{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: Units and Dimensions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 2.1a" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I in SI system (Kg m^2) = 1.00\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#According to newton's second law for angular motion, torque equals \n", "#the product of the mass moment of inertia and angular acceleration \n", "#By means of dimensonal symbolism determine the units of I in SI units\n", "#initialisation of variables\n", "F= 1\t\t\t\t\t#N\n", "L= 1\t\t\t\t\t#m\n", "T= 1\t\t\t\t\t#s\n", "I= 1\t\t\t\t\t#N m s^2\n", "N= 1\t\t\t\t\t#Kg m s^-2\n", "#CALCULATIONS\n", "I= F*L*T*T \t\t\t\t#Kg m^2\n", "#RESULTS\n", "print '%s %.2f' % ('I in SI system (Kg m^2) = ',I)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 2.1b" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " I in British Gravitational System (slug ft^2) = 1.00\n" ] } ], "source": [ "#According to newton's second law for angular motion, torque equals \n", "#the product of the mass moment of inertia and angular acceleration \n", "#By means of dimensonal symbolism determine the units of I in British units\n", "#initialisation of variables\n", "F= 1\t\t\t\t\t#lbf\n", "L= 1\t\t\t\t\t#ft\n", "T= 1\t\t\t\t\t#s\n", "I= 1\t\t\t\t\t#lbf ft s^2\n", "lbf= 1\t\t\t\t\t#slug ft s^-2\n", "#CALCULATIONS\n", "I= F*L*T*T \t\t\t\t#slug ft^2\n", "#RESULTS\n", "print '%s %.2f' % (' I in British Gravitational System (slug ft^2) = ',I)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 2.2" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gc (lbm ft/poundal^2) = 1.00\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Determine the gravitational constant gc for the british absoulte system.\n", "#initialisation of variables\n", "F= 1 \t\t\t\t\t#Pouunda\n", "m= 1 \t\t\t\t\t#lbm\n", "g= 1 \t\t\t\t\t#fts^-2\n", "#CALCULATIONS\n", "gc= m*g/F \t\t\t\t#Gravitation in British Units\n", "#RESULTS\n", "print '%s %.2f' %('gc (lbm ft/poundal^2) = ',gc)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 2.3" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pa (poundal/ft^2) = 684016.87\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#If a mercury barometer shows a height of 76 cmHg, express the atmospheric\n", "#pressure in force units of the british absoulte system.\n", "#initialisation of variables\n", "h= 76. \t\t\t\t\t#cmhg\n", "g= 32.2 \t\t\t\t#ft/s^2\n", "h= 76.0 \t\t\t\t#cmHg\n", "Dhg= 847. \t\t\t\t#lbm/ft^3\n", "#CALCULATIONS\n", "Pa= Dhg*g*h*0.33\t\t#P in lbm/ft S^2\n", "Pa1= Pa/1. \t\t\t\t#P in poundal/ft^2\n", "#RESULTS\n", "print '%s %.2f' % ('Pa (poundal/ft^2) = ',Pa1)\n", "raw_input('press enter key to exit')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }