{ "metadata": { "name": "", "signature": "sha256:89509362f5307bcdc2a23ad180900fa6d31da4662232a1bc9ba201a6cbebc214" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-Energy auditing" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate heat availble \n", "\n", "## Example 1.1\n", "print('Example 1.1');\n", "print(' Page No. 08');\n", "## Solution \n", "\n", "## Given\n", "m1= 40.*10**3;## fuel oil in gallons per year\n", "ga= 4.545*10**-3;## m**3\n", "m= m1*ga;## fuel oil in m**3 per year\n", "Cv1= 175.*10**3;## Btu per gallons\n", "Bt= .2321*10**6;## J per m**3\n", "Cv= Cv1*Bt;## in J per year per m**3 \n", "q=m*Cv;## in J per year\n", "print'%s %.2e %s'%(' Heat available is ',q,' J per year')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.1\n", " Page No. 08\n", " Heat available is 7.38e+12 J per year\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "## Example 1.2\n", "print('Example 1.2');\n", "print('Page No. 09');\n", "## Solution \n", "\n", "## Given\n", "Eo1= 1.775*10**9;## Annular energy consumption of oil in Btu\n", "Btu= 1055.;## 1 Btu = 1055 Joules\n", "Eo= Eo1*Btu;## Annular energy consumption of oil in Joules\n", "Eg1= 5.*10**3;## Annular energy consumption of gas in Therms\n", "Th= 1055.*10**5;## 1 Th = 1055*10**3 Joules\n", "Eg= Eg1*Th;## Annular energy consumption of gas in Joules\n", "Ee1= 995.*10**3;## Annular energy consumption of electricity in KWh\n", "KWh= 3.6*10**6;## 1 KWh = 3.6*10**6 Joules\n", "Ee= Ee1*KWh;## Annular energy consumption of electricity in Joules\n", "Et= ( Eo + Eg + Ee);## Total energy consumption\n", "P1= (Eo/Et)*100.; ## percentage of oil consumption\n", "P2= (Eg/Et)*100.; ## percentage of gas consumption\n", "P3= (Ee/Et)*100.; ## percentage of electricity consumption\n", "print'%s %.1f %s'%('percentage of oil consumption is ',P1,'')\n", "print'%s %.1f %s'%('percentage of gas consumption is ',P2,'')\n", "print'%s %.1f %s'%('percentage of electricity consumption is ',P3,'') \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.2\n", "Page No. 09\n", "percentage of oil consumption is 31.3 \n", "percentage of gas consumption is 8.8 \n", "percentage of electricity consumption is 59.9 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "## Example 1.3\n", "print('Example 1.3\\n\\n');\n", "print('Page No. 10\\n\\n');\n", "## Solution \n", "\n", "## Given\n", "Et = 100*10**3;## total energy production in tonnes per annum\n", "Eo= 0.520*10**9;## oil consumption in Wh\n", "Eg= 0.146*10**9;## gas consumption in Wh\n", "Ee= 0.995*10**9;## electricity consumption in Wh\n", "Io= Eo/Et;\n", "Ig= Eg/Et;\n", "Ie= Ee/Et;\n", "Et1= Eo + Eg + Ee;## total energy consumption\n", "It= Et1/Et;\n", "print'%s %.1f %s'%('oil energy index is ',Io,' Wh per tonne ')\n", "print'%s %.1f %s'%('gas energy index is ',Ig,' Wh per tonne ')\n", "print'%s %.1f %s'%('electricity energy index is ',Ie,' Wh per tonne')\n", "print'%s %.1f %s'%('total energy index is ',It,' Wh per tonne ')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.3\n", "\n", "\n", "Page No. 10\n", "\n", "\n", "oil energy index is 5200.0 Wh per tonne \n", "gas energy index is 1460.0 Wh per tonne \n", "electricity energy index is 9950.0 Wh per tonne\n", "total energy index is 16610.0 Wh per tonne \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "## Example 1.4\n", "print('Example 1.4');\n", "print('Page No. 10');\n", "## Solution \n", "\n", "## Given\n", "mc= 1.5*10**3;## coke consumption in tonnes\n", "mg= 18.*10**3;## gas consumption in therms\n", "me= 1.*10**9;## electricity consumption in Wh\n", "Cc1= 72.;## cost of coke in Pound per tonne\n", "Cg1= 0.20;## cost of gas in Pound per therm\n", "Ce1= 2.25*10**-5 ;## cost of electricity in Pound per Wh\n", "Cc= mc*Cc1;##in Pound\n", "Cg= mg*Cg1;##in Pound\n", "Ce= me*Ce1;##in Pound\n", "Ct= Cc+Cg+Ce;##in Pound\n", "print'%s %.1f %s'%('cost of coke consumption is ',Cc,' Pound ')\n", "print'%s %.1f %s'%('cost of gas consumption is',Cg, 'Pound ')\n", "print'%s %.1f %s'%('cost of electricity consumption is',Ce,' Pound ')\n", "print'%s %.1f %s'%('total cost is ',Ct,' Pound ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.4\n", "Page No. 10\n", "cost of coke consumption is 108000.0 Pound \n", "cost of gas consumption is 3600.0 Pound \n", "cost of electricity consumption is 22500.0 Pound \n", "total cost is 134100.0 Pound \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "## Example 1.5\n", "#page no 11\n", "\n", "## Solution \n", "\n", "## Given\n", "Cc= 108.0*10**3;## cost of coke in Pound\n", "Cg= 3.6*10**3;## cost of gas in Pound\n", "Ce= 22.5*10**3;## cost of electricity in Pound\n", "Ct= Cc+Cg+Ce;## total cost of fuel in Pound\n", "E= 15*10**3;## total production in tonnes per year\n", "Ic= Cc/E;##Pound per tonne\n", "Ig= Cg/E;##Pound per tonne\n", "Ie= Ce/E;##Pound per tonne\n", "It= Ct/E;##Pound per tonne\n", "print'%s %.1f %s'%(' coke cost index is',Ic,'Pound per tonne ')\n", "print'%s %.1f %s'%(' gas cost index is',Ig,'Pound per tonne')\n", "print'%s %.1f %s'%(' electricity cost index is ',Ie,' Pound per tonne')\n", "print'%s %.1f %s'%(' total cost index is',It,' Pound per tonne')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " coke cost index is 7.2 Pound per tonne \n", " gas cost index is 0.2 Pound per tonne\n", " electricity cost index is 1.5 Pound per tonne\n", " total cost index is 8.9 Pound per tonne\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "%matplotlib inline\n", "## Example 1.6\n", "##page No. 11\\n\\n');\n", "## Solution \n", "import matplotlib.pyplot as plt\n", "\n", "## Given\n", "G1= 11.72*10**3;## hourly consumption of gas in therms\n", "th= 34.13;## in Watts\n", "G= G1*th;## hourly consumption of gas in Watts\n", "O1= 4.32*10**9;## hourly consumption of oil in Joules\n", "J= .278*10**-3;## in Watts\n", "O= O1*J;## hourly consumption of oil in Watts\n", "E= 500.*10**3;## hourly consumption of electricity in Watts\n", "## Pie Chart Representation : one input argument x=[G O E]\n", "labels = [r'gas', r'oil', r'electricity']\n", "sizes = [G,O,E]\n", "colors = ['yellowgreen', 'gold', 'lightskyblue']\n", "patches, texts = plt.pie(sizes, colors=colors, startangle=90)\n", "plt.legend(patches, labels, loc=\"best\")\n", "# Set aspect ratio to be equal so that pie is drawn as a circle.\n", "plt.axis('equal')\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "print('The Pie chart is plotted in the figure');\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0VNXaBvDnPWd6SQXSIJQgTRSQKiodBKQjCigqCCqi\nYEVRUSzIp2K7KvYCKCJcC2BBroUiRRAIvYhUCSEkIcn0dvb3RxBFUYFMsqe8v7WyYMHk5MlA5pm9\nzz77kBACjDHGWKRRZAdgjDHGTocLijHGWETigmKMMRaRuKAYY4xFJJ3sAIxFIyIiAGaU/wypJ37V\nA6gO4AiA4B8+AgBCQghNTlrGohMXFGMnEJEeQF0A9VFeNKmKihpGs5KpqJQOoLqmISUUEImKAhsI\nUBTSSIGmKCSEEPB7hclosXs0LaRooZAitBAJoSlC00hvNHt0RmORouiOCqEdDnjd+4N+368A8lFe\navknPooFL69lDMQ/ByyenBj51ADQEEADnYHON5qVFlpInOfzaDVsiTpvjVrGUGJ1vZqQqjckpOoM\ntkQdrIk62BJ1sCWrJ3+vN546Q75/uwvP3XoUjywr+MvX1TQN7tIiOAvz4Sg6CkdhPhyF+Sg7lhco\nyT/kLSs4rDkK88ldWmwM+r06vdFcpuqNB4N+76qA1/0jgFwA24UQgSp4mhiLCDyCYjGNiNIBtNcb\nqaPBqHTV6ameqiOqlmXwZdU367Lqmy3ptU2UVseI6jWN0BsUW2XkUBQFtuTqsCVXR/p5F/zxr/Qn\nPk4K+LxwFuUnFx7ck3xk16YLD2xeM+Lw9vXCUZhvsiQkH9A0bZ3PVbYKwEYAm4UQjsrIzJhsXFAs\nZhCRCuB8AO3NdrWHCIlLDCYlse75Fl/jtnZbTjObklXfDFuSDgBMctP+Pb3RhOTMOkjOrIPz2nUj\nADYA8HtcyP95a/0juzfVP7R17YCDW9b6iw/9YjHZEgoVVZfrKSv5BhBfAdjJU4QsFvAUH4tqRNSA\nCAMsdnWgz6M1syXpgg1a2tSGreyW+s2tSKttgqJQlWT5pym+yhIKBlF4YBfydm3CL+uWencsW6QF\n/T4XBBb6Pc5PAXwvhHBXWSDGwogLikUVIlIAtNUbaLCqp6sVhVJbdEmiZh0STTnNrLAn6//1GJVF\nRkH9mRACBXu3Y+cPX2lb//eJ88jPm00Gs3W9x1EyF0J8KYTYIy0cY2eJC4pFPCIyA+hqsihXh0Ki\nX0KKnlpfnmxu0TlJV7uJpcpGSP8mEgrqz7yOUuxZ+y22fb/Qs3P5FxBCK9FCoc8CXvdnAJYJIXyy\nM1YGIuIXtgglhDjjH1guKBaRTpxPutxsV28LeLXOmfXN/jY9k+3NOyZRjVpG2fFOKxIL6o+EEDiy\nKxc7f/hK2/K/T5yFB3crpKizAh7XDCHENtn5womI+DRcBCIiLigWvYiots5AYxSFxqZmGvRdhla3\nX9QlGfbkyF/PE+kF9WfFv+7F2k/eDvz48ZtBAL94HSXPA5gnhHDKzlZRXFCRiQuKRR0iMgDoZ7Gr\ndwSDomW73inU8cpqxloNLLKjnZVoK6jfhIJB7F65GKvmvuLcv/EHVdUZ5vvcjpcB/BStr/JcUJHp\nbAsq8t+WsphFRA0NJmWs3kijsuqb0XVoDXuLLkkwmHiLyKqk6nRo3LEPGnfsYystOIz1C2Zes3re\nq4ODPs9RUpTnIcQHQojjsnOy+MMjKFbliKiN2aY+CYj2lw2sprtsUDV9WnbEXpZ0xqJ1BHU6mqZh\n77rvsfqjV127V32tqnrj5z5X2cNCiB2ys50JHkFFJh5BsYh0YouhjmabOs2WpLuwz5h086UDqhGP\nliKToiio37Yr6rftanUdL8TaT94auOzdZ64w2RKX+Fxl9wshdsrOyGIfj6BYpTpRTL3MNmWa0aLm\n9Lslw9Kudwrp9LFXTLE0gjodn8uBlR++HFr23jMBIvrS53JMEkLslp3rdE43gir/r1i5+PX0n/Ei\nCRYRTiwTH2SyKk/ak3Xp/W/NtLXqlgxFjYxrlipDrBfUb7zOMqyc85/g8lnPBYnoc5/L8YAQ4mfZ\nuf7o7wrqjfUXVdrXvKnlBi6of3G2BRV7b2OZdETU22hR9mbmmN4Z9Xid+o9/er6tzeUpMV1O8cRk\nS0DXmx7STfpqn+nSayYMMJitm03WhI+IKEd2tmiwYcMGtGjRAgkJCbjqqqtw9dVXY/LkySgpKUGf\nPn1Qo0YNpKSkoG/fvjh8+PDJz3vvvfeQk5ODhIQE1KtXD3PmzJH4XVQNLigWNkTUyGxTlybV0M8b\nM7Vu9iMfNbY175gUMTs9sPAy2RPR7ZaHdfcv3me65JrxAw1m61aTNWEOEdWTnS1S+f1+DBw4EKNG\njcLx48cxbNgwfPbZZyAiaJqGG2+8EQcPHsTBgwdhNptx2223AQBcLhcmTJiAxYsXo6ysDKtXr0bz\n5s0lfzeVjwuKVRgRJRkt6itGs7Khz5iMS59ceL71wg6JVTLnz+Qz25PQfewj+vu/2mtqP+y2K/Um\ny1aD2fJ/RBT9SzPDbM2aNQiFQrj99tuhqioGDhyINm3aAABSUlIwcOBAmEwm2Gw2PPDAA1i2bNnJ\nz1UUBVu2bIHH40FaWhqaNGki69uoMlxQ7JwRkaqodIvBRAdadUsaNXXh+eYeI9LUWFwAwf6dOSEZ\nPcY9qr9nwXZzTuvOtxvM1j1E1FV2rkiSl5eHrKysU/6sVq1aAACPx4Obb74ZderUQWJiIjp27IjS\n0lIIIWC1WvHRRx/htddeQ2ZmJvr06YNdu3bJ+BaqFL+SsHNCRJ1NFmVX7UaW6RPfbphww5Q6poQU\neTuJs8iRUD0T17/4mWXok7OzrMnVFppsCfOIqLrsXJEgIyPjlPNKAHDw4EEIITB9+nTs3r0ba9eu\nRWlpKZYtWwYhxMmFFz169MCSJUuQn5+PRo0aYcyYMTK+hSrFBcXOChFVN9vUz+zJus+vf6R2zqRZ\nDa3ZjaJrSyJWNRp37IN7F+22tOx3fT+9yfwLKcoNFOfzvu3bt4eqqnj55ZcRDAaxYMECrFu3DgDg\ndDphNpuRmJiI4uJiPProoyc/r6CgAAsWLIDL5YJer4fVaoWqqrK+jSrDy8zZGSOiKw0m5a3LBqaa\nB4zLMhjN/P7mj+Jlmfm5OLxjI+ZNHuksPXpop8/luFYIUanzU5F8HdT69esxevRo7NmzB7169UIo\nFMJFF12EUaNGYfjw4fjpp5+QlZWFu+66C2PHjkUgEEBBQQGGDh2K3NxcEBFatGiBGTNmoFGjRpX+\nPYUTXwfFwo6IapisyjsWu9ppzLS61pwLbbIjRSQuqH+mhUJY/dEM7euXJ/uE0J4N+rxPVNb9qKJp\nq6O2bdvi1ltvxfXXXy87SqXj66BYWBFRX4NJ2X3pgGrdH/v4fC4nds4UVcUlw29X7vpki7leq453\nGSy2PUR0sexcVW358uXIz89HMBjEzJkzsXXrVvTs2VN2rIjEe/Gx0yIim9GizEhI1Q2++al6lvNa\ncDGx8EhKr4WRLy2ybP32U8t/p4z+Vmc0TQ75fc9FzZCngnbt2oWrrroKLpcLOTk5+O9//4u0tDTZ\nsSIST/GxvyCidgaz8knzjolJ10zKNpttsX8yNhx4iu/sFR/eh5kTBrhKj/66zOdyDBNClIXjuNE0\nxRdPeIqPnTMiIp1euc1oUb4b+WjtjNFT63I5sUqVklUXt33wo/XCHkO6GMzW7UR0oexMLHJwQTEA\nABGZjBblg5R0/f9NntPI3LJrsuxILE7ojSYMmvyaacCDr2TqzZbViqobKTsTiwxcUAxEVMtoUX5q\n1Nref/KHja01avEONazqteg9nMbNXmVJTMt6yWi1f0BEZtmZmFxcUHGOiDoYTMrm3qPSG976bD2L\nycJTekyetHpNcMf8XOt57boNNFhsm4movuxMTB4uqDhFRKQzKBNMVmXx2On1knqNTNfF+UX+LEIY\nLTZc88xH5p63T62nN1k2EtEg2ZmYHFxQcYiIzEaL8mFqumHq5DmNzedfnCA7EmOnICJcfPVYZcwb\n/7NZU2rMNpgsU2N9m6SxY8fiiSeeAAAsXbr05Cay8Yyvg4ozRJRssijfNWprb3jj43XMRjNP6bHI\nVatpa0z4aL3lzZu6TyjNP5RFRKOFEMFzOVakbHX0d1599dUwJokNXFBxhIgyjBZlRft+qTWvurum\nkW8kyKKBPTUN42attL43vv+QI7s3ZRJRfyGE51yOJXaEO93vqHHlHTte8RRfnCCiegazsv7y69Ky\nr76Hy4lFF6PVjhtfW2xp0L7HpUaLfRURpcjOdK527NiBTp06ITk5GU2bNsWiRYsAADfccAMmT54s\nOV1k4YKKA0TU1GBS1g0en1Wjz5gMfYxP5bMYpdMbMHTaB+ZWA0c2MVhs64koU3amsxUIBNC3b1/0\n7NkTx44dw0svvYRrrrkGu3fvBhHxXaj/hAsqxhFRO4OJVl03OTu581XV+YQTi2qKoqDP3dMNnUfd\nV9Ngtv5ERHVkZzoba9asgcvlwv333w+dTofOnTujT58++PDDDwFU7BxWLOKCimFE1N1gUr65+al6\n9jY9U/itGYsZnUbdp+tx2+M19CbLOiI6T3aeM5WXl/eX1Xm1a9f+y112WTkuqBilKDTYZFE+m/By\nfesFlybKjsNY2F0y7Da178TnU/Qmy49E1FR2njORmZmJQ4cOnTJSOnDgALKysiSmilxcUDGIiPoY\nLcrse99qwLfJYDGt9YCRyqCHX0vSm8wriaiF7Dz/pl27drBYLHj66acRCASwdOlSfP755xg2bBhP\n750GLzOPMUTUwWhWPrpzxnnmWg0tsuMwVuma9xxKOr0hYd7kUd8RUSshxC9/91jZS8H1ej0WLVqE\nW2+9FdOmTUPNmjUxe/ZsNGjQ4C+LJHjBBN8PKqYQUQuDSVl+63P1bE3a8u4QVY3vByXXmvmva1+9\ncH++3+NqAeAov7ZFHr4fVJwiogYGk/LdqMdrczmxuNRuyM1K+2G3VTdYbN/JzsLCgwsqBhBRTYNJ\n+WHovTUTLurC93Fi8avHuMf0TTr1y5Gdg4UHF1SUI6JqRrOysu/NGcmXDqjG/54srhERrnzkTb6h\nWYzgRRJRjIjsJouyvOOQ6umXX5fG/5aMAVD1etkRWJjwi1qUIiLVZFUWXtQ1ue6g2zMNsvMwxli4\n8ZRQlDKYlCcz6praXPtAtomXozLGYhEXVBQiokEGs3LbuOdzLDo9lxNjLDZxQUUZImpiMCmzxv8n\nx5KQwnPtjLHYxQUVRYgoyWhWlgy7r5alThOr7DiMsTCaMmUKRowYUSVfa9q0aRgzZsy/Pu6Pt6GX\ngRdJRAkiUkwW5ZM2vVKqXdIvlef1GDtLkX7L93DkW7p0KUaMGIFDhw794+MmTZp0Rsf7423oz/TY\n4cQFFSUMJuWJtDqmNkPvrWWUnYWxaDVtg7/Sjj3poootpq2qrZlCoRBUNTpuDcdTfFGAiPobTMqE\n21/IsfKiCMaiW15eHgYPHowaNWqgXr16eOmll077uDVr1qB9+/ZITk5G8+bNsWzZspN/V1xcjJEj\nRyIrKwspKSkYNGgQ3G43evXqhby8PNjtdiQkJODIkSOYMmUKrrzySowYMQKJiYl47733/jKd+MMP\nP5z8WtnZ2Zg1axaA329D/3fHtlgsKC4uPnmcDRs2oEaNGgiFQmF5rrigIhwRZRhMNPu2F3IsCam8\nKIKxaKZpGvr27YsWLVogLy8P3377LV544QUsWbLklCm+w4cPo0+fPnj44Ydx/PhxTJ8+HYMHD0ZR\nUREAYMSIEfB6vdi+fTsKCgpw5513wmKxYPHixcjMzITD4UBZWRkyMjIAAAsXLsSQIUNQWlqKa665\n5pSvdeDAAfTu3RsTJkxAYWEhcnNz0axZMwA4ucP63x27c+fOmDdv3sljzZ49G8OGDQvbCI0LKoIR\nEZmsypxu16SZ6l3AiyIYi3br1q1DYWEhHnroIeh0OtStWxejR4/G3LlzT3nc+++/j969e6Nnz54A\ngG7duqFVq1b44osvcOTIESxevBivvfYaEhMTodPpcNlllwH4+2nC9u3bo1+/fgAAk8l0yuPmzJmD\n7t274+qrr4aqqkhJSTlZUH885umOfd111+H9998HUD51OHfu3LAu9OBzUBGMFIxOqq5v3WdMOg+d\nGIsBBw4cQF5eHpKTf9/UORQKoUOHDqhdu/Ypj5s/fz4WLVp08s+CwSC6dOmCQ4cOISUlBYmJZ36n\n7Jo1a/7t3x06dAj16tU7y++kXP/+/TF27Fjs378fO3fuRGJiIlq1anVOxzodLqgIRUR1DSZ6/uan\n6ll1eh7oMhYLsrOzUbduXezevfsvfzdlypRTHjdixAi88cYbf3nckSNHUFxcjNLS0r+U1OlWAv75\nRoiny7R27dq//fvfPvd0xzCZTBgyZAjef/997Ny5E9ddd93fHudc8CtfBCIixWRV5vUZk2HKqm+W\nHYcxFiZt2rSB3W7H008/DY/Hg1AohK1bt+Knn346pQCuvfZaLFq0CEuWLEEoFILX68XSpUtx+PBh\nZGRkoFevXrj11ltRUlKCQCCA5cuXAwDS0tJQVFSEsrKyk8f6t9WBw4cPxzfffIP58+cjGAyiqKgI\nmzZtOvm5v33+6Y4NlE/zvfvuu1i4cGHYr+PiEVQEUnV0Z41axsY9RqRFx1pQxqJERZeCV5SiKPj8\n889x9913o169evD5fGjUqBEef/xxAL+PUmrWrIkFCxZg4sSJJxcdtG3bFjNmzABQvhjhzjvvRKNG\njeD3+9GlSxd06NABjRo1wrBhw1CvXj1omoZt27addgT1xz/Lzs7Gl19+iXvuuQejR49GYmIipk6d\nimbNmp3yuD8fe/v27UhPT8cll1wCRVHQsmVL1KpVK6zPF9/yPcIQUWODSVn/8NxG5hq1+LY20YRv\n+R45Jl1kqLLrilj5Io7hw4dj1KhR//i4s73lO4+gIggR6UwW5eNB47OMXE6MsWiwbt06bNiwAQsW\nLAj7sfkcVARRdRifdZ45u+OVfGdcxljku/7669G9e3e88MILsFrDfykMj6AiBBFV1xvpsesmZ1v5\n/k6MsWgwc+bMSj0+F1SEMFqUZy7uk6rLqMur9hhjDOApvohARM2JcFX/sRm8ESxjjJ3ABSXZie2M\n3hw0PstkTeABLWOM/YZfEeUbnJCib9xhYDU+8cRYGPG53OjHBSUREZkNZmXGiIeyrYrKP0yMhUs4\n7vu0YvYLoW/feOJHn6vsUsEXVUnBU3wS6Qx0X6NWdmvDVnbZURhjf9J+6DjVmlytGYCBsrPEKy4o\nSYgoU1Fw79CJNS2yszDG/krV69H33uesRqt9OhHxa6UE/KRLYjArD146oJpaLZMX7jEWqRpe2gv2\n1PTqAPrIzhKPuKAkIKLqQhMje96Qxu3EWAQjIvS47TGb0Zrwf8SrLqocF5QEeiNNbNsrhZKqy91Z\nmTH2787vMhDmhKRaALrJzhJvuKCqGBElA7i1943pvBssY1FAURR0HzvFZrIlTpOdJd5wQVUxnZ4m\nNO+URHzuibHo0aznUOiMpkZEdKnsLPGEC6oKEZGNFNzd96YM3nCPsSii6nTodsvDFpMt8UnZWeIJ\nF1QVUlTc2qRdgpJeh2f3GIs2LfteR4qqtiSiVrKzxAsuqCpCRGadnh7od0sGX/fEWBTSGYzoPPoB\nk8mWOFV2lnjBBVVFSMHInAttuloNuJ8Yi1ZtBo1WBMRlRNRUdpZ4wAVVBYiIjGblvt43pof/lpOM\nsSpjMFvQ8YZ7DUZbwuOys8QDLqiqcZnFrqY0aGmTnYMxVkHthtyshvy+XkSUIjtLrOOCqgJmm3JX\nt2vS+FbujMUAsz0JDdpfHgTRUNlZYh0XVCUjoroBv3b5xX1SuJ0YixFtBo+2mmyJt8nOEeu4oCqZ\nquAxRcD03I07Q6sXFUHTNNmRGGMVVL9tNwCoQ0SNZWeJZVxQlYiIyGJGp/efBsb08dMXLx0Q93XN\n1V6/7xdRmOeTHY8xdo5UnQ6t+t+g0xnNo2VniWVcUJWrXYIVSVdeDkweC+XIctDHL0DJDJVqjw7e\nhikDt4S+m1vAoyrGolCr/tfriWgkEamys8QqLqhKZLdi7K3DYf5tbYSiAF0vBhbOgPrrUuCuoQFl\n5fu/iomdc8XLE/aIvL0eqXkZY2cuLed8JGVk68C7nFcaLqhKQkT6QACDru2L0767qpYM3D0SdOBb\n0FdvgBonlGn/d+0OTO67KfTlO/kIBnlUxVikazfkFpvJljBWdo5YxQVVeTrXr41QduY/P4gIaN8C\nmPss1PwVwCOjQ8q2L/LEvZ1z8fwtu7V921xVk5Yxdtaa9byagn7f5USUKDtLLOKCqiR2K669rj/O\n6srcRDswdhho91eg5bOAi2s5xYs37cJDvXNDn758GD4Pj6oYiyTWpFTktO4cBDBEdpZYxAVVCYhI\nFwhi4JCe5/78XnQ+8PZUqAUrgacmaOrhVUe1+7rn4pmRO7Udax3hjMsYq4A2V46xmexJt8vOEYt0\nsgPEqI51s6DVyar4gawW4IaBwA0DoWzfA7w61y3euudnGM1K6IKuKWr/sZmw2PmfkTFZGrbvCS0U\nbEBE2UKIg7LzxBIeQVUCuxXXXjfg7Kb3zkST+sBLD0E9tgp4eZKmenYWapMu34xp124P5S4rCfeX\nY4ydAVWvR/22XUMAusvOEmu4oMKMiNRgEIOGXF55z63RAFzdG1g9F8rWRcCQ9l6a88he3N9to/be\nowdQVuyvrC/NGDuNxpddYTXbkwbKzhFruKDC76IaqaCc7Kr5YvVqAU/dA+XYKuDdJ4RiPFoUeqjP\nVjx+1dbQmi+LqyYEY3GufruuCPi9HYmIX1PDiJ/MMFMV9OjTCcaq/ro6HdCvC/Dde1D3fA3c2MtP\ni57fLyZ22aC9cf9eUXSEt1ZirLIkpdeCNTEVAJrLzhJLuKDCLMGOQb0ug0Fmhqw04JFxUPJXgOY9\nCyXNX6I9OngbHh20JfT9vGO8tRJjlaBRhyv0pKg9ZOeIJVxQYUREVpcbTTu2lp2knKIA3S8BPn8N\n6sHvgAlDAsqK9w6JiV1yxSt37hFH9vHWSoyFS4NLLjeabImDZOeIJVxQ4XVZ0/PgsUXgjd2rpwD3\n3gg6+D3oi1dBDSxl2rRrduDhfptCi9/jrZUYq6h6LTvC73E2IyKz7CyxggsqjMxG9O7XJfzLy8OJ\nCLi0JTDveahHlgMPjQwpmxfkiYldcsULY3dr+7fz1kqMnQuTLQE16jbyArhMdpZYwQUVRgYD+l5+\nyek3h41ESQnAuGtAuxeDls4Etc50iufHnNha6ZXD8Ht5VMXY2WjSqZ9VZzT1lp0jVnBBhQkRJXl9\nyGrVVHaSs0cEtDwfeG8a1IIfgP8br6mHfjiqTeyWi2dG7dR2reetlRg7E+dd3F3V6Y19ZeeIFVxQ\n4dOqSQ7cuijfdchmBUYOArYsgPLjXKB7E7d4/Y6f8cDluaG50w/B7QzKjshYxKp5fmsEA74sIkqT\nnSUWcEGFiUJo27E1LLJzhFPTBsArD5dvrfTS/Zrq2HpMm9RjM6aN2B7avIK3VmLsz1SdDtkXtvOB\nz0OFBRdUmCQloHO7ZtDLzlEZTEZg6BXA2nlQNi8ABrfz0uzJe3F/943arMcOwHGcR1WM/Sb7grZW\nRVUvlJ0jFnBBhYnXj5Zt4uC/ZP3awDP3Qjm2Enj7UaGoeUWhB6/YjCeu3hr68SveWomx9POaqiZb\nYlvZOWIBF1QYEFGWQjCF4/Ya0UKvBwZ0A5bOgrr7K+D6Hn5a8Ox+TOyyQXvzgb2i6AhvWMviU1rO\n+QiFglG4XCrycEGFR+uLmsBPJDuGHLUygMduh5K/Apg7HUqqu0SbMmgrpgzaElr2MW+txOJLtdoN\nEPC4axCRSXaWaMcFFQY6HVpe1jKyL9CtCqoKXH4p8NUb5Vsrjb8yoCx9q3xrpRl37RFH9ntlR2Ss\n0un0BiTUyHQDaCg7S7TjggqDBCtaNqnPz+Uf1UgF7hsNOrQUtOgVUI6xTJs2bDse7rc59PUs3lqJ\nxbaM8y4gADzNV0H8ohoGmkCjBnVkp4hMRECH1sB/X4SatxyYdH1Q2fjJia2Vxu3WDu50y47IWNhl\nNWlpVfWGZrJzRDsuqAoiIsXlRk0uqH+XnAiMHwHa8zXou3dBLdOc4tlRO/HQFbmhBa/m8dZKLGak\n12+qGC12XslXQVxQFZdlNSOQEPdnoM4cEdD6AmDW/0EtWAk8OU5T9y3N1yZ2y8X00Tu1nzfy1kos\nuqXVPx/BgK+x7BzRjguq4hrWr42A7BDRymYFbrwS2LYIypq5QJcGbjHj9p/xQM/c0Lxnf4XXzRcB\ns+iTklUPIb8viYj4rWsFcEFVXMOm58m9g26suKAB8OoUqIWrgRcnamrJ5gLtvm4ntlb6oVR2PMbO\nmKKqSM6s4wbQRHaWaMYFVUEWM5o2PQ98g7IwMhmB4X2AdfOhbPoMGNjGS7Me/AX3d9+ozX6Ct1Zi\n0SG9wQU6AOfLzhHNuKAqyGxETnaG7BSx67w6wLP3QSlcBbw1RSg4VL610tSh20LrvuatlVjkSq2Z\nYwKQKTtHNOOCqiAhkJFeTXaK2KfXAwO7A8tnQ931JTCim48+eXo/JnbdoL314F5x/ChvrcQii71a\numqw2GrLzhHNuKAqKBhEdS6oqpWdCTw+HsrRH4A5T0FJdpZojwzYikcHbw0t/4S3VmKRwZ6aBlVv\nyJadI5pF+e315PP4kJxeXXaK+KSqQK8OQK8OUPOPAe9+6ldeeuOQWPifQ8hpmYBB42tSWm3eDo3J\nYUtNAwF8AqACeARVAURkIwLZYuo2hdEpvTow6SbQ4WWgBS+D6ujKtKlDt+OR/ptDS2Yd5a2VWJWz\npaYhFAzWkJ0jmvEIqmLSUxLhI4rNGxVGIyKgUxugUxuoxSXArIVB5cVZh8Xitw6j9oV2MfC2LCW7\nEb+jYOER8HrgLi2Cq6QQ7pLiE78vgru0CMW/7tOCPg/Pr1QAF1TFZNRIRUh2CHZ6KUnAHdeBJowA\n1m4GXvpEBSBKAAAYZklEQVTAoT07aifsyWqoTd/qau9R6dAZeBKBAUII+N3O8qIpLYa7pOj33x8v\nRFnhkZCzMF84jxeQu7SYvI5SxetyQGga9EYj9HqdMBhIMxs1kWAJIsXmVWslC2VjEIKI9EIIvpj/\nHHBBVUxKtSTZEdi/IQLaNgPaNoPqeASY+0VIfW5mvnbv+/lKzcZWrf9tmUr9ZnbZMVmYaJoGr6ME\n7tIiuEuKTxRNEdylxXAWFwjHsSMhZ/FRuIqPkbusWPE6SsnndoEUBXqDAXq9qhmNJCzGkEiwBCjV\n7lPrpEJNrw1ktgay04E6NYGcWuW79iuKGwAIgPrnLLaW8LncSAJwrKqfh1jABVUxZruVz+NFE7sV\nGHMVMOYqKJt2AjM+dImXx/0Mi00JtehZTe17UzpMFv6xiBShYBCest9GNEUni8ZdUghnUYHmKDyi\nOYqOwl1SqLhLi8nrKqOAxw1Fp4feYBAGgyqMBgirKSgSrQGqluhXG6VAl94AyEoDamcCdbKA+tlA\nUkIIKN+1LGw/03YLgi43ksEFdU74J7FiLFYLF1S0atYIeP1RqC9MAj5eoqnPzSzQ7uteoGTkmLU+\nt2QqTdsnyo4YU4J+X/k5muMnps5Ki+AuKf9wFOVrjsJ8zVl8lNwlReQuO04+p4OCfi9UgxF6g14Y\n9IowGYWwmYIiyeZXqicGlXqpUDKaAzXTgewMoF4tIKcmYDb7AfgJ5SMbaRJsCOUXgudZzhEXVMVY\nbJa/DutZdDGbgGv7Adf2g7J7H/DqXA/evv8X6I2kNe2cogwYlwVbIv+o/EYIgYDXfUrRnFwkUFIo\nygqPaM6ifOEqPkaukiLyOkoUr8sBLRSE3mCEzqATRoOimQxC2M0BSrb5lOrJmtIkFUpmA6BmWvmo\nJqcWUDsL0Om8ALzSy+ZcGMt36TRKjhG1+KeuYix2Cz+HsaRBXeD5SVCeuhtYtFQoz88sCj3Qq0hN\nq20M9bwxQ23ZLUV2xLASQsDnLDu5IKC8aMqn0VzFBaKsMF9zFR8VzuITiwOcpYrP5QQgoDcYoTfo\nNIOBhMWoCbslQKl2r1ozGWp6BpDZDKiVDtStWT6yyawBKIoH+JvzNbHIUL6+l1f5niN+ca0Yi5UL\nKiYZDMDgHsDgHlD3HwbenO+j157cj3nTDmgN2ycrg8ZnIql6ZG1ir4VC8JQdP2Wp84lRTfnigML8\n8pFNSSG5S48rXmcp+T0uKKoOOoNeGPSq+G1xQKLFT6kJfuW8VKhpdYGsdr+fr8mpBVRLAQA3wNdS\n/iN9+asDF9Q54hfXCjAaYLfwRgUxr04WMPUOKI/dDixeIZQXZxeHJvcrVqtlGUJdr01X2/dLgaKE\n93U6FAicWBBwomx++ygtgqPoqOY4duSU8zVeZxkFfR6oegP0Br3QG1RhMghhNYVEktWnVE8KKtkp\nUDPO//18Td2a5YsDbNbIOF8Ti/Tl1cSvs+eIn7gK0OtgM/HsctxQVeCKTsAVnaAeKQDe+cRPL796\nUHz2wkHUb5WINr1TTvsC/08XczqOHQk5CvOF63gBuUoKyVNWQj6Xk0IBP3Qnr69RhMkgNJslSMlW\nr1I9SVMapELJzCk/X1M7E8jJBupmAQaDD4CPyyZC8BRfxXBBVYAQCPK+pPEpowbw4C1QJt0ELF0L\n/Of90tA7D5SqQU3FKyMuDp1yMafQys/X6HXCWH4xJ+yWgEix+9T0JKE2qw5knhjZ1D1xfU1WGqDT\nnTxfQ+CptKhk0IHABXXOuKAqIBSCP8D3zotrigJ0aQd0aQf1YB7w3HshpFVbr2Zn/H6+5t8u5mSx\ny6DngqoILqgKCIbg44Jiv8nOBF54QHYKFkmEKP9FcoyoxdMGFcAFxRj7J04PNJxY7sjOHhdUxQQD\nQX53xBg7PbcHAOCRHCNqcUFVTMAf4N3MGWOn5yqvJh5BnSMuqIoJ+P3gdXyMsdPy+Mp/kRwjanFB\nVYy7zMUjKMbY6Xm8UMAjqHPGBVUxxwuPg5dJMMZOy+eDAh5BnTMuqIo5XlTCU3yMsdPz+KACcMnO\nEa24oCqmpKhEdgTGWCQKBACPDwYAxbKzRCsuqIo5dryUL3ZmjP1VQTFgMsIhhODz1OeIC6pijpU6\n+WZkjLG/yi8EjHoUyc4RzbigKsapaYCL1+gwxv4k/xigKsiXnSOacUFVgBBCmIwoyS+UnYQxFmny\nC4GQhl9l54hmXFAVZDTg0P7DslMwxiJNfiHgdGOf7BzRjAuqgkIh7N57SHYKxlikOZQPbyCII7Jz\nRDMuqAoqc2LbL4d4NwnG2Kl27oUP4BFURXBBVZAm8MuOvbyVCWPsVLv2QQWwW3aOaMYFVXH7ft7P\nu0kwxn7n9wOFx2ECsFd2lmjGBVVxew/l87VQjLHf/XIIsJhQKITwy84SzbigKq7A54dS6pAdgzEW\nKXbvB/R67JGdI9pxQVWQEELYLNi/jf8rMsZO2L0fcHuQKztHtOOCCoOQhrUbt8tOwRiLFJt3w+3x\nYZvsHNGOCyoMypxYvXYL3/OFMVZuwzYEAOyQnSPacUGFx8YfNyMgOwRjTD6/H/j5AKwA1svOEu24\noMJjy95DsAS4ohiLe1t+Bixm5AkhnLKzRDsuqDAQQjjNJhTs4mvGGYt767YAEFgjO0cs4IIKE1XF\nxo0848xY3PthA9ylTiyVnSMWcEGFSUkZvl+xHj7ZORhjcq3aiCCAdbJzxAIuqDARAsuWrARfNc5Y\nHHO5gUP5MAPYLDtLLOCCCp/cI8egP1YsOwZjTJZ1WwG7BXt4i6Pw4IIKEyFE0GbBT8t/kp2EMSbL\nkpUIub34XHaOWMEFFUYlZfj829V8HoqxeLXwO7h8fnwlO0es4IIKI01g6eIfuKAYi0clZcDPB2AC\nsFp2lljBBRVeGw4fhbHouOwYjLGq9v2PgM2CDUIIr+wssYILKoyEEAGbBWu/5Uv0GIs7X62Ar8SB\nT2TniCVcUGFWXIo5876CS3YOxljV+mIZApqG/8nOEUu4oMJv0VcroON9+RiLH/sPA8dLIcDXP4UV\nF1SYCSEOG/TYv4L3MWYsbny8BEKnw0IhhCY7SyzhgqoETjfmfLyEV/MxFi9mfQaHw4X3ZeeINVxQ\nlSAYwqfzv0ZQCNlJGGOV7dd8YPcB6AB8JztLrOGCqhxbPV64Nu+SHYMxVtk+/h+EQY9FvL1R+HFB\nVQIhhNA0fDRvMYKyszDGKtesz+Aoc2K27ByxiATPQ1UKImpRPQUr8lfAqvDbAMZi0pECoG53eHx+\nJAsh+LxzmPFLZ+XJ9flRwJvHMha7/rsEwmTEYi6nysEFVUmEEMLlwYw358MjOwtjrHK8+iGcpQ68\nLjtHrOIpvkpEROkmI/YXroLRapGdhjEWTpt3Ae2HodjlQQ0hREh2nljEI6hKJITINxmx9hPe/ISx\nmPPmfPhCIbzJ5VR5uKAqWUkZXnl1LhyyczDGwsfrA977FMLrx5uys8QyLqjKt2DjDii/HJQdgzEW\nLh8vAXQ65AohfpGdJZZxQVUyIYRXIbz+/EzwRXyMxYjnZ8JRUobpsnPEOl4kUQWIqJbFhN1HVsCU\nYJOdhjFWEdt+BtpchVK3F9WFEHzfgkrEI6gqIIQ4pNfhm3c+Bu90zFiUe/INeEIanuNyqnw8gqoi\nRNQ+ozqWHPoeVlWVnYYxdi4OHwXqXw6P14eaQohi2XliHY+gqs5qtxeHvlgmOwZj7Fw9PxN+VcFM\nLqeqwSOoKkREw9teiNfXfAQ+E8VYlClzAhkd4HV70FgIsV92nnjAI6iq9d+tP8O3Jld2DMbY2Xr9\nI2h6FV9zOVUdHkFVMVWlsZdehKeXzeZRFGPRwu8HMjrAXVyKS4UQG2XniRc8gqpimoa312+DdzX/\nF2csasxcABHSsJnLqWrxCEoCRaGbLmmBZ1d8wKMoxiKdxwvU6gx3UQm6CiHWyM4TT3gEJYEQeG/j\nDrhXbpCdhDH2b16eg1AgiJVcTlWPR1CSKAqNvrg5nl85h0dRjEWqMidQsxM8DhfaCCG2ys4Tb3gE\nJYkQmLlpJ1zL1spOwhj7O0+/jSABX3A5ycEjKImIaHiT+nh9ywLYFH6rwFhEOVYM1OkKr9uLJkKI\nfbLzxCN+WZRr7q9HcOD9ReB3CYxFmEdfgV9RMJvLSR4eQUlGRO1Tk/C/g9/BYjHLTsMYA8p3LG99\nFVweL3KEEEdl54lXPIKSTAixKhDEN1NfB++MzFgEEAK48SG4gkE8wOUkF4+gIgAR1TSbsGvrQljq\n1ZKdhrH49uEXwM2P4GeHC02EEEHZeeIZj6AigBDiV03DtFsfg0t2FsbiWZkTGPc4PA4XbuByko8L\nKkL4/Hhm5QaUfPaN7CSMxa/J/4EvGMRnQohVsrMwnuKLKER0WXICvv5lCczJibLTMBZftu4G2lwN\n54mFEQWy8zAeQUUUIcSKQBAf3D4VHtlZGIsnwSBw7US4AgHcx+UUObigIozTjbs++wbOr3+QnYSx\n+PHUWwju+xVbgiG8JjsL+x1P8UUgIupRIwWf7lkCi90qOw1jsW3zLqDdULg85TtGHJSdh/2OR1AR\nSAixxOPDZ3c/Ba/sLIzFMr8fGHIHXH4/xnM5RR4uqAjlcGHcB4vg/t9K2UkYi12PvIxAfiHWhDS8\nKzsL+yue4otgRNQlKQGf7/gc5vTqstMwFlt+3AR0uQFlbi8aCiHyZedhf8UjqAgmhPjO78eLQ+6A\nS9Nkp2EsdpQ5gSsnwO32YjSXU+Tigopwbi8mb9qFnU++Dr6qnbEwEAK4diI8JQ58JISYLzsP+3tc\nUBFOCBF0uDBg2ht8i3jGwuH5mQgtXYv9TjfGys7C/hmfg4oSRNSnego+2vkFLClJstMwFp1WbQS6\nj4LD7cWFQoj9svOwf8YjqCghhPjc7cE7gyfAHQrJTsNY9DlWDPQfB7fbi+FcTtGBCyqKuDy4a/02\nbLr7KfhkZ2EsmoRCwODxcLk9mCGE+Fx2HnZmuKCiiBAi4HChz1v/RdE7H4PX9TF2hu55Bv5NO7HF\n7cUk2VnYmeNzUFGIiBpZTFi35G3YLrlIdhrGIturH0KbOB2HnW40F0IUy87DzhwXVJQiop5Jdnyc\n+ykstbNkp2EsMi1eAQwej1K3Fy2FEL/IzsPODk/xRSkhxGKPDw93vxEuB9+Hl7G/2LwLGHIH3G4v\nenM5RScuqCjm8+O5I8fwce+b4fb5ZadhLHLkFQDdRsHt8uBGvjtu9OKCimJCCOF0Y9SmnVh65QR4\nePk5Y4DDBXQbCZfDhac0TcyVnYedOy6oKCeECDlcGLRsHTaOehBePqXI4pnbU15Oh/Ix3+vD47Lz\nsIrhgooBQgifw4XLP/0Ge+55GjzZx+KS1wf0HAP39l/wpdONGwWvAIt6XFAxQgjhdLjQ6Y15yJv2\nBm8sy+KL31++S0TuTnzndGO4EIKvE4wBXFAxRAhR5HTj0qmvoejF2eAzUiwuBIPAkDvhWZ2LVQ4X\nBgkh+A1ajOCCijFCiMMuD9o9+DyOPfUWj6RYbNO08ltnfP8j1jtc6CuECMjOxMKHL9SNUURU02rG\n6rtHIm3KbdATyU7EWHgFg+Xl9OVybHG40FkI4ZadiYUXF1QMI6I0mwWrbhmKmk/fAwOXFIsVPj8w\n6Ha4V6zHTw4XenE5xSYuqBhHRNVsFvxwXX/UeXkyjFxSLNo5XcAVt8C9cQeWOlwYKITglasxigsq\nDhBRkt2KZQO6osHbT8Ck18tOxNi5KTwOdLkBrn2/YoHTjet5QURs44KKE0Rkt1uxsEVjtFk4A5ZE\nu+xEjJ2dg3lAhxFwFx7Hay4P7uHrnGIfr+KLE0IIh8OF7hu248OWg+E6mCc7EWNnbt0WoMUgePIL\n8YjTLe7mcooPXFBxRAgRdLox5tejeLT5IHjWb5OdiLF/N+dziE7XwV1cimFen5guOw+rOjzFF6eI\naKDFjPfnPANL/66y0zD2V5oGPPQiAv+ZjeMuD7oLITbLzsSqFhdUHCOi1hYTvn7gZtgn3QSdwuNp\nFiGcLuDqu+BZsR67HC5cLoQokJ2JVT0uqDhHRDXtVnzRrhnqf/QcLMmJshOxeHfgMNBjNFx5BVjo\ndGOkEMInOxOTg98zxzkhxK8OF1qvzsXMJn3g5vNSTKbPvgEu6A/PgTw86nTjGi6n+MYjKHaSotAQ\nsxHvPnc/zDddBYUv6mVVxecH7pwG36wFKHV50F8IsUZ2JiYfFxQ7BRE1tFnw1RUdkf7W4zDbrLIT\nsVi3ex/Qfxxchwuw3OHCNUKI47IzscjAU3zsFEKIXU43mn65HJ816g33mlzZiVgsm70Q4qLBcP9y\nCPc5XLiCy4n9EY+g2N8iosEWE96543qYp4yDnrdIYuFSeBwY+yg8i1eg0OlGXyHEJtmZWOThgmL/\niIgyEmyYk1kdrT96HtYLG8pOxKLd/MXAmIfhCQbxjsuD+4QQLtmZWGTigmL/iohIVTDSaMCL994I\n44M382iKnb38Y8DoyXAvW4cipxtXCyFWy87EIhsXFDtjRFQzwYb3qyWj1btTYe3QWnYiFg2EAGYt\ngLj9CXhDIbzs9uJhIYRXdi4W+big2FkhIgIwyGrG61d0hOXFB2BOry47FYtUO34BbpkC18YdOOJw\n4WohxAbZmVj04IJi54SIrBYTHiMFY58YD+Nt10DR6WSnYpHieCkw+T/wvfMJgsEgHg4E8ZIQIiA7\nF4suXFCsQoiocYIN79ZIQdO3n+Bpv3gXCgFvzoe471l4NQ3znG7cK4Q4JjsXi05cUKzCTkz7DbGa\n8Uq7ZjA/ex+szRrJTsWq2tK1wJjJcBUUY0eZE2OEEHwVHasQLigWNkRk1OswVqfDo707QPfU3bDk\nZMtOxSrbmlxg4nQ4N2yH2+XBOAAf8w0FWThwQbGwIyK7yYB7iHD38D5QHxsPU2YN2alYuK3bUl5M\n67bA5/HhIU3DO0IIv+xcLHZwQbFKQ0TVrGY8rGkYM2ow6N5RMNbOkp2KVdT6bcDE6XCt2QSf14fJ\nmoa3eddxVhm4oFilI6Isiwn3aAI3XdEReOgWWJo3lp2KnQ0hgO/WAE++AdeaXPj9ATwSDOFNvp6J\nVSYuKFZliChRr8Mtej3ua9EI+kfGwdatPcC39YhcHi8w53PgydfhPHYcxU43pgqB2UIIj+xsLPZx\nQbEqR0QGAMMTrJhSoxpS7x4J6/ArQAk22cnYb44UAC99gMArHyBICtaVOvAEgG948QOrSlxQTBoi\nUgD0SLLjDq8fnQb3gHbrMJgvbs6jKhmCQWDJSuD1eXAtWQlFp+IDpxvThRC7ZGdj8YkLikUEIkrT\nqRhpNuH2lEQkjB8By3X9oVRLlp0s9m3ZDbzzMfzvfooQAftKnXhZCMzlezMx2bigWEQ5cdHvZQk2\nTPD5cUW7ZvBf1x/2AV2BlCTZ6WLH0UJg7pcQr86F89d8BEIa3vb68I4QYqfsbIz9hguKRSwisgO4\nIjkBN7i96NS6aXlZDewO8Mjq7B04DHzyDcT7C+HYtgcGkwFflToxA8D3QoiQ7HyM/RkXFIsKRGQD\n0CspAdd7vOjavBH8g3rA3qM96MKGgKLIThh5QiFg7WZgwfcIzv8KnrxjIIMei8qc+ADAt7xEnEU6\nLigWdYjIAqC7zYI+CqG3AFK6tkOwb2fYul0MZGfKTihHKARs3gV8vxZi8Qo4V22EXlVR4PNjns+P\nTwH8yCMlFk24oFjUI6JsAN2SEjDA60Pn1ESIDq2hXtYSltYXABc2AAwG2SnDz+srX+Cw7CeIxcvh\nWJULo16HQk3DN043FgNYLoTIk52TsXPFBcViyoml6xcCaJtoQwciXOLyIPO82nBf1hKm9i1gbN4Y\naFAHMBklhz0LxSVA7s7yj9W5cP20FaHDR2G2mnE4GMJ3Tje+Rnkh5cvOyli4cEGxmEdEVgAtALRJ\nSUTnkIZmLjcyUpPgbZwD7cIGMDesC3392kC9mkBGdcBqqdqMQpSX0N5fgX2/lv+6cy88O/fCv+cg\ndA4XdDYLdvsCWONyYw2AXADbeA88Fsu4oFhcIiI9gHoAGgOon2jDhTodmvgDyPZ4kayq0FIS4UtL\nhZaZBiU7HYaa6TAm2ACzEbCY//qrXgcEgkAgcOLXP3z4A0BJGVBUAhQUI5hfCN/RQoSOHYcoLgEd\nOw6T0BCymJGnKNjrcmOr14/dAPYB2ANgnxBCk/mcMVbVuKAY+5MT12LZAaT/8UOvQ6bJiFSdCjsp\nsBJgJcAiAIsmYBYa9EQIEiFAhABwyoc/pKHQ60We14+jAAoBFP3hI48vjGXsVFxQjDHGIhJfPcIY\nYywicUExxhiLSFxQjDHGIhIXFGOMsYjEBcUYYywicUExxhiLSFxQjDHGItL/A+CD+0u++aAUAAAA\nAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The Pie chart is plotted in the figure\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "## Example 1.7\n", "print('Example 1.7\\n\\n');\n", "print('Page No. 12\\n\\n');\n", "## Solution \n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "## Given\n", "O= 150.*10**3;## energy consumption in office heating in Watts\n", "L= 120.*10**3;## energy consumption in lighting in Watts\n", "B= 90.*10**3;## energy consumption in boiler house in Watts\n", "P= 180.*10**3;## energy consumption in process in Watts\n", "## Pie Chart Representation : one input argument x=[O L B P]\n", "labels = [r'office heating', r'lighting', r'boiler heating',r'process']\n", "sizes = [O,L ,B , P]\n", "colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']\n", "patches, texts = plt.pie(sizes, colors=colors, startangle=90)\n", "plt.legend(patches, labels, loc=\"best\")\n", "# Set aspect ratio to be equal so that pie is drawn as a circle.\n", "plt.axis('equal')\n", "plt.tight_layout()\n", "plt.show()\n", "print('The Pie chart is plotted in the figure');\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.7\n", "\n", "\n", "Page No. 12\n", "\n", "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FFXbBvD7zPZNLxCSkIQakN5FmqGIoSMaqSLKS/mA\nV4qigCCI+GJBQYpSpAgoCDaaNEGUjiC9k04SCOnb25zvj0AEAYVkk9ndPL/ryoWQMHtnJXvvnDlz\nDuOcgxBCCHE1gtQBCCGEkAehgiKEEOKSqKAIIYS4JCooQgghLkkudQBC3BljTAHAG4Ds9oc3Cn+u\ncgGIABwAbAAMnGYkEfJYGP3MEPIXxpgPgMq3PyIYQ4TaS1ZDkKEyAD/O4Ss6uLfDzrUOO9dwETK5\nktkEgYmMgVstolLggqCSyy2cc4icCw5RFOyiKKjkcpNCJtPLBCFfAHI5kGMXxUyTzXbTLoo3ACQA\nSASQyDnXSfg0EOISqKBIucMYkwOoDqAOY6ir9ZE15xz1rGYxjHPIfQLlpoCKCjE4TCUPrqzUBIYo\nBd8gBTReMqi9hcJfb38o1QyMsaJjL34rAfVyqjnm9+wpu/sxrXY78s1m5JvNyDObkWcyFf2abzYj\nvaDAciUry5yYm8tu6nRamSCYNApFGoBrOovlnF0UrwE4B+AM59xUls8XIVKhIT7i0W4PwTUE8JTW\nR9aRA40EGcK9/eTm0GpqMaqOVhteXSMPraZGhcoqaH1kd86inEopl6OCtzcqeHs/7EtUtz/AOcdN\nvd4nKTe3dnJubu2k3Nxul27dMp7OyHCk5OVp/TWa65zzowUWy34AJwCcptIinogKingUxlhFAK0U\nStZWqRY6yeSstn9FhTm6ibeiZhNvTUS0FpWqqKHSCA9tCqkxxlDJxweVfHzQMjISABgALwAw22y4\nkJlZ5VR6epU/rl/veSw11ZZcWFppIueHdBbLVgC/cM4zpfweCHEGKiji1hhjSgCt5ErWTaEUnlOo\nWOUqdb0sTzT38a7WwEuoUtcLWh+ZUuqczqJWKNAkPBxNwsPxavPmGgAai92OCzdvRh27fj1qx5Ur\n3Q8nJ6v81Oo0q8OxxWy3/wxgP+fcKHV2Qh4XXYMibocxVgVAF62vLM5qEp+qUFllbdTeT1u/tZ+8\naj0vyOTsX45Qeh52Daos2R0O/Jmejr3x8Y5tly4ZLt26pfZWKs8WmM0/ODj/kXN+UapshDwOKiji\nFhhjEYyhr9pbNlR08Cr12/iJDdv5aeu09IFPgELqeEVcoaD+Tmex4GBSEnZfvWr94fx5u0MUM402\n20q7KK7jnF+VIhNjjF54yinO+SO/g6SCIi6LMRYGhhe03rJhdjuv0aSDP2/ZNVBTq5mPpGdJ/8QV\nC+puoijiaGoqNpw9a/n+7FmRMZZmsFpX2EVxPec8saxyMMbotrByiDFGBUXc1+1rSs9pfGSv261i\ng0ZP+ztadgvUPvGkD+QK11/4xNUL6m4OUcTB5GRsPHPG/OP585AJQpLOYlkkcr6ac15Qmo9NBVU+\nUUERt8QYq6FUs1Gc4z+Vo7XoNKCCT6On/aFQuX4p3c2dCupudocDvycm4ss//jDsjY8X5IKwQW+1\nfso5P1Maj0cFVT49bkHRLD4imdv3KPXW+MjeUGuFBm16BwtPvxCsDIlSSx2t3JHLZOhQowY61Kjh\ndUOnw6oTJwYuOXo0zl+juZZvNn8I4HvOuUXqnKR8oTMoUuYYY36CDCPkCuGtsGpqRadBFX0at/eH\nQuleZ0sP4q5nUA9idziw/coVLDx0SHcmIwMAlpjs9vmc89SSHpvOoMqnxz2Dcv9XBOI2GGOhKo1s\nrkLF0hvF+E+f+GV04JQ1tX1aPBvoEeXkaeQyGXo88QR2Dh3q8/vIkT6DGjd+TaNQXPFRqVbdnupf\n7phMJvTo0QP+/v7o27cvAGDq1KmoUKECwsLCkJqaCh8fHzi7fAVBQEJCglOP+TBdu3bFmjVryuSx\n/g0N8ZFSxxirqtIKUxUqNuCp7oEsdkiIKihUJXUs8hhqBgfj427dlJNiYrDg0KEBS48d6+ujUn2v\nt1rf4Zw75ZXz7jUNS0tJi+O7775DZmYmcnJyIAgCUlJS8OmnnyI1NRVBQUEAAJ3Ofdb5nTFjBuLj\n4+8ppJ9//lnCRPeigiKlhjEWqtIK7yvVQv+YuAqyZwZVVPgGus49S+TxBXl5YcYzzyjGtm6tWHTk\nSN/PDx9+3let3qyzWKY6456qpSeaOCPmAw1v+meJj5GcnIzo6GgIQuEZf0pKCoKCgorKiTgXjasQ\np2OM+SnVwkcKFYtv0yto4Afb6qmffy2cysmDBGi1mNqhg/zChAnqUS1b9vFSKs/4qtXfMcZqSJ2t\npC5evIiYmBgEBASgXr162LJlCwBg+vTpeO+99/Dtt9/Cx8cHS5cuRefOnZGeng4fHx+8+uqrSEpK\ngiAIEEURAJCTk4NXXnkF4eHhCAwMxHPPPVf0OFu3bkWjRo0QEBCA1q1b4+zZs/+Ya/fu3YiOjkZA\nQADGjBlzz+dWrFiBOnXqIDAwELGxsUhJSSn63NixYxEZGQk/Pz80a9YMBw4cAADs2LEDs2fPLvp+\nGjduDACIiYnB8uXLAQCrVq1CmzZtMHHiRAQGBqJatWrYsWNH0bETExPRrl07+Pr64plnnsHo0aPx\n0ksvFfepvw8VFHEaxpharhAmKlTsepMO/mNmfl9X0/eNCKW3P52oeyp/jQaT27eXX5wwQT3mqad6\naRWKM15K5ULGWIDU2YrDZrOhR48eiI2Nxa1bt7BgwQIMHDgQV65cwbvvvospU6agX79+0Ol0GD58\nOLZv346wsDDodDqsWLHivuO99NJLMJvNuHDhAjIzMzFhwgQAwMmTJzF06FAsW7YMOTk5GDFiBHr2\n7Amr1frQbNu2bcPx48dx5swZbNiwATt37gQAbNq0CbNnz8aPP/6IrKwstG3bFv379y/6ey1atMDp\n06eRm5uLAQMGIC4uDlarFbGxsfd8PydPngRQONR693DrsWPHULt2bWRnZ+PNN9/E0KFDiz43YMAA\ntGzZEjk5OZgxYwbWrl3r1KFaKihSYowxJghsoFIjXK/d3Gf622tqew+dVVUTFOoxa7SSf+GrVuOt\nmBj5qbFjNX3q1RuqkctTFDLZuNu3EriNI0eOwGAwYNKkSZDL5Wjfvj26d++OdevWASi8hnX3dax/\nuqaVkZGBHTt2YPHixfDz84NcLkfbtm0BAEuXLsWIESPQvHlzMMYwePBgqFQqHDly5KHHmzRpEnx9\nfREREYH27dvj9OnTAIDFixdj8uTJqFWrFgRBwOTJk3Hq1CmkphZOthw4cCACAgIgCAImTJgAi8WC\ny5cvP/D7eZCoqCgMHTq0KGdGRgYyMzORkpKC48ePY+bMmZDL5WjdujV69uzp1AkiVFCkRBhjddRe\nwtGQKNWScQtrBI1dWMMrrLpG6lhEIhW9vbGwVy/1nmHDvJtXrjzLW6m8yhjrKHWuR5Weno6IiIh7\n/iwqKgppaWmPfazU1FQEBgbCz8/vvs8lJyfjk08+QUBAQNHH9evXkVE4nf+BKlWqVPTfWq0Wer2+\n6Fhjx44tOs6d62F3Ms+ZMwd16tSBv78/AgICkJ+fj6ysrEf+Pv7+uACg1+uRnp6OwMBAqNV/3bf4\n9+eupKigSLEwxrxVGtlclUY43uv/wppO/7aOV41GLrvFEiljdUJC8PMrr3h98dxzURW8vDb7qtVb\nGWORUuf6N3emit99FpCcnIzKlSs/9rEiIiKQk5OD/Pz8+z4XGRmJt99+G7m5uUUfer2+aOr644iM\njMTSpUvvOZbBYEDLli2xf/9+fPzxx9i4cSPy8vKQm5sLPz+/ou+vJMNxoaGhyMnJgcn0116Zd1/7\ncgYqKPJYWKHnlWohqX4b3xGzfqqr6di/ouCqi7cS6TDG0OOJJ3B67FjtyCeffFYjl19UymSvMcZc\n9nWnZcuW0Gq1+Oijj2Cz2bBv3z5s3boV/fr1e+xjhYaGokuXLhg1ahTy8vJgs9nw+++/AwCGDRuG\nxYsX49ixY+Ccw2AwYNu2