx99\nFIMGDUK/fv3Mj918VU/N6TMvLy9UVVXh999/N490tEpp4RFyWwjy/53PW7STqjA8nKz2h7OXl5f5\n3+7u7nUmrmtMmjTJ4tK7Tz/9NP7yl78AAL755hskJyfju+++g4eHh3mb69evY/To0UhOTkbv3r3r\n7L9gwQJcuXIF77//vvkxPz8/5Ofnm78vKCiAn59fndptnYtRsyNHgClT5K7ivzzcPRD2P2E4ZjqG\nvp37yl0OkU0YHk7Url07lJSU2LXPhg0bGnw+KysLjzzyCL766iu0a9fO/HhZWRnGjh2L++67D+PG\njauzzwcffICvv/4a3377bZ3H4+PjsXz5ckyePBkZGRlo3bo1fH19AVRfceXu7l4n8LSoshI4dgww\nGuWupK6aU1cMD1ILhocTubu7Izw8HKdOnbLriqqGPPfcc7hx4wYmTJgAAOjSpQs2bdqEzz77DN9/\n/z2uXr2K1NRUAMDHH3+MyMhIJCYmIiAgAH37Vn8QjR8/HvPmzcPIkSOxY8cOBAUFoUWLFli9erX5\nfbKysszba9mZM0D79vLdDNEaTpqT2nAlQSdLTU2FyWTC888/L3cpdnnppZdw5513YuzYsXKXIqkN\nG6q/vvxS7krq2pu3F898/Qz2P7hf7lJIQ7iSoIpMnToV27dvV03YAdWnrPbu3Yt7771X7lIkp7TJ\n8hqRvpE4/stxVFTVnxcjUiKGh5N5enriu+++U9XEs5eXl+pqdpRSw+NWr1vRsWVHZF/JlrsUIpsw\nPEhXlBoeAPs9SF0YHqQbly4BpaVArT5JReGkOakJw4N04+jR6lGHUs/OceRBasLwIN1Q8ikrgGt7\nkLowPEg3lB4eXNuD1IThQbqh9PDg2h6kJgwP0gWlreFhDcOD1ILhQbqgtDU8rOEVV6QWDA/SBaWf\nsqrBkQepBcODdEEt4VF7bQ8iJWN4kC6oJTxqr+1BpGQMD9I8pa7hYQ1PXZEaMDxI85S6hoc1nDQn\nNWB4kOap5ZRVDY48SA0YHqR5agsPru1BasDwIM1TW3hwbQ9SA4YHaZ7awgPgqStSPoYHaZrS1/Cw\nhpPmpHQMD9I0pa/hYQ1HHqR0DA/SNDWesgK4tgcpH8ODNE2t4cG1PUjpGB6kaWoND67tQUrH8CDN\nUssaHtYwPEjJGB6kWWpZw8MaXnFFSsbwIM1S6ymrGhx5kJIxPEiz1B4eXNuDlEyy8MjPz8fgwYPR\ns2dPhIeHIyUlxeJ2s2fPRnBwMIxGI7KysqQqxyXS09PlLsEmaqjTGTW6IjykPJbOXNtDDf/NAdap\nJpKFh4eHB95880389NNPyMjIwDvvvIOTJ0/W2WbHjh04c+YMsrOzsWrVKiQmJkpVjkuo5RdKDXU2\ntUZXreEh9bF01qkrNfw3B1inmkgWHh06dEDUH3/2tWzZEj169MCFCxfqbLNlyxbMmDEDABAbG4tr\n167BZDJJVRLpiNrW8LCGk+akVC6Z88jNzUVWVhZiY2PrPF5YWIjOtW465O/vj4KCAleURBqn9vmO\nGjWd5kRoZ0S8AAAIIUlEQVSKIyRWXFws7rjjDvGPf/yj3nOjR48We/fuNX8/ZMgQcejQoXrbAeAX\nv/jFL3458CWVZpBQeXk5xo8fj+nTp+Pee++t97yfnx/y8/PN3xcUFMDPz6/edoL39yEiUhTJTlsJ\nIfDAAw8gLCwMc+bMsbhNfHw81qxZAwDIyMhA69at4evrK1VJRETkJAYh0Z/1e/fuxcCBAxEZGQnD\nH/fDTk5ORl5eHgBg1qxZAIDHH38caWlpaNGiBVavXo2YmBgpyiEiImeS7IRYLTt37hQhISEiKChI\nLF682OI2TzzxhAgKChKRkZHi8OHDje575coVMXToUBEcHCyGDRsmfv31V/NzycnJIigoSISEhIiv\nvvpKkXXm5OSI5s2bi6ioKBEVFSUSExNlrfOzzz4TYWFhws3Nrd68k5KOp7U6HT2eUtT47LPPitDQ\nUBEZGSnGjh0rrl27Zn5OScfSWp1K+92cN2+eiIyMFEajUdx9990iLy/P/JySjqe1OpV2PGssXbpU\nGAwGceXKFfNj9hxPycOjoqJCBAYGipycHFFWViaMRqM4ceJEnW22b98uRowYIYQQIiMjQ8TGxja6\n79y5c8WSJUuEEEIsXrxYPP/880IIIX766SdhNBpFWVmZyMnJEYGBgaKyslJxdebk5Ijw8HA7j6Z0\ndZ48eVKcOnVKxMXF1flQVtrxtFanI8dTqhq//vpr8zF6/vnnFfu7aa1Opf1uXr9+3bx/SkqKeOCB\nB4QQyjue1upU2vEUQoi8vDwxfPhwERAQYA4Pe4+n5JfqZmZmIigoCAEBAfDw8MDkyZOxefPmOttY\n6ve4dOlSg/vW3mfGjBnYtGkTAGDz5s2YMmUKPDw8EBAQgKCgIGRmZiquTkdJVWdoaCi6d+9e7/2U\ndjyt1ekIqWocNmwY3NzczPvUXH6utGNprU5HSVWnj4+Pef+SkhK0a9cOgPKOp7U6HSVVnQDw9NNP\n47XXXqvzWvYeT8nDw1IvR2FhoU3bXLhwweq+JpPJPLnu6+trbi68cOEC/P39G3w/JdQJADk5OYiO\njkZcXBz27t3baI1S1mmN0o5nQ+w9nq6o8aOPPsLIkSMBKPtY1q4TUN7v5l//+lfcfvvtSE1NxYsv\nvghAmcezps6PP/4YL7zwgvlxJR3PzZs3w9/fH5GRkXVey97jKXl41EyWN0bYMG8vhLD4egaDocH3\nsaUGV9fZqVMn5OfnIysrC2+88QamTp2K4uJil9bpKFcfT1s4cjylrnHRokXw9PTE1KlTm1SDq+tU\n4u/mokWLkJeXh5kzZ1q9etPWGlxRZ0JCAp566ikAyjqev/32G5KTk7FgwQKb9m+oBkn7PID6vRz5\n+fl10s3SNgUFBfD390d5ebnVPhBfX19cunQJHTp0wMWLF9G+fXurr2Wpd0TuOj09PeH5x0ITMTEx\nCAwMRHZ2dqNXmzmzTkv7NvZ+chxPW+p05HhKWWNqaip27NiBb7/9tsHXkvtYWqpTyb+bU6dONY+Q\nlHg8LdWppON59uxZ5ObmwvjHTd8KCgpwxx13YP/+/fYfT7tncexUXl4uunXrJnJyckRpaWmjkz77\n9u0zT/o0tO/cuXPNVxC8+uqr9SYlS0tLxblz50S3bt1EVVWV4uosKioSFRUVQgghzp49K/z8/Opc\nMebqOmvExcWJgwcPmr9X2vG0Vqcjx1OqGnfu3CnCwsJEUVFRnddS2rG0VqfSfjdPnz5t3j8lJUVM\nnz5dkcfTWp1KO561WZowt/V4uuRS3R07doju3buLwMBAkZycLIQQ4r333hPvvfeeeZvHHntMBAYG\nisjIyDpX0VjaV4jqS2CHDBli8VLdRYsWicDAQBESEiLS0tIUWecXX3whevbsKaKiokRMTIzYtm2b\nrHV++eWXwt/fXzRv3lz4+vqKe+65x/ycko6ntTo3btzo0PGUosagoCBx++23W7w0U0nH0lqdjh5L\nqeocP368CA8PF0ajUYwbN06YTCbzc0o6ntbqVNr/67V17dq1zqW69hxPyZoEiYhIu7iSIBER2Y3h\nQUREdmN4EBGR3RgeRERkN4YHkQVJSUlYtmxZo9tt27YNSUlJdr32kCFDbGoSI1IyhgeRBbZ29y5b\ntgyJiYl2vfbkyZPx/vvvO1IWkWIwPIj+sGjRIoSEhGDAgAE4depUo9vn5+ejrKzMfO+yhIQEPPro\no+jbty8CAwORnp6OGTNmICwsDDNnzjTvFx8fj08//VSyn4PIFSS/PQmRGhw6dAgbNmzA0aNHUV5e\njpiYGPTq1avBff71r3/VucWEwWDAtWvXsG/fPmzZsgXx8fHYt28fwsLCcOedd+Lo0aMwGo3w9fXF\n5cuXcePGDbRo0ULqH41IEhx5EAH4/vvvMW7cODRv3hw+Pj6Ij49v9IZzeXl56NixY53HxowZAwAI\nDw9Hhw4d0LNnTxgMBvTs2RO5ubnm7Xx9fevcR4hIbRgeRKgeNdQOC1tvvHDzdjU3wHNzc4OXl5f5\ncTc3N1RUVNTZz9Z5FSIlYngQARg4cCA2bdqE33//HcXFxdi2bVujH+5dunTBpUuXHHo/k8nU6J2C\niZSM4UEEIDo6GpMmTYLRaMTIkSPRu3fvRvfp168fDh8+XOex2oFzc/jUfH/p0iXcdtttnO8gVeON\nEYma4O6778a6devqzX00ZNWqVbhx44Z5sSAiNeLIg6gJnn32Wbz33nt27bNhwwY89NBDElVE5Boc\neRARkd048iAiIrsxPIiIyG4MDyIishvDg4iI7MbwICIiuzE8iIjIbv8PNfE+DP2EsOkAAAAASUVO\nRK5CYII=\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 