{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 14: Radiation Heat Transfer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 14.2" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wavelength at which the maximum monochromatic emissive power (m) = 7.44e-06\n", " \n", " Coffecient of performnance (W/m^3) = 1.14e+08\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#If a blackbody is maintained at 116C, determine (a) the wavelength at which \n", "#the maximum monochromatic emissive power occurs and (b) the maximum \n", "#monochromatic emissive power\n", "import math\n", "#initialisation of variables\n", "T= 116. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#C\n", "C1= 3.74*math.pow(10,-16)\n", "C2= 1.44*math.pow(10,-2)\n", "#CALCULATIONS\n", "WLmax= (2893*math.pow(10,-6))/(T+273) \t\t\t\t\t\t\t#Maximum Wavelength \n", "Wb= (C1*math.pow((WLmax),(-5)))/(math.exp(C2/2893*1000000.)-1)\t#Coffecient of performnance\n", "#RESULTS\n", "print '%s %.2e' % ('Wavelength at which the maximum monochromatic emissive power (m) = ',WLmax)\n", "print '%s %.2e' % (' \\n Coffecient of performnance (W/m^3) = ',Wb)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 14.3" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Emissive power for the blackbody (W/m^2) = 1305.19\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Determine the total emissive power for the black body of solved problem 2\n", "import math\n", "#initialisation of variables\n", "T= 389 \t\t\t\t\t\t#K\n", "s= 5.7*math.pow(10,-8) \t\t#K^4\n", "#CALCULATIONS\n", "Wb= s*T*T*T*T \t\t\t\t#Emissive power for the blackbody\n", "#RESULTS\n", "print '%s %.2f' % ('Emissive power for the blackbody (W/m^2) = ',Wb)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 14.4" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average absorptivity of the body at 100 F = 0.51\n", " \n", " Average absorptivity of the body at 2000 F= 0.84\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#A gray body at 100F receives radiant energy from a wall at 2000 F at a rate\n", "#of 3.2x 10^4. Simultaneously, the body emits energy at the rate of 140. What\n", "#is the average absorptivity of the body at (a) 100 F and (b) 2000 F\n", "import math\n", "#initialisation of variables\n", "T= 100 \t\t\t\t\t\t\t\t#F\n", "T1= 2000 \t\t\t\t\t\t\t#F\n", "W= 3.2*10000. \t\t\t\t\t\t#Btu/hr ft^2\n", "W1= 140. \t\t\t\t\t\t\t#Btu/hr ft^2\n", "s= 0.17*math.pow(10,-8) \t\t\t#Btu/hr ft^2 R^4\n", "#CALCULATIONS\n", "alpha= W/(s*math.pow((T1+460),4)) \t#Average absorptivity at 100\n", "b= W1/(s*math.pow((T+460),4)) \t\t#Average absorptivity at 2000\n", "#RESULTS\n", "print '%s %.2f' % ('Average absorptivity of the body at 100 F = ',alpha)\n", "print '%s %.2f' % (' \\n Average absorptivity of the body at 2000 F= ',b)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 14.5" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Heat loss from the conduit by radiation (Btu/hr per ft) = 1401.66\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#A red brick conduit 10 in square has a surface temperature of 300F and is \n", "#mounted inside a large earthen chamber whose walls are at 50 F. estimate\n", "#the heat loss from the conduit by radiation\n", "import math\n", "#initialisation of variables\n", "T= 300. \t\t\t\t\t\t\t\t\t\t\t\t#F\n", "T1= 50. \t\t\t\t\t\t\t\t\t\t\t\t#F\n", "s= 0.17*math.pow(10,-8) \t\t\t\t\t\t\t\t#Btu/hr ft^2 R^4\n", "e1= 0.93\n", "A= 10. \t\t\t\t\t\t\t\t\t\t\t\t\t#in\n", "F= 1.\n", "#CALCULATIONS\n", "A1= 10*(40./(12.*10.)) \t\t\t\t\t\t\t\t\t#Area\n", "q= A1*F*e1*s*(math.pow((T+460),4)-math.pow((T1+460),4)) #heat loss\n", "#RESULTS\n", "print '%s %.2f' % ('Heat loss from the conduit by radiation (Btu/hr per ft) = ',q)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 14.6" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Radiation heat transfer coefficient (Btu/hr ft^2 R) = 1.68\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Estimate the radiation heat transfer coefficient for solved problem 5\n", "import math\n", "#initialisation of variables\n", "T= 300. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#F\n", "T1= 50. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#F\n", "s= 0.17*math.pow(10,-8) \t\t\t\t\t\t\t\t\t\t#Btu/hr ft^2 R^4\n", "e1= 0.93\n", "F= 1.\n", "#CALCULATIONS\n", "hr= F*e1*s*(math.pow((T+460),4)-math.pow((T1+460),4))/(T-T1)\t#Radiation heat transfer coefficient \n", "#RESULTS\n", "print '%s %.2f' % ('Radiation heat transfer coefficient (Btu/hr ft^2 R) = ',hr)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 14.7" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Heat transfer coefficient for nucleate boiling (W/m^2 C) = 6.21e+08\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import math\n", "#initialisation of variables\n", "P= 1. #atm\n", "T= 11. #C\n", "Csf= 0.006\n", "Tsat = 170.03\n", "r= 1./3.\n", "s= 1.\n", "dt = Tsat - T\n", "cl= 4.218 #J/gm K\n", "hfg= 2257 #J/gm\n", "Pr= 1.75\n", "ul= 283.1/1000. #gm/m s\n", "s= 57.78/1000. #N/m\n", "pl= 958*1000. #gm/m^3\n", "pv= 598. #gm/m^3\n", "gc= 1000. #gm m/N s^2\n", "g= 9.8 #m/s^2\n", "#CALCULATIONS\n", "p= pl-pv\n", "q= ((math.pow(((cl*dt)/(hfg*Csf*math.pow(Pr,s))),(1/r)))*(ul*hfg))/math.pow(gc/(g*p),(1./2.))\n", "h= q/T\n", "#RESULTS\n", "print '%s %.2e' % ('Heat transfer coefficient for nucleate boiling (W/m^2 C) = ',h)\n", "raw_input('press enter key to exit')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }