{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11: Conduction Heat Transfer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.1" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Outside wall temperature (F) = 23.08\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#THe inside surface of a plane wall is exposed to air at 76 F and the outside \n", "#surface to air at 21 F. The inside surface conductance is 1.5., and the outside\n", "#is 6.5. If a thermocouple indicates that the inside wall temperature is 67 F\n", "#what is the outside wall temperature.?\n", "#initialisation of variables\n", "T= 76 \t\t\t\t\t#F\n", "T1= 21 \t\t\t\t\t#F\n", "Tw= 67 \t\t\t\t\t#W\n", "h= 1.5 \t\t\t\t\t#Btu/hr ft^2 F\n", "A= 1. \t\t\t\t\t#ft^2 \n", "h0= 6.5 \t\t\t\t#Btu/hr\n", "#CALCULATIONS\n", "q= h*A*(T-Tw)\t\t\t#Heat flow\n", "t= (q/(h0*A))+T1 \t\t#Outside wall temperature\n", "#results\n", "print '%s %.2f' % ('Outside wall temperature (F) = ',t)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thermal transmittance (Btu/hr ft^2 F) = 0.62\n", " \n", " Heat transfer rate (Btu/hr) = 31.25\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#The inside and outside surface conductances are 2.0 and 10.0 Btu/hr ft^2 F\n", "#respectively and the thermal conductivity of the wall is 0.5 units. Determine\n", "#(a)the thermal transmittance and (b) the hear transfer rate for 1 ft^2 of wall\n", "#surfaces\n", "#initialisation of variables\n", "hi= 2. \t\t\t\t\t\t\t\t\t#Btu/hr ft^2 F\n", "l= 6. \t\t\t\t\t\t\t\t\t#in\n", "k= 0.5 \t\t\t\t\t\t\t\t\t#Btu/hr ft F\n", "h0= 10. \t\t\t\t\t\t\t\t#Btu/hr ft^2 F\n", "ti= 70. \t\t\t\t\t\t\t\t#F\n", "t0= 20.\t\t\t\t\t\t\t\t\t#F\n", "A= 1. \t\t\t\t\t\t\t\t\t#ft^2\n", "#CALCULATIONS\n", "U= 1/((1/hi)+((l*0.5)/(6*k))+(1/h0))\t#Thermal transmittance \n", "q= U*A*(ti-t0)\t\t\t\t\t\t\t#Heat transfer rate\n", "#RESULTS\n", "print '%s %.2f' % ('Thermal transmittance (Btu/hr ft^2 F) = ',U)\n", "print '%s %.2f' % (' \\n Heat transfer rate (Btu/hr) = ',q)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.3" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Heat loss (Btu/hr) = 32.00\n", " \n", " Temperature at the interface of the steel and the insulation (F) = 299.98\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#A composite wall is made up of a 1/4 in. steel plate(k=31.4) and 3 in insulation\n", "#(k=0.04). If the outside of the steel surface is 300 F, and the outside of the \n", "#insulation is 100 F, determine (a) the heat loss and (b) the temperature at\n", "#the interface of the steel amd the insulation\n", "#initialisation of variables\n", "Ti= 300. \t\t\t\t\t\t\t#F\n", "T0= 100. \t\t\t\t\t\t\t#F\n", "l= 0.25 \t\t\t\t\t\t\t#in\n", "li= 3. \t\t\t\t\t\t\t\t#in\n", "A= 12. \t\t\t\t\t\t\t\t#in/ft\n", "ks= 31.4 \t\t\t\t\t\t\t#Btu/hr ft F\n", "ki= 0.04 \t\t\t\t\t\t\t#Btu/hr ft F\n", "#CALCULATIONS\n", "q= (Ti-T0)/((l/(A*ks))+(li/(A*ki))) #Heat loss\n", "t= Ti-((q*l/12.)/ks) \t\t\t\t#Temperature\n", "#RESULTS\n", "print '%s %.2f' % ('Heat loss (Btu/hr) = ',q)\n", "print '%s %.2f' % (' \\n Temperature at the interface of the steel and the insulation (F) = ',t)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.4" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Heat loss (W) = 347.46\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#A steel pipe (k=6.4) has an OD of 8.89 cm and an ID of 7.8 cm, and is covered\n", "#with 1.3 cm asbestos (k=0.19). The pipe transports a fluid at 149 C and has\n", "#an inner surface conductance of 227. Outside temp=27. Outside conductance=23\n", "#what os the heat loss of 1m of pipe?\n", "import math\n", "#initialisation of variables\n", "ti= 149. \t\t\t\t\t\t\t\t#C\n", "t0= 27. \t\t\t\t\t\t\t\t#C\n", "D0= 0.1149 \t\t\t\t\t\t\t\t#m\n", "l= 1. \t\t\t\t\t\t\t\t\t#m\n", "h0= 23. \t\t\t\t\t\t\t\t#W/m^2 C\n", "hi= 227. \t\t\t\t\t\t\t\t#W/m^2 C\n", "k= 0.19 \t\t\t\t\t\t\t\t#W/m C\n", "Di= 0.0889 \t\t\t\t\t\t\t\t#cm\n", "#CALCULATIONS\n", "D1= D0*100 \n", "D2= Di*100 \n", "R0=(1/(D0*math.pi*l*h0))\t\t\t\t#Resistance\n", "Rins=(math.log(D1/D2)/(2*math.pi*k*l))\t#Resistance\n", "Ri=1/(Di*math.pi*l*hi) \t\t\t\t\t#Resistance Inlet\n", "q= (ti-t0)/(R0+Rins+Ri) \t\t\t\t#Total heat\n", "#RESULTS\n", "print '%s %.2f' % ('Heat loss (W) = ',q)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.5" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Power consumption (W) = 970.90\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#The working chamber of an electrically heated furnace is a cube 0.2 m on each\n", "#side and the walls are 0.1 m thick. Interior wall temperatures are to be \n", "#maintained at 1100 c while the outside wall temperatures are at 150C. If the\n", "#thermal conductivity of the furnace material is 0.35, estimate the power consumption.\n", "import math\n", "#initialisation of variables\n", "l= 0.2 \t\t\t\t\t\t\t\t\t#m\n", "l1= 0.5\t\t\t\t\t\t\t\t \t#m\n", "k= 0.35 \t\t\t\t\t\t\t\t#W/m C\n", "t= 0.15 \t\t\t\t\t\t\t\t#m\n", "T1= 1100 \t\t\t\t\t\t\t\t#C\n", "T2= 150 \t\t\t\t\t\t\t\t#C\n", "#CALCULATIONS\n", "Ai= 6*l*l \t\t\t\t\t\t\t\t#Inner area\n", "Ao= 6*l1*l1 \t\t\t\t\t\t\t#outer area\n", "q= 0.73*k*math.sqrt(Ai*Ao)*(T1-T2)/t \t#Power consumption\n", "#RESULTS\n", "print '%s %.2f' % ('Power consumption (W) = ',q)\n", "raw_input('press enter key to exit')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 11.6" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "heat loss will increase if the insulation is added\n", "press enter key to exit\n" ] }, { "data": { "text/plain": [ "''" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#A copper tube, 0.6 cm OD, carries hot water between two tanks, the outside\n", "#surface conductance is 12. If it is important to minimize the heat loss\n", "#should the tube be covered with an insulation whose k=0.19\n", "#initialisation of variables\n", "h= 12 \t\t\t\t#W/m^2 C\n", "k= 0.19 \t\t\t#W/m C\n", "d= 0.6 \t\t\t\t#m\n", "#CALCULATIONS\n", "r= k/h \t\t\t\t#Critical radius\n", "d1=d/2. \t\t\t#Radius of tube\n", "if (r