10.2 Page NO.532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou_f=974.0 # density in kg/m**3 \n", "cp_1=4196.0 # specific heat in J/(kg*K) \n", "v_1=0.364e-6 # viscosity in m**2/s \n", "Pr_1=2.22 # Prandtl Number \n", "kf=0.668 # thermal conductivity in W/(m.K)\n", "a_1=1.636e-7 # diffusivity in m**2/s \n", "Vv=1.9364 # specific volume in m**3/kg\n", "rou_v=1/Vv # vapor density\n", "g=9.81\n", "hfg=2257.06*1000 \n", "Tg=100\n", "Tw=60\n", "L=1\n", "\n", "OD=0.03340\n", "hD=0.782*((g*rou_f*(1-(rou_v/rou_f))*(kf**3)*hfg)/(v_1*OD*(Tg-Tw)))**(1/4.0)\n", "hD=10720 #According to the book\n", "import math\n", "q=hD*math.pi*OD*L*(Tg-Tw)\n", "mf=q/hfg\n", "\n", "print\"The heat flow rate is \",round(q,0),\"W\"\n", "print\"The rate at which steam condenses is \",round(mf*3600,0),\"kg/hr\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat flow rate is 44994.0 W\n", "The rate at which steam condenses is 72.0 kg/hr\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 10.3 Page NO. 538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "rou_f=958 # density in kg/m**3\n", "cp_f= 4217 # specific heat in J/(kg*K) \n", "v_f= 2.91e-7 # viscosity in m**2/s \n", "Pr_f =1.76 # Prandtl Number \n", "rou_g=0.596 \n", "sigma=0.0589 # surface tension in N/m\n", "hfg=2257000 \n", "Tw=120.0\n", "Tg=100.0\n", "D=.141 # diameter of pan in m\n", "g=9.81\n", "gc=1\n", "\n", "Cw=0.0132 # formechanically polished stainless steel from table 10.2\n", "q_A=(rou_f*v_f*hfg)*((g*rou_f*(1-(rou_g/rou_f)))/(sigma*gc))**(0.5)*((cp_f*(Tw-Tg))/(Cw*hfg*Pr_f**1.7))**3\n", "A=math.pi*D**2/4.0\n", "p=q_A*A # power delivered to the water in W\n", "mf=q/hfg # water evaporation rate\n", "q_cr=0.18*hfg*(sigma*g*gc*rou_f*rou_g**2)**(0.25)\n", "\n", "print\"(a)The power delivered to the water is kW\",round(q/1000,2),\"KW\"\n", "print\"(b)The water evaporation rate is \",round(mf*3600,2),\"kg/h\"\n", "print\"(c)The critical heat flux is \",round(q_cr,0),\"W/sq.m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The power delivered to the water is kW 4.98 KW\n", "(b)The water evaporation rate is 7.94 kg/h\n", "(c)The critical heat flux is 1521299.0 W/sq.m\n" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }