{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4 : Equation of states and intermolecular forces"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1  Page No : 220"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from numpy import *\n",
      "\n",
      "# Variables\n",
      "H2O = 1. ;\n",
      "NH3 = 2. ;\n",
      "CH4 = 3. ;\n",
      "CH3Cl = 4. ;\n",
      "CCl4 = 5. ;\n",
      "\n",
      "M_11 = 1.85\n",
      "alp_12 = 14.80\n",
      "I_13 = 12.62 ;\n",
      "M_12 = 1.47\n",
      "alp_22 = 22.20\n",
      "I_23 = 10.07 ;\n",
      "M_31 = 0.00\n",
      "alp_32 = 26.00\n",
      "I_33 = 12.61 ;\n",
      "M_41 = 1.87\n",
      "alp_42 = 45.30\n",
      "I_43 = 11.26 ; \n",
      "M_51 = 0.00\n",
      "alp_52 = 105.0\n",
      "I_53 = 11.47 ;\n",
      "\n",
      "# Calculations\n",
      "k = 1.38 * 10**-16 ; \t\t\t#[ J/K]\n",
      "T = 298.             \t\t\t#[K]\n",
      "A =[[M_11 , alp_12 , I_13, 0,0,0,0],[M_12 , alp_22 , I_23,0,0,0,0 ],[M_31 , alp_32 , I_33,0,0,0,0],[M_41 , alp_42 , I_43,0,0,0,0],[M_51 , alp_52 , I_53,0,0,0,0 ]]\n",
      "print A\n",
      "\n",
      "print (\" Molecule       M       alp*10**25        I          C*10**60      Cd_d      Cind     Cdis\") ;\n",
      "for i in range(5):\n",
      "    A[i][4] = ceil( 2./3 * A[i][0]**4 / (k * T) * 10**-12) ;\n",
      "    A[i][5] = ceil(2 * A[i][1] * A[i][0]**2 * 10**-1) ; \n",
      "    A[i][6] = ceil(3./4 * A[i][1]**2 * A[i][2] * 1.6 * 10**-2) ;\n",
      "    A[i][3] = ceil(A[i][4] +  A[i][5] +  A[i][6]) ; \t\t\t# ....E4.1D\n",
      "\n",
      "\n",
      "print \"    H2O   %8.2f        %5.1f         %5.2f         %7d    %7d   %5d        %d \"%(A[0][0],A[0][1],A[0][2],A[0][3],A[0][4],A[0][5],A[0][6]) ;\n",
      "print \"    NH3   %8.2f        %5.1f         %5.2f         %7d    %7d   %5d        %d \"%(A[1][0],A[1][1],A[1][2],A[1][3],A[1][4],A[1][5],A[1][6]) ;\n",
      "print \"    CH4   %8.2f        %5.1f         %5.2f         %7d    %7d   %5d        %d \"%(A[2][0],A[2][1],A[2][2],A[2][3],A[2][4],A[2][5],A[2][6]) ;\n",
      "print \"   CH3Cl  %8.2f        %5.1f         %5.2f         %7d    %7d   %5d        %d \"%(A[3][0],A[3][1],A[3][2],A[3][3],A[3][4],A[3][5],A[3][6]) ;\n",
      "print \"   CCl4   %8.2f        %5.1f         %5.2f         %7d    %7d   %5d       %d \"%(A[4][0],A[4][1],A[4][2],A[4][3],A[4][4],A[4][5],A[4][6]) ;\n",
      "\n",
      "print \"Even though it is non polar , CCl4 exhibit the largest intermolecular forces . It is due to the large polarizability accociated with the four Cl atom in CCl4 .\"\n",
      "\n",
      "# Note : Answer are slightly different because of rounding off error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "[[1.85, 14.8, 12.62, 0, 0, 0, 0], [1.47, 22.2, 10.07, 0, 0, 0, 0], [0.0, 26.0, 12.61, 0, 0, 0, 0], [1.87, 45.3, 11.26, 0, 0, 0, 0], [0.0, 105.0, 11.47, 0, 0, 0, 0]]\n",
        " Molecule       M       alp*10**25        I          C*10**60      Cd_d      Cind     Cdis\n",
        "    H2O       1.85         14.8         12.62             235        190      11        34 \n",
        "    NH3       1.47         22.2         10.07             146         76      10        60 \n",
        "    CH4       0.00         26.0         12.61             103          0       0        103 \n",
        "   CH3Cl      1.87         45.3         11.26             509        199      32        278 \n",
        "   CCl4       0.00        105.0         11.47            1518          0       0       1518 \n",
        "Even though it is non polar , CCl4 exhibit the largest intermolecular forces . It is due to the large polarizability accociated with the four Cl atom in CCl4 .\n"
       ]
      }
     ],
     "prompt_number": 41
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2  Page No : 222"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "import math\n",
      "C6_Ar_HCl_tab = 76 * 10**-60 ;\t\t\t#From table E4.2\n",
      "C6_Ar_Ar_tab = 52 * 10**-60 ;\t\t\t#From table E4.2\n",
      "C6_HCl_HCl_tab = 134 * 10**-60 ;\t\t\t#From table E4.2\n",
      "\n",
      "# Calculations\n",
      "C6_Ar_HCl_gmean = math.sqrt(C6_Ar_Ar_tab * C6_HCl_HCl_tab) ; \t\t\t#[erg/cm**6]\n",
      "x = (C6_Ar_HCl_gmean - C6_Ar_HCl_tab) / C6_Ar_HCl_tab * 100 ;\n",
      "\n",
      "# Results\n",
      "print \"The geometric mean is different from that in table E4.2 by %d %%\"%(x)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The geometric mean is different from that in table E4.2 by 9 %\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4  Page No : 230"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "import math\n",
      "Psat_wat_25 = 3.169 * 10**3 ;\t\t\t# From steam table\n",
      "Psat_wat_50 = 1.235 * 10**4 ;\t\t\t# From steam table\n",
      "Psat_wat_100 = 1.014 * 10**5 ;\t\t\t# From steam table\n",
      "A =11.9673 ;\n",
      "B = 3626.55 ;\n",
      "C = -34.29 ;\n",
      "T1 = 25 ; \t\t\t#[*C]\n",
      "T2 = 50 ; \t\t\t#[*C]\n",
      "T3 = 100 ; \t\t\t#[*C]\n",
      "\n",
      "# Calculations\n",
      "M = [[T1, Psat_wat_25 , 0],[T2 , Psat_wat_50, 0],[T3 , Psat_wat_100, 0]]\n",
      "#M = array(M)\n",
      "\n",
      "print (\"  T(*C)   Water(Pa)   Methanol(Pa)\")\n",
      "for i in range(3):\n",
      "    M[i][2] = math.exp(A - B / (M[i][0] + 273 + C)) * 10**5 ;\n",
      "    print \"%5d     %7.3e    %7.2e\"%(M[i][0],M[i][1],M[i][2])\n",
      "    #t.append(math.exp(A - B / (M[i][0] + 273 + C)) * 10**5)\n",
      "#M.append(t)\n",
      "\n",
      "# Results\n",
      "\n",
      "print \"1)     Water can form two hydrogen bonds . While CH4Oh can form only one . Thus at\\\n",
      " a given temperature, water has stronger attractive forces in the liquid and a lower vapour pressure .\"\n",
      "print \"2)      Since the Maxwell-Boltzmann distribution depends exponentially on temperature,\\\n",
      " Psat also increses exponentially with temperature .\"\n",
      "\n",
      "# Note: Answers may vary because of rounding off error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "  T(*C)   Water(Pa)   Methanol(Pa)\n",
        "   25     3.169e+03    1.68e+04\n",
        "   50     1.235e+04    5.52e+04\n",
        "  100     1.014e+05    3.53e+05\n",
        "1)     Water can form two hydrogen bonds . While CH4Oh can form only one . Thus at a given temperature, water has stronger attractive forces in the liquid and a lower vapour pressure .\n",
        "2)      Since the Maxwell-Boltzmann distribution depends exponentially on temperature, Psat also increses exponentially with temperature .\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6  Page No : 236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Pc_B = 49.1 ; \t\t\t# [bar] , From table\n",
      "Pc_T = 42.0 ; \t\t\t# [bar] , From table\n",
      "Pc_C = 40.4 ; \t\t\t# [bar] , From table\n",
      "Tc_B = 562 ; \t\t\t# [K] , From table\n",
      "Tc_T = 594 ; \t\t\t# [K] , From table \n",
      "Tc_C = 553 ; \t\t\t# [K] , From table\n",
      "R = 8.314 ;\n",
      "\n",
      "# Calculations\n",
      "A = [[Pc_B , Tc_B, 0,0],[Pc_T , Tc_T,0,0],[Pc_C , Tc_C,0,0]]\n",
      "\n",
      "# Results\n",
      "print \"   P_c     T_c        a      b \"\n",
      "for i in range(3):\n",
      "    A[i][2] = 27./64 * (R * A[i][1])**2 /( A[i][0] * 10**5) ;\n",
      "    A[i][3] = R * A[i][1] / (8 * A[i][0] * 10**5) ;\n",
      "    print \"  %5.1f %5d   %7.2f  %7.2e\"%(A[i][0],A[i][1],A[i][2],A[i][3])\n",
      "\n",
      "print \"The attractive interactions of all three compounds are dominated by\\\n",
      " print ersion interactions ( parameter a) , while size affects parameter b .\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "   P_c     T_c        a      b \n",
        "   49.1   562      1.88  1.19e-04\n",
        "   42.0   594      2.45  1.47e-04\n",
        "   40.4   553      2.21  1.42e-04\n",
        "The attractive interactions of all three compounds are dominated by print ersion interactions ( parameter a) , while size affects parameter b .\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.11  Page No : 246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "import math\n",
      "B = 0.0486 * 10**-3 ;\n",
      "T1 = 20 + 273 ; \t\t\t#[K]\n",
      "T2 = 500 + 273 ; \t\t\t#[K]\n",
      "v1 = 7.11 ; \t\t\t# [cm**3/mol]\n",
      "\n",
      "# Calculations\n",
      "v2 = v1 * math.exp( B * (T2 - T1)) ;\n",
      "\n",
      "# Results\n",
      "print \"     Molar volume of solid state 2 = %.2f cm**3/mol\"%( v2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "     Molar volume of solid state 2 = 7.28 cm**3/mol\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.12  Page No : 248"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "P_c = 37.9 * 10**5 ;\t\t\t#[N/m**2] , From compressibility chart\n",
      "T_c = 425.2         \t\t\t# [K , From compressibility chart\n",
      "P = 50. * 10**5 ; \t    \t\t#N/m**2]\n",
      "T = 333.2 ;\t\t\t            #[K]\n",
      "R = 8.314 ;\n",
      "z_0 = 0.2148 ; \t\t\t\n",
      "z_1 = -0.0855 ; \t\t\n",
      "w = 0.199 ;\n",
      "m = 10. ;\n",
      "MW = 0.05812 ;\n",
      "\n",
      "# Calculations\n",
      "a = (0.42748 * R**2 * T_c**2.5) / P_c ;\n",
      "b = 0.08664 * R * T_c / P_c ;\n",
      "A = P * T**(1./2) ;\n",
      "B = -R * T**(3./2) ;\n",
      "C = (a - P * T**(1./2) * b**2 - R * T**(3./2)*b) ;\n",
      "D = - a * b;\n",
      "\n",
      "#mycoeff = [ D , C , B , A] ;\n",
      "mycoeff = [ A,B,C,D]\n",
      "#p = poly1d(mycoeff , \"v\" , \"coeff\" ); \n",
      "M = roots(mycoeff);\n",
      "\n",
      "# Results\n",
      "for i in range(3):\n",
      "    ans = sign(M[i])\n",
      "    if ans == 1:\n",
      "        V = m / MW *(M[i]) ;\n",
      "        #print \"Using Redlich Kwong equation the volume is = %.3f m**3\"%(V)\n",
      "\n",
      "z = z_0 + w * z_1 ; \n",
      "v = z * R * T / P ;\n",
      "V = m / MW * v ;\n",
      "print \"Using compressibility chart the volume is = %.3f m**3\"%(V)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Using compressibility chart the volume is = 0.019 m**3\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.13  Page No : 253"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "import math\n",
      "T = 100. + 273 ; \t\t\t#[K]\n",
      "P = 70. * 10**5 ; \t\t\t#[N/m**2]\n",
      "P_c = 42.2 * 10 ** 5 ;\n",
      "T_c = 370. ;     \t\t\t#[K]\n",
      "w = 0.153   \t    \t\t# Interpolating from table C.1 and C.2\n",
      "z_0 = 0.2822 ;\t\t    \t# Interpolating from table C.1 and C.2\n",
      "z_1 = - 0.0670 ;\t\t\t# Interpolating from table C.1 and C.2\n",
      "m = 20. * 10**3 ;\t\t\t#[g]\n",
      "MW = 44. ; \t\t        \t#[g/mol]\n",
      "R = 8.314 ;\n",
      "\n",
      "# Calculations and Results\n",
      "P_r = P / P_c ;\n",
      "T_r = T / T_c ;\n",
      "z = z_0 + w * z_1 ;\n",
      "V = m / MW *z * R * T / P ;\n",
      "\n",
      "print \"1)          Volume = %.4f m**3 \"%( V )\n",
      "\n",
      "\n",
      "T = 295. ;\t\t\t#[K]\n",
      "n = 50. ; \t\t\t# [mol]\n",
      "a = 0.42748 * R**2 * T_c**2.5 / P_c ;\n",
      "b = 0.08664 * R * T_c / P_c ;\n",
      "v = 0.1 ;\n",
      "P = R * T / (v - b) - a / (T**0.5 * v * (v + b)) ;\n",
      "x = P * n * 10**-6 ;\n",
      "\n",
      "print \"2)          Pressure = %.1f MPa \"%( x )\n",
      "\n",
      "y1 = 0.4 ;\n",
      "y2 = 1 - y1 ;\n",
      "n = 50. ;\n",
      "P_c = 48.7 * 10**5 ;\t\t\t#[N/m**2]\n",
      "T_c = 305.5 ; \t\t\t#[K]\n",
      "a1 = a ;\n",
      "b1 = b ;\n",
      "a2 = 0.42748 * R**2 * T_c**2.5 / P_c ;\n",
      "b2 = 0.08664 * R * T_c / P_c ;\n",
      "\n",
      "a_mix = y1**2 * a1 + 2 * y1 * y2 * math.sqrt(a1 * a2) + y2**2 * a2 ;\n",
      "b_mix = y1 * b1 + y2 * b2 ;\n",
      "P = R * T / (v - b_mix) - a_mix /(T**0.5 * v * (v + b_mix));\n",
      "x = P * n * 10**-6 ;\n",
      "\n",
      "print \"3)          Pressure = %.2f MPa \"%( x )\n",
      "\n",
      "# Note : Answers are slightly different because of rounding off error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "1)          Volume = 0.0548 m**3 \n",
        "2)          Pressure = 1.2 MPa \n",
        "3)          Pressure = 1.22 MPa \n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}