bUVnRf/m7qG5kSNH4n//+x8uXLgAAMjPz8fGjRsBFE55l8vlCA4OhtVq\nxcyZM1FQ8Ncyi5UqVUJSUlKxhuWioqLQrFkzzJgxAzabDYcPH8bWrVudeg2Krl6TR8YYC1V7CWu9\n/ORPDpke5VWrmdN3RiceSKtU4u0OHeQvNmggf2Xjxv8l5+UN0lkevGqSM6aCl4RCocCWLVswatQo\nzJ49G5UrV8aaNWsQHR0N4P4JBHf+7GG/X7NmDcaPH4/atWvDarWiQ4cOaNeuHZo2bYply5ZhzJgx\nuHr1KjQaDdq2bYunn376gbke9Bh3/qx3797Q6/Xo168fkpOT4efnh86dOyMuLg6xsbGIjY1FdHQ0\nvLy8MH78eERG/nUiGxcXh7Vr1yIoKAjVqlXD8ePHH/o4D8ry9ddfY8iQIQgKCkKLFi3Qt29fOByO\nf3yOHwctdUQeiSCwvgoVW9ZxQIi6x/BKCndYWVwKnrTUUWlwiCIWHj7smL57t4xeezxP3759UadO\nHUyfPv2Bn6eljohTMcaCNN6yTQEhihWvL4n2eW50GJUTKTaZIGBs69ZU3h7i+PHjiI+PhyiK2L59\nOzZv3ozevXs77fg0xEceijHWRakWvm7ZLUj7wthwlVJNxUQI+cuNGzfQp08fZGdnIyIiAosXL0bD\nhg2ddnwqKHIfxphapRUW+QTI+w2bXVVbuzldayKE3K979+7o3r17qR2fCorc4/bCrj/XauYT9erM\nKhqtD43GEEKkQQVFijDGuivVwje9RoZqOw6oKCuL1aUJIeRhqKAIGGNypVqY7e0vHzX602ra6g3p\nhltCiPSooMo5xlhFtZewuXJNTb3/m1NN6xPgVkunEUI8GBVUOcYYq6NUC7/GxFUI6D0qTCHIaEiP\nEOI6aN5wOcUY66RUs6MDJ0dU6PPfcConQgBUqVIFe/bswezZszFs2LBH+jszZsx4rD2QUlJSSmVb\neE9EZ1DlkEzO/qP2Ej4bPbe6tlZTmkJOXIMrbPl+Z2mfyZMnP/Ix/y13lSpVsGLFCnTo0AFA4eKu\n7rQtvJSooMoRxpigVAsf+wYqRr6+pKY2JEr973+JkDLEL5besdkTpXPcRyk9OlsqHhriKycYY0q1\nVvgptKp6xLR1T1A5EfIQnPP7hu1Wr16NqKgoBAcHY9asWahSpQr27t0LoLCArFYrXn75Zfj6+qJe\nvXo4ceIEgMIddVNSUtCjRw/4+Phgzpw5920LHxMTg3feeQdt2rSBr68vnn32WWRnZ//jY+/Zs6cM\nnxHpUEGVA4wxjdpL2FWziXenN5dHe/kE0IkzIf/k7mG7CxcuYPTo0Vi3bh0yMjKQn5+P9PT0os9z\nzrF582b0798f+fn56NmzJ8aMGQOgcDXzyMhIbN26FTqdDm+88cYDH2/dunVYtWoVMjMzYbVaMWfO\nnH987PJyjyIVlIdjjHmrvYRf67b0bTHqk+oahYr+lxPyOL777jv07NkTrVq1gkKhwMyZM+8riLZt\n2yI2NhaMMQwaNKhoO/ZHwRjDK6+8gho1akCtVuPFF1/EqVOnHvmxPRm9lfZgjDF/tVb4rXF7/+iX\n34lS00w9Qh5fenr6PTvqajSaom3V7wgJCSn6b61WC7PZDFEUIQiP9obw7m3VNRpN0caFj/LYnoze\nTnsoxliwSiscadktsNaQGVROhBRXWFgYrl+/XvR7k8l0zzWif1OSM56SPra7o4LyQIyxiiqNcCwm\nrkLV/m9FqMrTkAAhznD3rLvnn38eW7ZsweHDh2G1WjFjxozHmpUXEhKC+Pj4R368u5X0sd0dFZSH\nYYz5q7TC/g79KlR+/rVwJZUTcSfsidL7eOQMt++FuvOzU7duXSxYsAD9+vVDWFgYfHx8ULFiRahU\nqnu+/u/HuGPy5MmYNWsWAgIC8Omnn973+b///nEe29PRlu8ehDGmVWuFA092DawzYBKdOUmBtnx/\nNP5ufCag1+sREBCAa9euISoqqtw8tjPQlu/l1O37nHbUb+v3BA3rEeJcW7ZsgdFohMFgwBtvvIEG\nDRqUWUFI+dhSo4LyAIwxmUor/FCjsXfTV2dWUQsClRMhzrR582aEh4cjPDwc8fHxWL9+fbl4bKnR\nEJ+bY4wxlVZYGxGt6TX+i5peCiW955ASDfE9Gnce4iPFR0N85YxCxWYFhyl7vbagBpUTIcSj0Cua\nG5PJ2EsaL9m48Z/X9FJr6Q07IcSzUEG5KcZYW4VaWDJhSU2tbxDtgksI8TxUUG6IMVZFqRa2jPyo\nmiasmkbqOIQQUipoLT43wxjzVmmFX3qNDPWu+5Sv1HEIIaTU0BmUG2GMMbVW2NA4xj+844CKdNGJ\nkFJQkv2WfHx8kJSUBAAYMmQIpk2b5rRcgiAgISHBacf7J127dsWaNWvK5LH+CZ1BuRGZgo0LrKRs\n99K0SDXdiEs8jSts+X4nR3Gz3L2Ve0mOU5ZmzJiB+Pj4ewrp559/ljDRX6ig3ARjrIVKK7w/em51\nDU0nJ55q9p/WUjv25CbKUjv2wxTnXi+73Q65nF6aARricwuMsQClWtjyyrtRmgqVy8cikYRI6dix\nY6hbty4CAwPx6quvwmKxFH1u2bJlqFmzJoKCgtCrVy9kZGQUfe6fhuG2bt2KRo0aISAgAK1bt8bZ\ns2eLPlelShV89NFHaNCgAXx8fIq2g/+73bt3Izo6GgEBAUW79t6xYsUK1KlTB4GBgYiNjUVKSkrR\n58aOHYvIyEj4+fmhWbNmOHDgAABgx44dmD17Nr799lv4+PigcePGAAq3oV++fDkAYNWqVWjTpg0m\nTpyIwMBAVKtWDTt27Cg6dmJiItq1awdfX18888wzGD16NF566aVHep7/DRWUi2OMMbWXsL5Vj0C/\nJh0CpI5DiMfjnOObb77Brl27EB8fjytXrmDWrFkAgL1792LKlCnYuHEjMjIyEBUVhX79+v3rMU+e\nPImhQ4di2bJlyMnJwYgRI9CzZ0/YbLair1m/fj22b9+OvLy8h250uG3bNhw/fhxnzpzBhg0bsHPn\nTgDApk2bMHv2bPz444/IyspC27Zt0b9//6K/16JFC5w+fRq5ubkYMGAA4uLiYLVaERsbiylTpqBf\nv37Q6XQ4efIkgPuHJ48dO4batWsjOzsbb775JoYOHVr0uQEDBqBly5bIycnBjBkzsHbtWqcNbVJB\nuTiZgo0LDFG2jptAp06ElAXGGMaMGYPw8HAEBATg7bffxrp16wAAX3/9NYYOHYpGjRpBqVRi9uzZ\nOHz48D1nK38/FgAsXboUI0aMQPPmzcEYw+DBg6FSqXDkyJGir3vttdcQHh7+j1tpTJo0Cb6+voiI\niED79u2LtpZfvHgxJk+ejFq1akEQBEyePBmnTp1CamoqAGDgwIEICAiAIAiYMGECLBYLLl++DKCw\nkP9tKDIqKgpDhw4typ6RkYHMzEykpKTg+PHjmDlzJuRyOVq3bo2ePXs6bRkrKigXxhhrLFew90fP\nrU7LGBFShiIiIor+OzIyEunp6QBQdNZ0h5eXF4KCgpCWlvaPx0tOTsYnn3yCgICAoo/r168XHffv\nj/kwd28Nr9Vqi7aGT05OxtixY4uOfWdb+Du55syZgzp16sDf3x8BAQHIz89HVlbWvz7ewx4XKNz6\nIz09HYGBgVCr1Y/1fTwquhLnohhjSpVW2DjgrQg1XXcipGzdfUaUkpKC8PBwAIVbsN+ZRg4ABoMB\n2dnZRZ9/mMjISLz99tuYMmXKQ7+mJMNikZGRmDZt2j3Denfs378fH3/8Mfbu3Yu6desCAAIDA4vO\nckryuKGhocjJyYHJZIJGU7hoQEpKCg3xeTqFis2oVt8rtGW3QNefp0qIB+GcY9GiRUhLS0NOTg7e\nf/999O3bFwDQv39/rFy5EqdPn4bFYsGUKVPQsmVLREZGPvA4d0pg2LBhWLx4MY4dOwbOOQwGA7Zt\n21Z0BlTcnHeOP3LkSPzvf//DhQsXAAD5+fnYuHEjgMKp73K5HMHBwbBarZg5cyYKCgqKjlOpUiUk\nJSUVa1guKioKzZo1w4wZM2Cz2XD48GFs3brVaQVFZ1AuiDHWRKUVxr3ybpTGHe6jIMRZpJgK/neM\nMQwcOBCdO3dGeno6evfujalTpwIAOnbsiPfeew/PP/88cnNz0bp163v2Z3rY1u1NmzbFsmXLMGbM\nGFy9ehUajQZt27ZFTEzMY+X6++/v/Fnv3r2h1+vRr18/JCcnw8/PD507d0ZcXBxiY2MRGxuL6Oho\neHl5Yfz48fcUalxcHNauXYugoCBUq1YNx48ff+jjPCjL119/jSFDhiAoKAgtWrRA37594XA4Hvn7\n+sfvmfZkcS23h/YuDpgUUfWpbkHUTm6G9oN6NLQflOfq27cv6tSpg+nTp9/3OdoPys0p1ezd6g28\nKrXsSkN7hBDXd/z4ccTHx0MURWzfvh2bN29G7969nXJsGuJzIYyxBmqtMHbIjCo0tEcIcQs3btxA\nnz59kJ2djYiICCxevBgNGzZ0yrGpoFzE7RtyVz7/WrjavwLt70QIcQ/du3dH9+7dS+XYNMTnOvr7\nV1DUavtcMJ06EUIIqKBcAmPMR6kWFr48PcpLkFE/EUIIQAXlEpRqYWajGD919QbeUkchhBCXQQUl\nMcZYbTCMiBtfmfZuJ4SQu9AkCYmpvYRlPYaHKv2CaWIEIYTcjc6gJMQYa6/SyBq370vbtxNCyN/R\nGZREbk8r/+yFseFecgVNjCDEVbZ8J66DCko6Xb395FWbP0ubEBJyR96MGaV2bH8nHpu2ZS8bNMQn\nAcaYoPYSPoubUNmbppUT4jqqVKmCDz744L7t3vft24fKlSvjo48+QmhoKIYOHQqr1Ypx48YhPDwc\n4eHhGD9+PKxWa9GxNm3ahEaNGsHPzw81atQo2v02Pz8fQ4cORVhYGCpXroxp06YVbfF+7do1PP30\n0/D390eFChWKduvlnGP8+PEICQmBn58fGjRogPPnz5f9E1TG6C2ANF4IDFGGNIrxkzoHIeRv7mz3\nrtVq0aNHD8yaNQudOnXCzZs3kZubi5SUFDgcDsyaNQvHjh0r2tW2V69emDVrFmbOnIljx47h5Zdf\nxvfff4+OHTsiPT0dOp0OADBkyBBUqlQJ8fHx0Ov16N69OyIiIjB8+HBMmzYNsbGx+O2332C1WotW\nFt+1axf279+Pq1evwtfXF5cvX4afn+e/ftAZVBljjMlVWuGTuAmVvWm9PUJcyz9t9y4IAt59910o\nFAqo1Wp88803eOeddxAcHIzg4GBMnz4da9asAQAsX74cQ4cORceOHQEUbnRYq1Yt3Lx5E9u3b8fc\nuXOh0WhQoUIFjBs3rmjLDqVSiaSkJKSlpUGpVKJVq1ZFf67T6XDx4kWIoohatWrds8utp6KCKntx\nIZEq/zotfaTOQQh5gIdt916hQgUolX/tV5Wenn7P9u93f+3169dRvXr1+46dnJwMm82G0NDQou3Z\nR44ciVu3bgEAPvroI3DO0aJFC9SrVw8rV64EALRv3x5jxozB6NGjERISghEjRhSdkXkyKqgyxBhj\nGm9hRs8RYXT2RIiL+vt272FhYQDun2X49+3f794aPiIiAteuXbvv2BEREVCpVMjOzkZubi5yc3OR\nn5+Ps2fPAgBCQkKwdOlSpKWlYcmSJRg1ahQSEhIAAP/9739x/PhxXLhwAVeuXMHHH3/s1O/bFVFB\nla0YjbcsrF4bX6lzEEIegHOOzz///J7t3u9MVPi7/v37Y9asWcjKykJWVhZmzpyJQYMGAQCGDh2K\nlStXYu/evRBFEWlpabh8+TJCQ0PRuXNnTJgwATqdDqIoIj4+Hr///jsAYOPGjbh+/ToAwN/fH4wx\nCIKA48eP4+jRo7DZbNBqtVCr1ZDJPP/2SZokUYY0PrIZ3f4T6iUIdPZEyIM4cyp4cTDGMGDAgPu2\nez9y5Mh9Z1BTp05FQUEBGjRoAAB48cUXi7aGb968OVauXInx48cjMTERISEh+Pzzz1GrVi2sXr0a\nkyZNQp06daDT6VCtWjVMmjQJQOHmf+PHj0d+fj5CQkIwf/58VKlSBQkJCRg/fjwSEhKgVqsRGxuL\niRMnlu2TIwHa8r2MMMbqaryFP+bsaqBRqOjE1VPRlu+PxlW3fK9atSqWL1+ODh06SB3FI9GW7y5K\nrRWmPDMoREHlRAghj4ZeLcsAY6ySw8H7xMRVoCFVQgh5RPSCWQZkcja02TMB3Nufnm5CXFliYqLU\nEchd6AyqlDHGmFzJxjz9QgXa74kQQh4DFVTpe9rHX+5VtZ5W6hyEEOJWqKBKmdpLeK1D/4p0Yy4h\nhDwmuihSihhjAXIl69KyayC1EyF/Q2/ayL+hgipNDAPqtfJ10OQIQu5Vmvs+lbUP9+1zfHbw4JcG\nq3Wk1Fk8DQ3xlSKNl2xsTFwFL6lzEEJKz/P16sk40I8xRjdnOxkVVClhjNUAeOXazWnVckI8WY3g\nYIT6+AgA2kqdxdNQQZUSQYa4pp0CGO2YS4jnG9S4sZe3Uvmy1Dk8DRVUKVFrZS83fzZALXUOQkjp\n61O3rmAXxecZY3TB2YmooEoBYyzK4eBR0U1oeI+Q8qBKYCAi/f05gPZSZ/EkVFClgDG80Li9P5fJ\naXiPkPJiUOPG3jTM51xUUKVA4yMb0iI2gJY2IqQcea5uXcEmir0ZYwqps3gKKignY4yF2q28Js3e\nI6R8ifD3R2VfXweAJ6XO4imooJzv2drNfWxyBT21hJQ3XWrX1igE4Vmpc3gKehV1Mq2PrE+jGD9v\nqXMQQspep+rVFV5KZW+pc3gKKignYozJbBaxQ92nfKWOQgiRwJORkTDabNGMMT+ps3gCKijnauQT\nKBcDQpRS5yCESECjUKBhaKgZQIzUWTwBFZQTMYaO9Vr7UTsRUo51rV3bR6tQdJU6hyeggnIirY+s\nd92WviqpcxBCpNO+WjUmE4RuUufwBFRQTsIYU5iNYpPopjQ/gpDyrEGlShA5D2KMRUidxd1RQTlP\nXb9gudV6jj5cAAAgAElEQVTLj5biIqQ8EwQBraKibACeljqLu6OCcp4W1Rt6034whBC0iory1sjl\nLaXO4e6ooJxE7SU8XaORt1bqHIQQ6TUODWVqhYL2hyohKignYYy1rlqX+okQAjQMDYXeaq3FGKPX\n2BKgJ88JGGNeVrMYHl6T1oclhAABWi381WobgGips7gzKijnaFIxQmVQKOnpJIQUahwWxgE0lTqH\nO6NXVOdoXrOxN+2eSwgp0jIy0ltNEyVKhArKCTTesuYRtTV0gy4hpEjjsDCmoYkSJUIF5QSCgHqV\nougEihDyl0aFEyVq00SJ4qMnzgmsZrFqpSpUUISQvwRotVDL5SKASlJncVdUUCXEGAsCoPANohUk\nCCH3ivDzswKoJnUOd0UFVXK1gsJVJsaY1DkIIS6melCQDEBVqXO4KyqokqsVXl1NSxwRQu4THRys\nFRirLnUOd0UFVUJyBatbuabGS+ochBDXUzUwUPBVqepJncNdUUGVkEor1A4OU9H4HiHkPlH+/mCM\n0WoSxUQFVXKV/SoopM5ACHFBVQICYLHbaV+oYqKCKiGHnYf4BVNBEULuF+brC4vD4cMYo/tQioEK\nqoRsFh5ABUUIeRCZICBIqzUBiJQ6izuigioBxpgPAJnGm55GQsiDBWg0DgBBUudwR/TKWjKhXr4y\nM90DRQh5mACNBgACpM7hjqigSibUN0jhkDoEIcR1BWo0AqigioUKqmSCfYPkdPpECHmoYC8vOQB/\nqXO4IyqokvFSe8noOSSEPFSwVqsCnUEVC724loyX2ktGyxwRQh4qQKMR1HJ5RalzuCMqqJLx0ngJ\ntIw5IeSh/DQaqOTyEKlzuCMqqJLxVnvJqKAIIQ/lr1ZDxliw1DncERVUCciVzE+lFWiSBCHkoXxU\nKgDwlTqHO6KCKgG5gvmpNHQJihDycELhfZL0WlsM9KSVgCAwL4WSTqAIIQ93u6DonWwxUEGVAAdE\nzqVOQVyJw0b/IMi9ZIIATgVVLHSBvyQ47KJIL0jllSiKSLlkwrlDBUg4a0BuqtGemWaXFfgmyS7c\nvIk6ITRxiwAyGuIrNiqoEuEOLkqdgZSFvFtWnNmfj6t/GpARb3AYs63Q6bhMqQBqVYWjbX2g6bOQ\nr94EnExU8A5ffslerF/fMaNTJ1mgVit1fCIhkXMwgF4pioEKqgS4CAedQXkWq1nEhaMFuPSHDikX\nDFx30ywadKJgsYJVCYPYpC543+cgqx8N1I8GQgonDxcN3+w4ANSO6Ca2Hfy67Ns34vD9vHmY2r49\n/0+LFkxB93SXS47C6wBUUMVABVUCnMPOaalYtySKIpIvmnDuUD4SzxqQm2pyGPPtTGeAUCEAvF5N\nOPq3gqxhbcjq1wSqRwIy2aMP01SIqokxG0/Jzu39CR+9N5J/fvQo5vfowdpXr16a3xZxQQ5RBAB6\npSgGKqgS4HQNyi3k3rTizIF8XP1Tj5vxRoch56/hudpV4WhXH2japfCsqE51wEsLBif9bNTr0Bt1\nYnoKuz+fjkFfz+PNw8PFT7t1k1ULou2ByovbM6mooIqBCqoERJFbHQ4qKFdhMYm4eLQAF48VIPWS\nsXB4rkCUWWxA1XCITeqA9+sDWYNahcNzFQs7otTH3QRBwLNj3sPTQyay9W8NYK2+WIxXmzV1TIqJ\nkfmqaSdwT2e02QDAKHUOd0QFVQJ2K881G0QOgG6GKkP3DM+dMfCc6ybRmG9nej2ECoHg9aIh9m8F\noVHtwrOiahGPNzxXWtTevhiyaKuQcfk0NrzZF2vnzsP7z3bmAxs1YoIgeTxSSvJMJoicZ0mdwx1R\nQZVMrj7XbgFAb4NLSe7NwtlzV/7U42aC0WG8e3iuGhwxDcCadPtreE6rAYOL33MSWqshxm66JDux\nZQ2mfjyezz90iC/o2VNoGRkpdTRSCvLMZlgdjkypc7gjKqiSydPl2u1Sh/AEFpOIC4fzcekPXeHw\nXGbh8JzVBlStXDg8N+D5v2bPldXwXGlq2uMlNO42UNjy0Tj0WbsC7atVc3zYpYussp+f1NGIE+WZ\nTNxos92UOoc7ooIqmVxDvp0ufj4GURSRdN6I84cKkHDOwHNTTQ5jgV3Q6yFUCAKvHw1xQBsIDWu5\n1vBcaREEAb0mzUfH4VOxfmJf1nzhQox56ilxfJs2glaplDoecYIso9EKIFfqHO6ICqpkcg35dAL1\nMNkZVpw9kI+rJ/W4GW9wGHJt0Ou4TKUsHJ5rXx+sSTfIG9QqHJ7TqF1/eK60eAdWxH+W/yoknTqE\nVZMH8hXHj+Pjrl3xXN26YIwucbqzbIPBBiqoYqGCKplco97hse/uH9Xdw3MpF41cf+ve4bmmdcEH\nxv01PFchEEA5LaJ/U6VRK0zYnig7tH4Rxi6cyucdOMDn9+wpNAoLkzoaKaZso9EBKqhioYIqmTyT\n3lFunsM7w3PnDhYOz+VdNzmM+XaZ3gBWMQi8QS2Ig9rdOzwnCJ47PFeaWvUbjRZ9hrEf3huBLitX\nokftJxyznu0sq+jtLXU08phyTSaACqpYys2Laym5ZTGJKruNQ67wrGGY7IzC2XPXTupxM8HgMOba\nWEEBFzSqwuG5jg3AmvSA/M7sufI8PFda5EolXnxvJcsbNRPr3ngBjT77DG8+/bQ4qmVLQSmnH113\nkWc2C6CCKhb6V14CnHObWivLy7tlDQwOU0kdp1jMRjvOH9bh8u3Zc/pMs6jXiTKbDagWUTh7jobn\npOUfGoH/+/qo7PKhnVjwzqt8ydGj/NPu3VlsdDRdn3JxnHPcMhg0AFKlzuKOqKBKSK5g6dkZrl9Q\noigi8awR5w/fHp5LNTkMBXaZ4W/Dc3dubq1amYbnXE2tVs+i1i9psj3L/odhKz/k9SpW4PO6dxdq\nV6wodTTyELcMBsgYM1s5L5A6izuigiohDiTkZFjrSZ3jblnpFpzdf3v2XKLRYcyxMb2OC+rbw3Od\nGoI16Ql5/ZrAEzQ853Y6DpuCtoPGsQ1TByNm6TL0b9jA8U7HjrIA2tbD5STl5kKtUKRLncNdUUGV\nkMUoXszOsPaABMsdmY12nD9UgEt/6JF6ySAabln4neG56hGFW0O89OJfw3PBAQCoiDyCUqPFoE++\nY7eSLuPbN+Kwcd5neKdTR/5q06ZMTtt6uIzk3Fww4JrUOdwVFVQJOew8MTPFYgJQam9fRVFEwlkD\nzh/SIfGcgeel/TV7LiQYvEEtOAbHQNawFgQanitfKlSphTHfnZGd3f09/vf+//FFhw9jfo8e7Olq\n1aSORgAk5eZyvdV6Tuoc7ooKquRSMlMtNmcd7O7hucwEo8OQa2M6HRc0auCJanB0agDWpBfkDaIL\nh+fUKudtDUHcV/1nnkfdjs8JOxe8jQHrFvKWkRHiJ127yqoEBkodrVy7kpVltDkcV6XO4a7oha3k\n4m9dtzz281g0PHdMj9TLBlF/y8INOlFmtwPVKhcOzw3ud3t4riYQRMNz5F8IgoAuY2fj6VfeYt++\n1Y899fkXGNq8mfhWTIzgo3LtSTye6mpWlh1AgtQ53BUVVMklGArsKovJAZXm/v4QRREJZww4d6gA\nieeMPD/tr9lzIcHgDWvB8XL7v4bnqoTT8BwpGa2vP175YoeQdukkNk7sy9fOnYv3n32W92/YkLb1\nKGOp+flyUEEVGxVUCXHO7Vpf+fWMRHMVLz8ZzuwvwLVThcNzxtvDc1pN4fBc5wZgTXoX3txKw3Ok\ntIXXboxxW67Ijm9ahSlzXi/a1qNFRITU0coFg9WKfLNZCeC61FncFb04OoHD6jDOG34ZDkfh7Lmm\ndcFfpuE54iKa9RqCRt0GCVs+eI33Wr0az9Ss4fggNlYW5usrdTSPdvbGDXgrlYm5JhOtKF1MdL7v\nBFYLtr0YC5vxJHB+K4TVH0L230FATIuiciJEUnK5HM9N/ZyN23YNZ+W+rOmCBfjg119Fk81p83vI\n35xKT4ddFA9LncOdUUE5xy9nr8BIw/vE1fkGV8LwVb8Lgz7fji8vXuH1583DpvPnwTmXOprHOZqa\natBbrQelzuHO6CXVOU5euAYN/YwTd1GtaTu8viNZ9uTIdzFm6zbeftky8UxGhtSxPMqJtDQHgBNS\n53BnVFBOwDm/JQgwJNKlUOJm2gx8DW/+msnQsB3rvGIF/u/HHx1ZBoPUsdye0WpFRkGBBgDdpFsC\nVFBOolLi7MmLUqcg5PHJlUr0fX81+++P53HAzNHws8+w4OBB0Wqna/vFde7mTXgplUmcc6vUWdwZ\nFZSTFBjw29HToJ9o4rYCw6pg1Lrjshc+3oi5x0/yRvPn811Xrkgdyy2dSk+Hg3OaIFFCVFBOYrdj\nz5Z9MEqdg5CSqt22CybuSZc90X8se/X7H3i3lSvFK7duSR3LrRxLTTXqLBaaIFFCVFDOczghFaps\n2jeTeIhOI6bh9T3pLDeqHtotWYo3tm1z5BVuX07+Aecc+xISOIADUmdxd1RQTsI5t3pr8cevx6RO\nQojzqLXeeGnej8LIdX/g51v5qD9vHpb/8Qd3iKLU0VxWYk4OjDabDQBdlS4hKignyi3AD9t+A73F\nJB4npHod/PeHc7Ju07/Ee/sP8OYLF/L9iYlSx3JJ+xISIBeEXzjdXFZiVFBOxDl2b/8d9NaSeKyG\nsX0xce9NIazrYNZ33Tq8+PXXjuRcGte+28+XL+sKLJZNUufwBFRQznVeZ4A9IVXqGISUHkEQ0G3C\nR3h9ZwoS/cPZk4sWYfru3aLeYpE6muQcooiDyclKAHukzuIJqKCciHPOFQrs2X1I6iSElD6tXyBe\nXbJLeHXFb1ifmMrrzZuH9adPc7EcX586lZ4OhSDc4JzTshxOQAXlZPk6bNq8F3qpcxBSViLqNce4\nrddkMePn4M1du3mbxUvEE9fL57Iqe+PjRbsobpU6h6eggnK+X/b9AYXDIXUMQsrWky8Mw8RfMwVt\nq66s+1erMWTjRkdGQYHUscrUz5cv64w2289S5/AUVFBOxjlPV8hw888LUichpOzJ5XI8/84SNm7r\nFZxiWjRdsAAf//abaC4H23rkmUw4f/OmGsDvUmfxFFRQpcBmx9Yd+2k2Hym/fCuEYcTqg7IBC7dh\nybmLvP68eXzLxYseva3HlosXoVEo9nHOaYjfSaigSoHRjHXLv4fRg38WCXkk1ZvH4PWdKbJm/5nK\nRm3ewp/5crl4/uZNqWOViq9PndLlm80rpM7hSaigSsfB7DwYT9IwHyEAgHYvv4439txg1jotWacv\nv8SYTZsc2R60rUeWwYCTaWkKANukzuJJqKBKAeec2+xYtuIH0FL7hNymVKvR/8Nv2OjvzmCfzooG\nn32Gzw8f5jYPmFG05eJFqBWKXzjnntO6LoAKqpRYrPhqzWY4aEsdQu4VFFEdozeclPX5cB0+PvqH\n2Hj+fL7n2jWpY5XI2pMnC/LN5pVS5/A0VFClhHN+VWBI2EUL7hPyQHWe7oE3fkmX1YwbzQZv3Mh7\nfvWV41pWltSxHttNnQ5nb9xQAtgudRZPQwVVivL1WLR0I+iUn5CHEAQBnUfNwBu701hmeC3WZvFi\nvLV9uyPfbJY62iPbdOECV8vl2znntFC0k1FBlSLOsWHHfsjzdVInIcS1qb198fL8zcLwb45hU0Y2\n6s+di1UnTrjFth6rTpzQF1gsNHuvFFBBlSLOebZGhd++2yl1EkLcQ2iNehj70wVZ7LQlmL7vN95i\n0SJ+KDlZ6lgPdTojA0m5uTYAO6TO4omooEpZng6LF38LOoci5DE07joAb/6aKYR07s9e+Ppr9F+3\nzpGalyd1rPssOXrUbBPF+Zxzmg5VCqigSt/P565CSEqTOgYh7kUQBPSY+CnGb0/CFa+KaL5wEWbu\n2SMarK5x90aeyYQfzp2DzeFYInUWT0UFVco45xa5DN+u/AH0DouQYvAOCMZ/vtwje+XLvVh7NZHX\nnzsP3509K/mySetPn+ZKmWw35/yGpEE8GBVUGdAbMWfeV7AZaY4PIcUW2eBJjP85QdZm7AeYsH0H\nb7dkiXgyTZqhCc45Fh4+bCiwWOZIEqCcoIIqA5zzi4zh4IofQKvzEVJCT704EhP33WLK5s+wrqtW\n4T/ffee4qSvby7z7k5KQbzZnA9hfpg9czlBBlZF8Pd557wsYaWUJQkpOLpfjhXeXs7Gbr+APUYnG\n8+fj0/37RUsZ/YB9fviwQW+xfMSlHmf0cFRQZYRzfthixeUNNBmVEKfxCwnHyLVHZP0+24RFp87x\nBvPm8W2XLpXq9amUvDz8mpAgcGBtqT0IAUAFVabydZj2zgLo6T0XIc5Vs2UnvLE7VdZoyCQ24qdN\n/NkVK8SLmZml8lgf//abmQGfc87L13bBEqCCKlvbb2Xj1g4atSakVMS8+iYm7r3BTNHNWPtlyzB2\nyxZHrtHotONfz8/HxrNnudlu/9BpByUPRQVVhjjnvMCAqdMXgnbcJKSUKNUaDPj4WzZqwyn8kmdC\n/XnzsOToUW53wrYen+zfb2GMLeWc33JCVPIvqKDK3oYL8TAeOSV1DEI8W4Womhiz8ZSs1/ur8cGh\nI7zJggV8X3x8sY+XUVCAdadOiSabbbYTY5J/QAVVxjjndpMZ7727iM6iCCkL9Tr2wRt7MoSqzw1n\nAzds4M+tXu1IyM5+7OPMPXDAIjC2knPumXvWuyAqKAmIIlb8dhz8YvHfzBFCHoMgCIj97yy8sTuN\npYdUZ62+WIy3d+506CyWR/r7N3U6rP7zT2602d4v5ajkLlRQEuCcGx0OfDDhQ9oripCypPb2xZBF\n24Rhqw/i+9SbqDd3Ltb8+ScX/2Vbj3kHD1plgrCGc55eRlEJqKAkY7Xh0/3Hod9zWOokhJQ/YbUb\nYezmS7JOkxdi6t59/MnPPxePpqQ88GvTCwqw6sQJh8FqnVnGMcs9KiiJcM7NBhP+b/h0GGh1CUKk\n0azHYLy5L1MI6vCC8NzatRi0fr0jLT//nq95Z9cuEzhfxDm/LlHMcosKSlo/ZeXi3JINcP1tQwnx\nUIIgoNek+Rj/cwIuqANZs4UL8b+9e0Wj1YpT6enYdvmy1WS3vyd1zvKI0VJS0mKM1ffxwtGkX6AJ\n9Jc6DSmpuHFAsvZVR59pi2VSZyHFk3TqEH6YPNAh6nJl/mq1LSEn578i57TnkwToDEpinPOznGPd\n1M/waNOJCCGlqkqjVpiwPVEW1fF5pBQUWDiwSupM5RUVlAvQG/HWqp9gu3BN6iSEEACwmgy4tH+7\n0Wa3d+ec05tHiVBBuQDOeZbdjmkjZsBAI66ESG/vl7NtDptlF+f8N6mzlGdUUC7CZseiUxeRvXWf\n1EkIKd+yUq7h0DcLbBaDbozUWco7KigXwTm36Y0YPnIGDBar1GkIKZ9EUcS3bw82iA7HO5xzafaT\nJ0WooFwI53yn3ogDb88DVRQhEji8fpF4K+nyVYfdOk/qLIQKyuUU6DH4i3Uw/v6H1EkIKV+yUq5h\n58JpZotB9yLnvOR7c5ASo4JyMZzzTKMZg14cD2O+Tuo0hJQPoihi/ZSXDKLDPo1zflXqPKQQFZQL\n4pxvM5iwceQMmKTOQkh5cGjdQkdW8pUrDhsN7bkSKigXpTdi9NZ9yNm4Q+okhHi2rJSr2LXoHcvt\noT1adsyFUEG5KM65QW9En6FTYUqj7dEIKRWiw4F1kwYZRId9KuecbpV3MVRQLoxzfsxmxyf9X4fx\nX7arIYQUw56ls2zZqdcuOGzWz6TOQu5HBeXizBa8e+oSEuavBc0qIsSJrhzahf1r5uotBl0vGtpz\nTVRQLo5zbtcZ0GfKXFhorT5CnCPvRiq+eWuAyWY2Psc5z5A6D3kwKig3wDm/arNhQu8xMBiMUqch\nxL3ZbVZ8Nba3wWGzzKK19lwbFZSbsDuwNOMWtsSNo+tRhJTEtjmvW3LTkw7brZYPpM5C/hkVlJvg\nnHO9EUMO/ImLkz+lpZAIKY7TOzfwP7euzaUp5e6BCsqNcM4tOgO6LPoGuV/9BNqYg5DHkJl4CT/M\nHGG2mgxdOee5Uuch/44Kys1wzm8ZTOg46l0YDv4pdRpC3IM+JxNfjnzWaLdaxnDOT0qdhzwaKig3\nxDk/bzTjxW4jYUqiDQEI+UdWkxHLR8YazLq8BQ67bYXUecijo4JyU5zz7SYz3u70CgwFeqnTEOKa\nRIcDX0980ZiTnrTNZjZNljoPeTxUUG7MasO8m9nY2Oc1GB10Gy8h9+CcY9MHr1mSTx8+bTXqX+Kc\n03VbN0MF5cZuz+wbfuwMzrz+ISxS5yHElfy++hP7qe3rrlsMui6cc5r56oaooNwc59ymM6Dbl98h\n69NVtBwSIUDhdPI9S2blW436GM55vtR5SPFQQXkAznmOwYTW78xH1tyvqKRI+Xbt6B58/+5wg81s\n7MA5vy51HlJ8VFAegnOebDDhyWmfUUmR8uva0T1YPf55g81s7Mo5PyN1HlIyVFAehEqKlGd3lVMX\nzvl+qfOQkqOC8jBUUqQ8onLyTFRQHujukpq3mkqKeDYqJ89FBeWh7pTU1HlUUsRzUTl5NiooD0Yl\nRTzZ5YM7qJw8HBWUh7u7pD78Ena6l554gmPffyl+PbFvgc1sfIbKyXNRQZUDt0uq+awvkDJiOix2\nu9SJCCkezjl2Lpxm2/bpxJs2s6kZ5/yw1JlI6aGCKic456l6I5qs/xnHY4fDqDdInYiQx2O3WbF+\n8kvmQ+sXXbaaDI0451elzkRKFxVUOcI5z9cZ0P7oafzQPA6G9EypExHyaMy6fCwb/ozx8sHt+61G\n/ZOcc/rXWw5QQZUznHOb3ojBSen4sGFvGE+clzoRIf8s70YqFgx80njjyplvbi/8apQ6EykbVFDl\nEOecm8z8vaxcDG43CMZvttL28cQ1JZ06hPn9mxsLMtNmWk2G4Zxzmo1ajlBBlWOc8++NZjw1/B1k\nTvwYVtpTirgKzjl+X/2pY8WoLjpTfk6czWL+kPZzKn+ooMo5zvkZgwn1lnyLU53/A2O+TupEpLwz\n6/Kxetxzxr1L379iM5vqc85/ljoTkQYVFAHnPEtnQJtjZ7C2VhcY9x+XOhEprzKunMHcuEbGhOO/\nr7MYdY0558lSZyLSoYIiAO5sfMhH3MxGv9hhyH/zY1ittAcpKUMnNn/FvxjSzlhwK32Yxaj7D+ec\ndoku56igyD0451uMZkQv+Rb7G/aG4cI1qRMRT2fWF2DDtFfMmz8cd91mNrbgoviN1JmIa6CCIvfh\nnGcWGPDMtRRMaB4H42dr4BBFqVMRT3Tt6B7M6fWE8fyvm76zmgx1Oed04wMpQgVFHohzzm12vtRo\nRqNpn+Fi+5fpxl7iPBaDDt+/O9y8evzz2YbcW30sBt1LnHOaokPuQQVF/hHn/KrOgMbHzmJu7a4w\nfbdT6kTE3V07uhcf93rCeGb3dz/YzMbqnHP6V0UeiAqK/CvOud1k5tN0BsQMmYK0fhNgupUjdSri\nbixGPX54b6R59fg+2YaczBcsBt1Aznm+1LmI66KCIo+Mc37MYEStrfvwVbVnYJq7CqLNJnUq4uo4\n57j421bM6fWE4czOjT/azMYanPPtUuciro8KijwWzrlBb+T/pzei2buLcKjGszBs/13qVMRVZaVc\nxfKRzxrWvz34uj77Zh+zoWAA5zxP6lzEPVBBkWLhnF/I16NdSgb6vjge6R2GwHApQepUxFVYDDps\nnzfJOr9vM2PSqUPvWY366pzzXVLnIu6FCooUGy+0TW9E1YN/YkaT52H47yxY8gqkTkak4rDbcfT7\nZfyDLtVMR79b9pPNYqppt1o+5JzTbd/ksVFBkRLjnFstVj7HZEa1r37ChqiOMH2xHpwWny0/OOe4\nfHAHPu1Tz7B93uQ/zfr8tmZDQV/OebrU2Yj7ooIiTsM5zyzQ88EFerSe9An+rNUVhu93AVRUnotz\njou/b8NnLzbWr3trYHLO9YTBFkNBc875CamzEfdHBUWcjnN+skCP5vEpGDT0bVyI6gjD0g3gFhrk\n8Ricc5z/dRM+7VNf/+3bgxNvxl94xWLUVeOc/0DbYhBnoYIipeL29amf8vWol3YT3d+ag4OV2sL0\nwTI4aEsP9yWKIs7t+QGfPFdXv/GdV69lJV8ZbDHoanDOv+Oc04JYxKmooEipul1U+3ILeNu8ArSa\nvRRbw56GeeJHsN64JXU68qhsFjP+3LoGc3rW1n83Y/il7JRrAywGXTTn/EcqJlJa5FIHIOUH5/wU\ngN6MsaqLv8WURd9gYL+uYFNGQF0jSup05EFyrifgyMbF1mPfLxeZTPanWZf3PoDtNIxHygIVFClz\nnPNEAMMYY2+v24bx63/GmDZNgZF94d0tBlAppU5YvokOB64c2on9a+bpU84eYYwJK21m43zO+VWp\ns5HyhQqKSIZznglgMmPs/d2H8OIf5zDKZkPdvl2AV5+HulVjgDGpU5YfuuybOLH5K8fBr+eb7VbL\ndbM+/wMA33LOTVJnI+UTFRSRHOdcD2AFgBWMscg1m/HSxp0Y6aVBwLA4qAf3goyGAEuHIS8b5/f+\nhBObVhWkXT6llCtUmyyGgk84539InY0QRkPJxBUxxhiAploNhnKOgTWjwEf0hU+/LmCB/lKne7i4\ncUCy9lVHn2mLZVJneRiTLg/n927Cic1f6VLP/aFUqDV7zLq8FSi8tmSUOh8hd1BBEZfHGFMA6Ozn\ng5FmCzo1rw9rr47w6dwKrH60aw0DumpBFdxKx9Ujv+Dktq91SacOKRUqzX6zLm85gK23z2AJcTk0\nxEdcHufcBmAbgG2MMd8DJ9Dp1EV0n7kIXQQGv06tIHaPgdczrYDwEKnTugaLQYeEE7/jyqFd1kv7\nt1n02TdlCpVmv0mXtxbAZrvFTCsmEpdHBUXcCue8AMAPtz/AGKvy/S48s+cInjNb0K5iIMTuMVDF\ntoUypgXg4yVt3rJis5iRfukkrh75xXFh32ZDZvwFtVLrfdasL/iRi45dAP60Wcy06BRxK1RQxK1x\nzh8WMdAAAAIaSURBVJMALAOwjDEmpGSg8ZJv0Xn9z+ijN6JBjUiYmtWDsmldaOpHA/WjgeAAiUOX\nkM1ixo2rZ5F28U+knDliSjlzxJabkaJVarxSHFbLVpvF9DOAA8b8HIPUWQkpCSoo4jFur2hw4vbH\nbMaY9kI8mlyIR/0ff0ELhRzN9EbU0Koh1q0BW4sG0DaqDUX9aOCJ6oBaJfE38Dc2swk56YnITUtC\n9vUEpF04YUw+fdiedyNFq9R4p4Lzo2Z9/n4Ufr9nTAW5NB2ceBQqKOKxbs9IO3D74wugcHag1YbI\ngydR//ApNPDzwVMiRwODEWEhwTBVDoEYVhFC5RCowkKgrBgIhAQBFYP++rWkReaw2WDS5cJUkAuT\nLh+mglzoc24i53oiz0y8aMxKvmbPu5GisBp1SoXGK1MmUyTbbZaLVqP+OP4qI3MJnx5CXB7N4iME\nAGNMBaAmgDAAFQGEqJQI06oRKQgIF0VUtNoQaLLAV6mAI8AXFn9fiHIZIJcDChkgkwFXEqG1yCoK\nQZE19KLDAS46uMNug1mXL5j1BTKrSa8U7XaZTKkyyuQKgyCT5TMm5HIuZlgMBWdFhyMBwJ2PdFrn\njpRnVFCEPIbb92f5o7DEAlA4CiG7/ascQDgANQoLRgTgAGADkA8g9/aHntayI+TfUUERQghxSbTd\nBiGEEJdEBUUIIcQlUUERQghxSVRQhBBCXBIVFCGEEJf0/+EwqnqnfhWSAAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The Pie chart is plotted in the figure\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy\n", "## Example 1.8\n", "print('Example 1.8\\n\\n');\n", "print('Page No. 16\\n\\n');\n", "## given\n", "\n", "qunty= numpy.array([40, 10000, 400 ,90000])\n", "unit_price= numpy.array([29 ,0.33, 0.18, 0.025])\n", "cost= (unit_price * qunty)## in Pound\n", "common_basis= ([310, 492 ,11.7 ,90])## in 10^6 Wh\n", "per_unit_cost= (unit_price * qunty) / common_basis## Pound per 10^6 Wh\n", "p= 150;## production in tonnes\n", "EI= sum(common_basis)*10**6/150.\n", "CI= sum(unit_price * qunty)/150.\n", "print'%s %.2f %s'%('energy index is ',EI,' Wh per tonne \\n')\n", "print'%s %.2f %s'%('cost index is ',CI,' Wh per tonne \\n')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.8\n", "\n", "\n", "Page No. 16\n", "\n", "\n", "energy index is 6024666.67 Wh per tonne \n", "\n", "cost index is 45.21 Wh per tonne \n", "\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "%matplotlib inline\n", "## Example 1.9\n", "import numpy \n", "import matplotlib.pyplot as plt\n", "print('Example 1.9\\n\\n');\n", "print('Page No. 17\\n\\n');\n", "##given\n", "\n", "p= numpy.array([50, 55, 65, 50, 95, 90, 85, 80, 60, 90, 70, 110, 60, 105]);## weakly production in tonnes\n", "s= numpy.array([0.4, 0.35, 0.45, .31, 0.51,0.55, 0.45, 0.5, 0.4, 0.51, 0.4, 0.6, 0.45, 0.55]);## weakly steam consumption in 10^6 kg\n", "plt.plot(p,s,'r*');\n", "\n", "plt.show()\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.9\n", "\n", "\n", "Page No. 17\n", "\n", "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFDRJREFUeJzt3H+s3fV93/Hna3aZBkGNTLZko55IMrLhuw5BErdrhna3\nImxPbsnwJvDY2i0aoCg0rbA2bEtT7KlyBGpQpkWubltyVdVpmYIvlEghOGy7sbWtBTckQGMnl2XW\nrsGhEObMTbBm4vf+OMfuye31PfdeX98f5/N8SFec7/f7+Xy/n/f9mtf9nu/3c06qCklSO/7CUg9A\nkrS4DH5JaozBL0mNMfglqTEGvyQ1xuCXpMb0Df4kG5McTTKR5P4LtBlO8lySF5OMz6WvJGlxZaZ5\n/ElWAd8EbgZeBp4FtlbVkZ42bwf+G7Chqo4neUdVvT6bvpKkxdfvin898FJVHauqM8AjwK1T2vwz\nYH9VHQeoqtfn0FeStMj6Bf/VwGTP8vHuul7XAmuS/Nckh5P8izn0lSQtstV9ts/m+xx+DLgR+Fng\ncuB/JPmDWfaVJC2yfsH/MrC2Z3ktnSv3XpPA61X1JvBmkoPA9d12/fqSxD8QkjQPVZX59Ot3q+cw\ncG2Sa5JcBtwOPDGlze8Dfy/JqiSXAz8FfGOWfc8NfmB/PvGJTyz5GKzP+lqrbZDre/Lzn+dXrrxy\nPnl/3ozBX1VvAfcCT3XD/D9V1ZEk9yS5p9vmKPAl4HngD4HfrKpvXKjvRY1Wkho3OTHBxtHRi9pH\nv1s9VNWTwJNT1o1MWf414Ndm01eSNH937dhx0fvwk7uX2PDw8FIP4ZKyvpVrkGuDwa/vYsz4Aa5F\nGUBSSz0GSVppklCX6OGuJGnAGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8\nktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9J\njTH4JakxBr8kNcbgl6TGGPyS1Ji+wZ9kY5KjSSaS3D/N9uEk30vyXPfn3/VsO5bk+e76ZxZ68JKk\nuVs908Ykq4DPADcDLwPPJnmiqo5MafqVqvr5aXZRwHBVvbEgo5UkXbR+V/zrgZeq6lhVnQEeAW6d\npl1m2MdM2yQtgariwe3bqaqlHspAWGm/z37BfzUw2bN8vLuuVwE/k+TrSb6YZN2UbU8nOZzkrosf\nrqSF8NT+/ZzYu5cDY2NLPZSBsNJ+n/2CfzZ/vr4KrK2q64H/CDzes+1DVXUDsAn4WJKb5jdMSQth\n38gIm4eGOLRzJw+dOsXBHTvYPDTEvpGRpR7airRSf58z3uOnc19/bc/yWjpX/edV1ame108m2Ztk\nTVW9UVUnuutfS/IYnVtHh6YeZNeuXedfDw8PMzw8PMcyJM3GnXffzVVr1nBw2zYCnD19mnv37GHD\nli1LPbQVaTF/n+Pj44yPjy/IvvoF/2Hg2iTXAK8AtwNbexskeSfwJ1VVSdYDqao3klwOrKqqU0mu\nAG4Bdk93kN7gl3TpJCEJp0+e5L516zg7OXl+neZuMX+fUy+Kd++eNk5nZcbgr6q3ktwLPAWsAh6u\nqiNJ7uluHwH+CfDRJG8BPwDu6HZ/FzDW/QWsBj5XVQfmPVJJC2JyYoKNo6PcctttHBgbY3JiYqmH\ntKKtxN9nlvopdJJa6jFI0kqThKqa11sLP7krSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1Jj\nDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbg\nl6TGGPyS1BiDX5IaY/BLUmMMfqlBVcWD27dTVQN5PM3M4Jca9NT+/ZzYu5cDY2MDeTzNzOCXGrJv\nZITNQ0Mc2rmTh06d4uCOHWweGmLfyMhAHE+zs3qpByBp8dx5991ctWYNB7dtI8DZ06e5d88eNmzZ\nMhDH0+x4xS81JAlJOH3yJPetW8ebJ0+eXzcIx9PseMUvNWZyYoKNo6PcctttHBgbY3JiYqCOp/7S\n7yl7ko3Ap4FVwG9V1QNTtg8Dvw98u7tqf1X96mz6dtuUT/olaW6SUFXzeus0462eJKuAzwAbgXXA\n1iTXTdP0K1V1Q/fnV+fYV1qWnIKoQdXvHv964KWqOlZVZ4BHgFunaTfdX53Z9pWWJacgalD1C/6r\ngcme5ePddb0K+JkkX0/yxSTr5tBXWnacgqhB1+/h7mze434VWFtVP0iyCXgceN9cBrFr167zr4eH\nhxkeHp5Ld2lBOQVRy9H4+Djj4+MLsq9+wf8ysLZneS2dK/fzqupUz+snk+xNsqbbbsa+5/QGv7TU\npk5BPDs56RRELbmpF8W7d++e97763eo5DFyb5JoklwG3A0/0NkjyznT/j0iyns5MoTdm01dars5N\nQfzUiy+yaXTUKYgaKLOZzrmJP5uS+XBVfTLJPQBVNZLkY8BHgbeAHwD3VdUfXKjvNPt3OqckzdHF\nTOfsG/yXmsEvSXN3yebxS5IGj8EvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozB\nL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS\n1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDWmb/An2ZjkaJKJJPfP0O6DSd5KsqVn3bEkzyd5\nLskzCzVoSdL8zRj8SVYBnwE2AuuArUmuu0C7B4AvTdlUwHBV3VBV6xdmyCtHVfHg9u1U1UAeTwvL\n86fF0u+Kfz3wUlUdq6ozwCPArdO0+yXgUeC1abbl4oa4cj21fz8n9u7lwNjYQB5PC8vzp8XSL/iv\nBiZ7lo93152X5Go6fwx+vbuq93KlgKeTHE5y10WOdcXYNzLC5qEhDu3cyUOnTnFwxw42Dw2xb2Rk\nII6nheX502Jb3Wf7bN5zfhrYXlWVJPzoFf6HqupEkr8MfDnJ0ao6NHUHu3btOv96eHiY4eHhWRx2\n+brz7ru5as0aDm7bRoCzp09z7549bNiypW/flXA8LSzPn2ZjfHyc8fHxBdlXv+B/GVjbs7yWzlV/\nr/cDj3Qyn3cAm5KcqaonquoEQFW9luQxOreOZgz+QZCEJJw+eZL71q3j7OTk+XWDcDwtLM+fZmPq\nRfHu3bvnva9+t3oOA9cmuSbJZcDtwBO9DarqPVX17qp6N537/B+tqieSXJ7kSoAkVwC3AC/Me6Qr\nzOTEBBtHR/nUiy+yaXSUyYmJgTqeFpbnT4sp/WYQJNlE53bOKuDhqvpkknsAqmpkSttR4AtVNZbk\nPcC5p1Srgc9V1Sen2X85i0GS5iYJVTWvt4V9g/9SM/glae4uJvj95K4kNcbgl6TGGPyS1BiDX5Ia\nY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEG\nvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia0zf4\nk2xMcjTJRJL7Z2j3wSRvJdky176SpMUzY/AnWQV8BtgIrAO2JrnuAu0eAL40174AVTXf8S9rVcWD\n27dbn6Rlpd8V/3rgpao6VlVngEeAW6dp90vAo8Br8+jLgbGxOQ98JXhq/35O7N1rfZKWlX7BfzUw\n2bN8vLvuvCRX0wn0X++uOnf517fvOQd37GDz0BD7RkZmOezlbd/ICJuHhji0cycPnTplfZKWldV9\nts/mPfynge1VVUkCZA59AfjKq69yzYYNTLzyCuPj4wwPD8+267J05913c9WaNRzcto0AZ0+f5t49\ne9iwZUvfvivBoNcnLUfj4+OMj48vyL76Bf/LwNqe5bV0rtx7vR94pJP5vAPYlOTMLPsC8IEqNt1+\n+8AERxKScPrkSe5bt46zk5Pn1w2CQa9PWo6Gh4d/5KJ49+7d895Xv+A/DFyb5BrgFeB2YGtvg6p6\nz7nXSUaBL1TVE0lW9+t7zqbRUSYnJuZXwTI1OTHBxtFRbrntNg6MjVmfpGUj/WZkJNlE53bOKuDh\nqvpkknsAqmpkSttzwT92ob7T7L+cFSJJc5OEqprX2+y+wX+pGfySNHcXE/x+cleSGmPwS1JjDH5J\naozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TG\nGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozB\nL0mN6Rv8STYmOZpkIsn902y/NcnXkzyX5I+S/MOebceSPN/d9sxCD16SNHepqgtvTFYB3wRuBl4G\nngW2VtWRnjZXVNX3u69/Enisqv5Gd/l/Ae+vqjdmOEbNNAZJ0p+XhKrKfPr2u+JfD7xUVceq6gzw\nCHBrb4Nzod/1NuD1qeObz8Auhariwe3b8Q+NpJb1C/6rgcme5ePddT8iyYeTHAGeBD7es6mAp5Mc\nTnLXxQ72Yj21fz8n9u7lwNjYUg9FkpZMv+Cf1aVxVT1eVdcBPwf8Ts+mD1XVDcAm4GNJbprfMC/O\nvpERNg8NcWjnTh46dYqDO3aweWiIfSMjSzEcSVpSq/tsfxlY27O8ls5V/7Sq6lCS1UmuqqrvVtWJ\n7vrXkjxG59bRoan9du3adf718PAww8PDsy5gNu68+26uWrOGg9u2EeDs6dPcu2cPG7ZsWdDjSNKl\nMj4+zvj4+ILsq9/D3dV0Hu7+LPAK8Ax//uHue4FvV1UluRH4fFW9N8nlwKqqOpXkCuAAsLuqDkw5\nxqI83P3So4/y1Ec+Qtau5ezkJJtGRw1+SSvWxTzcnfGKv6reSnIv8BSwCni4qo4kuae7fQTYAvxC\nkjPAnwJ3dLu/CxhLcu44n5sa+otpcmKCjaOj3HLbbRwYG2NyYmKphiJJS2rGK/5FGYDTOSVpzi7l\ndE5J0oAx+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY\n/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IasyyCv6qWegiS1Ixl\nEfwHxsaWegiS1IxlEfwHd+xg89AQ+0ZGlnookjTwVi/1AADOnj7NvXv2sGHLlqUeiiQNvGVxxf/m\nyZMkIclSD0WSBt6yCP5No6NMTkws9TAkqQnpN6MmyUbg08Aq4Leq6oEp228F/j1wtvvzb6rqv8ym\nb7dNOatHkuYmCVU1r9skM17xJ1kFfAbYCKwDtia5bkqzp6vq+qq6AfiXwG/Moe/AGx8fX+ohXFLW\nt3INcm0w+PVdjH63etYDL1XVsao6AzwC3NrboKq+37P4NuD12fZtwaD/47O+lWuQa4PBr+9i9Av+\nq4HJnuXj3XU/IsmHkxwBngQ+Ppe+kqTF1S/4Z3Xzvaoer6rrgJ8DfidOz5GkZWvGh7tJfhrYVVUb\nu8s7gLPTPaTt6fM/6dzmuXY2fZP4ZFeS5mG+D3f7fYDrMHBtkmuAV4Dbga29DZK8F/h2VVWSG7uD\n+W6S7/XrezEDlyTNz4zBX1VvJbkXeIrOlMyHq+pIknu620eALcAvJDkD/Clwx0x9L10pkqTZ6DuP\nX5I0WBb9k7tJjiV5PslzSZ7prluT5MtJvpXkQJK3L/a4FkKStyd5NMmRJN9I8lMDVNvf7J6zcz/f\nS/LxQakPOs+hkvxxkheS/G6Svzhg9f1yt7YXk/xyd92KrS/JZ5O8muSFnnUXrKd7fieSHE1yy9KM\nenYuUNs/7f77/OG52+o92+ZU21J8ZUMBw1V1Q1Wt767bDny5qt4H/Ofu8kr0H4Avdmc4/R3gKANS\nW1V9s3vObgDeD/wAeIwBqa/7LOou4Maq+kk6tyfvYHDq+9vAvwY+CFwPbO4+n1vJ9Y3S+YBor2nr\nSbKOznPGdd0+e5Msi6+suYDpansB+MfAwd6V86ltqQqf+kD354Hf7r7+beDDizuci5fkx4Gbquqz\n0HnGUVXfYwBqm8bNdD6cN8ng1Pd/gTPA5UlWA5fTmZQwKPX9LeAPq+p0Vf0Q+Aqd53Mrtr6qOgT8\nnymrL1TPrcDvVdWZqjoGvERn9uGyNF1tVXW0qr41TfM517ZUV/xPJzmc5K7uundW1avd168C71yC\ncV2sdwOvJRlN8tUkv5nkCgajtqnuAH6v+3og6quqN4BPAf+bTuCfrKovMyD1AS8CN3VvhVwO/CPg\nJxic+s65UD1/jc6HSM8ZpA+Uzrm2pQj+D3VvF2wCPpbkpt6N3W9sW4lPnFcDNwJ7q+pG4PtMedu8\ngms7L8lldD6o9/mp21Zyfd3bHr8CXEPnf6S3JfnnvW1Wcn1VdRR4ADhA5xP2XwN+OKXNiq1vOrOo\nZ2BqncaMtS168FfVie5/X6Nzj3g98GqSdwEk+avAnyz2uBbAceB4VT3bXX6Uzh+C7wxAbb02AX/U\nPX8wGOcO4APAf6+q71bVW8AY8HcZoPNXVZ+tqg9U1d+ncxvhWwzO+TvnQvW8DKztafcT3XWDYM61\nLWrwJ7k8yZXd11cAt9B5YPEE8IvdZr8IPL6Y41oIVfUdYDLJ+7qrbgb+GPgCK7y2KbbyZ7d5YADO\nXddR4KeT/KXuV47cDHyDATp/Sf5K979/HbgN+F0G5/ydc6F6ngDuSHJZknfT+WaBZ5ZgfAul9znp\n3GurqkX7oXMf/GvdnxeBHd31a4Cn6VyBHADevpjjWsD6rgeeBb5O54rxxweltm59V9D59tUre9YN\nUn3/ls4f6xfoPBj8sQGr72C3vq8B/2Clnz86FyCvAP+PzhdC/quZ6gF20nnweRTYsNTjn2NtH6Hz\noHoSeBP4DvDkfGvzA1yS1JjlPI9VknQJGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXm\n/wPRgIHGOg590wAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "## Example 1.10\n", "print('Example 1.10\\n\\n');\n", "print('Page No. 19\\n\\n');\n", "## given\n", "import numpy\n", "##Monthly Energy Usage\n", "qunty = numpy.array([15*10**3, 4*10**3 ,90*10**3])\n", "cost = numpy.array([4950 ,720 , 2250])## in Pound\n", "common_basis1 = numpy.array([738 ,117 ,90])## in 10**6 Wh\n", "common_basis= numpy.array([2655 ,421 ,324])## converted into 10**9 Joules\n", "unit_cost = cost/common_basis1## in Pound per 10**6 Wh\n", "p= 80;## production in tonnes\n", "EI = ((sum(common_basis))/p)*10**9;\n", "CI = sum(cost)/80.;\n", "print'%s %.2e %s'%('Monthly energy index is ',EI,' J per tonne \\n')\n", "print'%s %.2f %s'%('Monthly cost index is ',CI,' Pound per tonne \\n\\n')##Deviation in answer is due to calculation error for sum of cost in the book\n", "\n", "## Boiler House Energy Audit\n", "qunty_b = ([15000 ,10000])\n", "Com_basis_b_1 = ([2655 ,36])## in 10**9 J\n", "Com_basis_b = ([738, 10])## in 10**6 Wh\n", "Cost_b = ([4950, 250])## in Pound\n", "b_output = 571.*10**6;## in Wh\n", "EI_b = (b_output/(sum(Com_basis_b)*10**6));\n", "CI_b = (sum(Cost_b)/b_output)*10**3;## Pound converted into p\n", "print'%s %.2f %s'%('Energy index for boiler is ',EI_b,' \\n')\n", "print'%s %.2e %s'%('Cost index for boiler is ',CI_b,' p per Wh\\n \\n')\n", "\n", "##Power House Energy Audit\n", "P_gen = 200.*10**6;## Power generated in Wh\n", "Com_basis_p_1 = ([14.4 ,2055 ,-1000])## in 10**9 J\n", "Com_basis_p = ([4.0, 571, -278])## in 10**6 Wh\n", "Cost_p = ([100 ,5196 ,-2530])## in Pound\n", "CI_p = (sum(Cost_p)/P_gen)*10**3;## Pound converted into p\n", "print'%s %.2e %s'%('Cost index for power house is ',CI_p,' p per Wh\\n\\n')##Deviation in answer is due to wrong calculation in the book\n", "\n", "##Space Heating Energy Audit\n", "deg_days = 260.;## Number of degree-days\n", "Com_basis_s_1 = ([36 ,100 ,105])## in 10**9 J\n", "Com_basis_s = ([10.0 ,27.8 ,29.2])## in 10**6 Wh\n", "Cost_s = ([250 ,253 ,179])## in Pound\n", "EI_s = ((sum(Com_basis_s)*10**6)/deg_days)\n", "CI_s = (sum(Cost_s)/deg_days)\n", "print'%s %.2e %s'%('Energy index for space heating is ',EI_s,' Wh per degree-day\\n')\n", "print'%s %.2f %s'%('Cost index for space heating is ',CI_s,' Pound per degree-day\\n\\n')\n", "\n", "##Process Energy Audit\n", "T_pdt_output = 100.;## in tonne\n", "Com_basis_pr_1 = ([216 ,720 ,810 ,316])## in 10**9 J\n", "Com_basis_pr = ([60, 200 ,225 ,88])## in 10**6 Wh\n", "Cost_pr = ([1500 ,2766 ,2047 ,540])## in Pound\n", "EI_pr = ((sum(Com_basis_pr)*10**6)/T_pdt_output);\n", "CI_pr = (sum(Cost_pr)/T_pdt_output);\n", "print'%s %.2e %s'%('Energy index for Process Energy Audit is ',EI_pr,' Wh per tonne \\n')\n", "print'%s %.2f %s'%('Cost index for Process Energy Audit is ',CI_pr,' Pound per tonne \\n')\n", "#igoner the warnings" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 1.10\n", "\n", "\n", "Page No. 19\n", "\n", "\n", "Monthly energy index is -9.50e+08 J per tonne \n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Monthly cost index is 99.00 Pound per tonne \n", "\n", "\n", "Energy index for boiler is 0.76 \n", "\n", "Cost index for boiler is 9.11e-03 p per Wh\n", " \n", "\n", "Cost index for power house is 1.38e-02 p per Wh\n", "\n", "\n", "Energy index for space heating is 2.58e+05 Wh per degree-day\n", "\n", "Cost index for space heating is 2.62 Pound per degree-day\n", "\n", "\n", "Energy index for Process Energy Audit is 5.73e+06 Wh per tonne \n", "\n", "Cost index for Process Energy Audit is 68.53 Pound per tonne \n", "\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "-c:14: RuntimeWarning: overflow encountered in long_scalars\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }