{ "metadata": { "name": "CHAPTER9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Heat Exchanger" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.1 Page No.458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# determination of counterflow and parallel-flow configurations. \n", "\n", "#Given\n", "# temperatures of hot fluid in degree C\n", "T1=100.0 \n", "T2=75.0\n", "# temperatures of cold fluid in degree C\n", "t1=5.0\n", "t2=50.0\n", "\n", "#Calculation\n", "# for counterflow\n", "import math\n", "LMTD_counter=((T1-t2)-(T2-t1))/(math.log((T1-t2)/(T2-t1)))\n", "# for parallel flow\n", "LMTD_parallel=((T1-t1)-(T2-t2))/(math.log((T1-t1)/(T2-t2)))\n", "\n", "#Result\n", "print\"The LMTD for counter flow configuration is \",round(LMTD_counter,1),\"C\"\n", "print\"The LMTD for parallel flow configuration is \",round(LMTD_parallel,2),\"C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The LMTD for counter flow configuration is 59.4 C\n", "The LMTD for parallel flow configuration is 52.43 C\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.2 Page No. 459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Determination of the LMTD for both counterflow and parallel-flow configurations. \n", "\n", "#Given\n", "# temperatures of hot fluid in degree F\n", "T1=250\n", "T2=150\n", "# temperatures of cold fluid in degree F\n", "t1=100\n", "t2=150\n", "\n", "#calculation\n", "# for counterflow\n", "import math\n", "LMTD_counter=((T1-t2)-(T2-t1))/(math.log((T1-t2)/(T2-t1)));\n", "# for parallel flow\n", "LMTD_parrelel=0\n", "\n", "#Result\n", "print\"The LMTD for counter flow configuration is\",round(LMTD_counter,1),\"C\"\n", "print\"if parallel flow is to give equal outlet temperatures,then the area needed must be infinite which is not feasible economically.\"\n", "print\"The LMTD for parrelel flow configuration is\",LMTD_parrelel,\"C\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The LMTD for counter flow configuration is 72.1 C\n", "if parallel flow is to give equal outlet temperatures,then the area needed must be infinite which is not feasible economically.\n", "The LMTD for parrelel flow configuration is 0 C\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.3 Page No.463" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Determination of the outlet temperature of the ethylene glycol for counterflow.\n", "\n", "#Given\n", "# properties of air at (195 + 85)/2 = 140\u00b0F. from appendix table CII\n", "rou_1= 0.985*62.4 # density in lbm/ft**3 \n", "cp_1=0.9994 # specific heat BTU/(lbm-degree Rankine) \n", "v_1= 0.514e-5 # viscosity in ft**2/s \n", "kf_1 = 0.376 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a_1 = 6.02e-3 # diffusivity in ft**2/hr \n", "Pr_1 = 3.02 # Prandtl Number \n", "m_1=5000 # mass flow rate in lbm/hr\n", "T_1=195 # temperature in degree F\n", "# properties of ethylene glycol at 140 degree F from Appendix Table C.5\n", "rou_2= 1.087*62.4 # density in lbm/ft**3 \n", "cp_2=0.612 # specific heat BTU/(lbm-degree Rankine) \n", "v_2= 5.11e-5 # viscosity in ft**2/s \n", "kf_2 = 0.150 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a_2 = 3.61e-3 # diffusivity in ft**2/hr \n", "Pr_2 = 51 # Prandtl Number \n", "m_2=12000 # mass flow rate in lbm/hr\n", "T_2=85 # temperature in degree F\n", "# specifications of seamless copper water tubing (subscripts: a = annulus, p = inner pipe or tube) from appendix table F2\n", "ID_a=0.1674\n", "ID_p=0.1076\n", "OD_p=1.375/12\n", "# Flow Areas\n", "A_p=math.pi*ID_p**2/4\n", "A_a=math.pi*((ID_a)**2-(OD_p)**2)/4\n", "\n", "# Annulus Equivalent Diameters\n", "D_h=ID_a-OD_p\n", "D_e=(ID_a**2-OD_p**2)/(OD_p)\n", "\n", "# Reynolds Numbers \n", "Re_1=(m_1/3600.0)*(ID_p)/(v_1*rou_1*A_p)\n", "Re_2=(m_2/3600.0)*(D_e)/(v_2*rou_2*A_a)\n", "\n", "# Nusselt numbers\n", "Nu_1=0.023*(Re_1)**(4/5.0)*(Pr_1)**0.3\n", "Nu_2=0.023*(Re_2)**(4/5.0)*(Pr_2)**0.4\n", "\n", "# Convection Coefficients \n", "h_1i=Nu_1*kf_1/ID_p\n", "h_1o=h_1i*ID_p/OD_p\n", "h_2=Nu_2*kf_2/D_e\n", "\n", "# Exchanger Coefficient \n", "Uo=1/((1/h_1o)+(1/h_2))\n", "R=(m_2*cp_2)/(m_1*cp_1)\n", "L=20\n", "A=math.pi*OD_p*L\n", "T1=195\n", "t1=85\n", "T2=((T1*(R-1))-(R*t1*(1-exp((Uo*A*(R-1))/(m_2*cp_2)))))/(R*exp(Uo*A*(R-1)/(m_2*cp_2))-1)\n", "t2=t1+(T1-T2)/R\n", "print\"The outlet temperature of Ethylene glycol is %.1f degree F\",round(t2,1),\"F\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The outlet temperature of Ethylene glycol is %.1f degree F 99.4 F\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.4 Page No. 467" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Determination of (a) no. of exchangers required, (b) the overall coefficient of (all) the exchanger(s), and (c) the pressure drop for each stream. \n", "\n", "#Given\n", "# assuming counterflow arrangement\n", "# properties of air at 323 K. from appendix table D1\n", "rou_1= 1.088 \t\t# density in kg/m**3 \n", "cp_1= 1007\t\t # specific heat in J/(kg*K) \n", "v_1= 18.2e-6\t\t # viscosity in m**2/s \n", "Pr_1 =0.703 \t\t# Prandtl Number \n", "kf_1= 0.02814 \t\t# thermal conductivity in W/(m.K)\n", "a_1 = 0.26e-4 \t\t# diffusivity in m**2/s \n", "m_1=100 \t\t # mass flow rate in kg/hr\n", "# temperatures in K\n", "t1_air=20+273 \n", "t2_air=80+273\n", "# properties of carbon dioxide at [600 + (20 + 273)]/2 = 480 = 500 K. from appendix table D2\n", "rou_2= 1.0732\t\t # density in kg/m**3 \n", "cp_2= 1013 \t\t# specific heat in J/(kg*K) \n", "v_2= 21.67e-6 \t #viscosity in m**2/s \n", "Pr_2 =0.702 \t\t# Prandtl Number \n", "kf_2= 0.03352 \t\t# thermal conductivity in W/(m.K)\n", "a_2 = 0.3084e-4 \t\t# diffusivity in m**2/s \n", "m_2=90\t\t\t # mass flow rate in kg/hr\n", "# temperatures in K\n", "T1_CO2=600 \n", "# specifications of seamless copper tubing from appendix table F2\n", "ID_a=.098\n", "ID_p=.07384\n", "OD_p=.07938\n", "\n", "#calculation\n", "import math\n", "# Flow Areas\n", "A_p=math.pi*ID_p**(2)/4.0\n", "A_a=math.pi*((ID_a)**2-(OD_p)**2)/4.0\n", "\n", "# Heat Balance \n", "q_air=(m_1/3600.0)*(cp_1)*(t2_air-t1_air)\n", "T2_CO2=T1_CO2-(q_air/(m_2*cp_2/3600.0))\n", "\n", "# Log-Mean Temperature Difference\n", "LMTD_counter=((T1_CO2-t2_air)-(T2_CO2-t1_air))/(log((T1_CO2-t2_air)/(T2_CO2-t1_air)))\n", "# Annulus Equivalent Diameters\n", "D_h=ID_a-OD_p\n", "D_e=(ID_a**2-OD_p**2)/(OD_p)\n", "\n", "# Reynolds Numbers \n", "Re_1=(m_1/3600.0)*(ID_p)/(v_1*rou_1*A_p)\n", "Re_2=(m_2/3600.0)*(D_e)/(v_2*rou_2*A_a)\n", "\n", "# Nusselt numbers\n", "Nu_1=0.023*(Re_1)**(0.8)*(Pr_1)**0.3\n", "Nu_2=0.023*(Re_2)**(0.8)*(Pr_2)**0.4\n", "\n", "# Convection Coefficients \n", "\n", "h_1i=Nu_1*kf_1/ID_p\n", "h_1o=h_1i*ID_p/OD_p\n", "h_2=Nu_2*kf_2/D_e\n", "\n", "# Fouling Factors in (m**2.K)/W\n", "Rd_air=0.0004\n", "Rd_CO2=0.002\n", "\n", "# exchanger coefficients\n", "Uo=1/((1/h_1o)+(1/h_2))\n", "Uo=1/((1/Uo)+Rd_air+Rd_CO2)\n", "\n", "# area required\n", "A=q_air/(Uo*LMTD_counter)\n", "\n", "# surface area of one exchanger is A=math.pi*OD*L, so\n", "L=(A/(math.pi*OD_p)) # length of each exchanger\n", "L_available=2 # available exchanger length\n", "N=L_available/L # no. of exchangers\n", "\n", "#friction factors\n", "fp=0.0245 #friction factor for air fom figure 6.14 corresponding to Re\n", "fa=0.033 #friction factor for cCO2fom figure 6.14 corresponding to Re\n", "# Velocities\n", "V_air=(m_1/3600.0)/(rou_1*A_p)\n", "V_CO2=(m_2/3600.0)/(rou_2*A_a)\n", "\n", "# pressure drops\n", "dP_p=(fp*L_available*rou_1*V_air**2)/(ID_p*2)\n", "dP_a=((rou_2*V_CO2**2)/2.0)*((fa*L_available/D_h)+1)\n", "\n", "#Result\n", "print\"(a)The number of exchangers is \",round(N,0)\n", "print\"(b)The overall exchanger coefficient is \",round(Uo,1),\" W/(sq.m.K)\"\n", "print\"(c)The pressure drop for tube side is \",round(dP_p,2),\"Pa\"\n", "print\"The pressure drop for shell side is \",round(dP_a,1),\"Pa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The number of exchangers is 1.0\n", "(b)The overall exchanger coefficient is 14.2 W/(sq.m.K)\n", "(c)The pressure drop for tube side is 12.83 Pa\n", "The pressure drop for shell side is 196.7 Pa\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.5 Page No. 484" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Determination of the outlet temperature of the distilled water and the pressure drop for each stream. \n", "\n", "#Given\n", "# properties of (distilled) water at 104\u00b0F from appendix table CII\n", "rou_1= 0.994*62.4 # density in lbm/ft**3 \n", "cp_1=0.998 # specific heat BTU/(lbm-degree Rankine) \n", "v_1= 0.708e-5 # viscosity in ft**2/s \n", "kf_1 = 0.363 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a_1 = 5.86e-3 # diffusivity in ft**2/hr \n", "Pr_1 = 4.34 # Prandtl Number \n", "m_1=170000 # mass flow rate in lbm/hr\n", "T1=110.0 # temperature in degree F\n", "# properties of (raw) water at 68\u00b0F from Appendix Table C11\n", "rou_2= 62.4 # density in lbm/ft**3 \n", "cp_2=0.9988 # specific heat BTU/(lbm-degree Rankine) \n", "v_2= 1.083e-5 # viscosity in ft**2/s \n", "kf_2 = 0.345 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a_2 = 5.54e-3 # diffusivity in ft**2/hr \n", "Pr_2 = 7.02 # Prandtl Number \n", "m_2=150000 # mass flow rate in lbm/hr\n", "t1=65 # temperature in degree F\n", "# specifications of 3/4-in-OD, 18-BWG tubes, from table 9.2\n", "OD=3/(4*12.0)\n", "ID=0.652/12.0\n", "OD_p=1.375/12.0\n", "Nt=224.0 # from table 9.3\n", "Np=2 # no. of tube passes\n", "# Shell dimensions and other miscellaneous data\n", "Ds=17.25/12.0\n", "Nb=15.0 # no. of baffles\n", "B=1\n", "sT=15/(16*12.0)\n", "C=sT-OD\n", "\n", "#CALCULATION\n", "import math\n", "# flow areas\n", "At=(Nt*math.pi*ID**2)/(4*Np)\n", "As=(Ds*C*B)/sT\n", "\n", "# Shell Equivalent Diameter \n", "De=4*((sT/2.0)*(0.86*sT)-(math.pi*OD**2/8.0))/(math.pi*OD/2.0)\n", "\n", "# Reynolds Numbers \n", "Re_s=(m_1/3600.0)*(De)/(v_1*rou_1*As)\n", "Re_t=(m_2/3600.0)*(ID)/(v_2*rou_2*At)\n", "\n", "# Nusselt numbers\n", "Nu_t=0.023*(Re_t)**(0.8)*(Pr_2)**0.4\n", "Nu_s=0.36*(Re_s)**(0.55)*(Pr_1)**(1/3.0)\n", "h_ti=Nu_t*kf_2/ID\n", "h_to=h_ti*ID/OD\n", "h_s=Nu_s*kf_1/De\n", "\n", "# Exchanger Coefficient \n", "Uo=1/((1/h_to)+(1/h_s))\n", "R=(m_2*cp_2)/(m_1*cp_1)\n", "L=16\n", "Ao=Nt*math.pi*OD*L\n", "UoAo_mccp=(Uo*Ao)/(m_2*cp_2)\n", "S=0.58 #value of S from fig. 9.13 Ten Broeck graph corresponding to the value of (UoAo)/(McCpc)\n", "t2=S*(T1-t1)+t1\n", "T2=T1-R*(t2-t1)\n", "#friction factors\n", "ft=0.029 #friction factor for raw water fom figure 6.14 corresponding to Reynolds Number calculated above\n", "fs=0.281 #friction factor for distilled water fom figure 6.14 corresponding to Reynolds Number calculated above\n", "\n", "# Velocities\n", "V_t=(m_2/3600.0)/(rou_2*At)\n", "V_s=(m_1/3600.0)/(rou_1*As)\n", "\n", "# pressure drops\n", "gc=32.2\n", "dP_t=(rou_2*V_t**2)*((ft*L*Np/ID)+4*Np)/(2*gc)\n", "dP_s=((rou_1*V_s**2)*(fs*Ds*(Nb+1)))/(2*gc*De)\n", "\n", "#Result\n", "print\"Outlet Temperatures of raw water is \",round(t2,1),\"F\"\n", "print\"Outlet Temperatures of distilled water is \",round(T2,1),\"F\"\n", "print\"\\nThe pressure drop for tube side is\",round(dP_t/147,1),\"psi\"\n", "print\"The pressure drop for shell side is\",round(dP_s/147,1),\"psi\"\n" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.6 Page No.492" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Using the effectiveness-NTU method to calculate the outlet temperatures of the fluids\n", "\n", "#Given\n", "# Data from Example 9.5\n", "# properties of (distilled) water at 104\u00b0F \n", "m_1=170000 \t\t# mass flow rate in lbm/hr\n", "T1=110 \t\t\t# temperature in degree F\n", "cp_1=0.998\t\t # specific heat BTU/(lbm-degree Rankine) \n", "# properties of (raw) water at 68\u00b0F \n", "m_2=150000 \t\t# mass flow rate in lbm/hr\n", "t1=65 \t\t\t# temperature in degree F\n", "cp_2=0.9988\t # specific heat BTU/(lbm-degree Rankine) \n", "Uo=350 \t\t\t# exchanger coefficient\n", "Ao=703.7\n", "# The effectiveness-NTU approach is used when the overall heat transfer coefficient is known\n", "# determining the capacitances\n", "mcp_raw=m_2*cp_2\n", "mcp_distilled=m_1*cp_1\n", "\n", "# determination of parameters for determining effectiveness\n", "mcp_min_max=mcp_raw/mcp_distilled\n", "UA_mcpmin=(Uo*Ao)/(mcp_raw)\n", "effectiveness=0.58 \t\t#value of effectiveness from figure 9.15 corresponding to the above calculated values of capacitance ratio and (UoAo/mcp_min)\n", "qmax=mcp_raw*(T1-t1)\n", "q=effectiveness*qmax \t# actual heat transfer\n", "t2=(q/mcp_raw)+t1\n", "T2=T1-(q/mcp_distilled)\n", "\n", "#Result\n", "print\"The Outlet temperature is Raw Water is\",round(t2,1),\"F\"\n", "print\"The Outlet temperature is disilled Water is\",round(T2,1),\"F\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Outlet temperature is Raw Water is 91.1 F\n", "The Outlet temperature is disilled Water is 87.0 F\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.7 Page No. 499" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# (a) Determine the UA product for the exchanger. (b) Calculate the exit temperatures for the exchanger, assuming that only the inlet temperatures are known\n", "# properties of engine oil at (190 + 158)/2 = 174\u00b0F = 176 degree F from appendix table C4\n", "rou_1= 0.852*62.4\t\t # density in lbm/ft**3 \n", "cp_1=0.509\t\t # specific heat BTU/(lbm-degree Rankine) \n", "v_1=0.404e-3 \t\t# viscosity in ft**2/s \n", "kf_1=0.08 \t\t# thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a_1=2.98e-3 \t# diffusivity in ft**2/hr \n", "Pr_1=490.0 \t\t# Prandtl Number \n", "m_1=39.8 \t\t # mass flow rate in lbm/min\n", "# temperatures in degree F\n", "T1=190.0\n", "T2=158.0\n", "# properties of air at (126 + 166)/2 = 146\u00b0F = 606 degree R from appendix table D1\n", "rou_2= 0.0653\t\t # density in lbm/ft**3 \n", "cp_2=0.241\t\t # specific heat BTU/(lbm-degree Rankine) \n", "v_2= 20.98e-5 \t\t# viscosity in ft**2/s \n", "kf_2 = 0.01677 \t\t # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", "a_2 = 1.066 \t\t# diffusivity in ft**2/hr \n", "Pr_2 = 0.706 \t\t# Prandtl Number \n", "m_2=67.0 \t\t\t# mass flow rate in lbm/min\n", "# temperatures in degree F\n", "t1=126.0\n", "t2=166.0\n", "# Heat Balance\n", "q_air=m_2*cp_2*60*(t2-t1)\n", "q_oil=m_1*cp_1*60*(T1-T2)\n", "\n", "# for counterflow\n", "import math\n", "LMTD=((T1-t2)-(T2-t1))/(math.log((T1-t2)/(T2-t1)))\n", "# Frontal Areas for Each Fluid Stream\n", "Area_air=(9.82*8)/144.0\n", "Area_oil=(3.25*9.82)/144.0\n", "\n", "# Correction Factors (parameters calculated first)\n", "S=(t2-t1)/(T1-t1)\n", "R=(T1-T2)/(t2-t1)\n", "F=0.87 #value of correction factor from figure 9.21a corresponding to above calculated values of S and R\n", "# Overall Coefficient (q = U*A*F*LMTD)\n", "UA=q_air/(F*LMTD)\n", "# determining the capacitances\n", "mcp_air=m_2*cp_2*60\n", "mcp_oil=m_1*cp_1*60\n", "\n", "# determination of parameters for determining effectiveness\n", "mcp_min_max=mcp_air/mcp_oil\n", "NTU=(UA/mcp_air)\n", "effectiveness=0.62 \t\t#effectiveness from fig 9.21b corresponding to the values of capacitance ratio \n", "t2_c=(T1-t1)*effectiveness+t1\n", "T2_c=T1-(mcp_air)*(t2_c-t1)/(mcp_oil)\n", "\n", "#Result\n", "print\"The Overall Coefficient is \",round(UA,0),\" BTU/(hr. degree R)\"\n", "print\"Calculated outlet temprature are:\"\n", "print\"Outlet temprature for air\",round(t2_c,1),\"F\"\n", "print\"Outlet temprature for Engine Oil\",round(T2_c,0),\"F\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Overall Coefficient is 1602.0 BTU/(hr. degree R)\n", "Calculated outlet temprature are:\n", "Outlet temprature for air 165.7 F\n", "Outlet temprature for Engine Oil 158.0 F\n" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }