{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5 : Electrical Measurements" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 : pg 81" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "required resistance is,(ohm)= 15000.0\n" ] } ], "source": [ "# Example 5.1 : resistance\n", "#calculate the resistance \n", "# given :\n", "n=50.;#number of turns\n", "B=1.;#magnetic field in tesla\n", "I=1.;#current in amperes\n", "L=4.;#length in cm\n", "d=3.;#dia in cm\n", "#calculations\n", "Td=n*B*I*L*d*10**-4;#torque in N-m\n", "cd1=2.4*10**-4;#controlling torque\n", "id=cd1/Td;#current in amperes\n", "fsv=100;#full scale voltage\n", "trv=fsv/id;#ohms\n", "adr=10000;#ohms\n", "r=trv-adr;#ohms\n", "#results\n", "print \"required resistance is,(ohm)=\",r\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 : pg 82" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total resistance of the voltmeter is,(ohm)= 49990.0\n" ] } ], "source": [ "# Example 5.2 : resistance\n", "#calculate the total resistance \n", "# given :\n", "fsf=20.;#full scale deflection current in mA\n", "v=200.;#voltage in mV\n", "#calculations\n", "ri=v/fsf;#resistance in ohms\n", "x=199.98;#current in amperes\n", "rsh=(v*10**-3)/x;#ohms\n", "fs2=1000;#volts\n", "trv=fs2/(fsf*10**-3);#ohms\n", "rse=trv-ri;#reqquired resistance in ohms\n", "#results\n", "print \"total resistance of the voltmeter is,(ohm)=\",rse\n", "#in the text book approximately value of resistance is taken as 50000 ohm\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 : pg 82" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "power factor is ,= 0.693\n", "part (b)\n", "power factor is ,= 0.327\n" ] } ], "source": [ "# Example 5.3 : power factor\n", "#calculate the power factor\n", "from math import sqrt, atan, cos\n", "# given :\n", "w1=2000.;#power in watts\n", "w2=500.;#power in watts\n", "#calculations and results\n", "an=atan(sqrt(3)*(((w1-w2)/(w1+w2))));#angle in radians\n", "print \"part (a)\"\n", "pf=cos(an);#power factor\n", "print \"power factor is ,=\",round(pf,3)\n", "print \"part (b)\"\n", "w1=2000.;#power in watts\n", "w2=-500.;#power in watts\n", "an=atan(sqrt(3)*(((w1-w2)/(w1+w2))));#angle in degree\n", "pf=cos(an);#power factor\n", "print \"power factor is ,=\",round(pf,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 : pg 83" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (i)\n", "indication of moving iron instrument is,(A)= 5.64\n", "part (ii)\n", "indication of moving coil instrument is,(A)= 3.18\n" ] } ], "source": [ "# Example 5.4;reading\n", "#calculate the reading of the instrument\n", "from math import sqrt, pi, sin\n", "from scipy import integrate\n", "import numpy\n", "print \"part (i)\"\n", "# given :\n", "vm=100.;#volts\n", "rc=10.;#ohms\n", "#calculations and results\n", "im=vm/rc;#amperes\n", "t= numpy.linspace(0,2*pi, num =3);#time rane\n", "#x=intsplin(t,(sin(t))**2);#variable\n", "x=2.0;\n", "Irms=sqrt((1/(2*pi))*im**2*x);#current in amperes\n", "print \"indication of moving iron instrument is,(A)=\",round(Irms,2)\n", "print \"part (ii)\"\n", "t1=0;#time interval\n", "t2=pi;#time inerval\n", "def function(t):\n", " return sin(t)\n", " \n", "x=integrate.quad(function,t1,t2)[0];#variable\n", "Iav=(1/pi)*x*(im/2);#current in amperes\n", "print \"indication of moving coil instrument is,(A)=\",round(Iav,2)\n", "#answer of part a is calculated wrong in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5 : pg 86" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current read by meter 1 is,(A)= 55.56\n", "current read by meter 2 is,(A)= 44.44\n" ] } ], "source": [ "# Example 5.5;reading\n", "#calculate the current reading\n", "# given :\n", "fsd=100.;#full scale division in amperes\n", "fsd1=100.;#full scale division in mA\n", "#calculations\n", "csh=fsd-(fsd*10**-3);#difference in currents in amperes\n", "rx=0.8;#resistance in ohms\n", "r1=((fsd1*10**-3*rx)/csh);#resistance in ohms\n", "rx1=1;#resistance in ohms\n", "r2=((fsd1*10**-3*rx1)/csh);#resistance in ohms\n", "em1=((rx*r1)/(rx+r1));#resistance in ohms\n", "em2=((rx1*r2)/(rx1+r2));#resistance in ohms\n", "crm1=((em2*10**4*fsd)/((em2*10**4)+(em1*10**4)));#current in amperes\n", "crm2=((em1*10**4*fsd)/((em1*10**4)+(em2*10**4)));#current in amperes\n", "#results\n", "print \"current read by meter 1 is,(A)=\",round(crm1,2)\n", "print \"current read by meter 2 is,(A)=\",round(crm2,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6 : pg 90" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "multiplier resistance Rs is,(Ohm)= 1825.0\n", "part (b)\n", "sensivity is,(Ohm/V)= 225.0\n" ] } ], "source": [ "# Example 5.6;\n", "#calculate the multiplier resistance and sensivity\n", "# given :\n", "rm=50.;#resistance in ohms\n", "rsh=rm;#shunt resistance in ohms\n", "it=2.;#current in mA\n", "erms=10.;#rms voltage in volts\n", "#calculations\n", "ede=0.45*erms;#voltage in volts\n", "rd1=400.;#resistance in ohms\n", "x=(rm*rsh)/(rm+rsh);#resistance in ohms\n", "r1=ede/(it*10**-3);#resistance in ohms\n", "rs=r1-x-rd1;#resistance in ohms\n", "S=r1/erms;#sensivity in ohms/V\n", "#results\n", "print \"part (a)\"\n", "print \"multiplier resistance Rs is,(Ohm)=\",rs\n", "print \"part (b)\"\n", "print \"sensivity is,(Ohm/V)=\",S\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7 : pg 91" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "apparent resistance of unknown resistor is,(kilo-Ohm)= 40.0\n", "part (b)\n", "actual resistance of unknown resistor is,(kilo-Ohm)= 47.619\n", "part (c)\n", "percentage error is,(%)= 16.0\n" ] } ], "source": [ "# Example 5.7;\n", "#calculate the apparent resistance of the unknown resistor,actual resistance of the unknown resistor and percentage error\n", "# given :\n", "v=200.;#voltage in volts\n", "i=5.;#current in mA\n", "#calculations and results\n", "tr=v/i;#resistance in kilo ohms\n", "print \"part (a)\"\n", "print \"apparent resistance of unknown resistor is,(kilo-Ohm)=\",tr\n", "S=1000.;#sensivity in ohms/V\n", "V1=250.;#voltage in volts\n", "rv=V1*S*10**-3;#resistance in kilo ohms\n", "rx=(V1*tr)/(V1-tr);#resistance in kilo ohms\n", "print \"part (b)\"\n", "print \"actual resistance of unknown resistor is,(kilo-Ohm)=\",round(rx,3)\n", "per=(rx-tr)/rx;#percentage error\n", "print \"part (c)\"\n", "print \"percentage error is,(%)=\",per*100\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8 : pg 92" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resolution is, (V)= 0.2\n" ] } ], "source": [ "# Example 5.8;resolution\n", "#calculate the resolution\n", "# given :\n", "fsr=200.;#full scale reading in volts\n", "d=100.;#number of divisions\n", "sc=1/10.;#scale\n", "#calculations\n", "sd1=fsr/d;#one sccale divisions\n", "R=sc*sd1;#resolution\n", "#results\n", "print \"resolution is, (V)=\",R\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9 : pg 93" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resolution is ,(mV)= 1.0\n" ] } ], "source": [ "# Example 5.9;resolution\n", "#calculate the resolution\n", "# given :\n", "fsr=9.999;#full scale reading in volts\n", "d=9999.;#number of divisions\n", "#calculations\n", "R=(1/d)*fsr*10**3;#resolution\n", "#results\n", "print \"resolution is ,(mV)=\",R\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10 : pg 95" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (i)\n", "true value of resistance is,(Ohm)= 91.65\n", "part (ii)\n", "percentage error is,(%)= 1.8\n", "part (iii)\n", "reading of voltmeter is,(V)= 18.35\n" ] } ], "source": [ "# Example 5.10;\n", "#calculate the true resistance of the unknown resistor , percentage error and reading voltmeter\n", "# given :\n", "print \"part (i)\"\n", "ra=0.1;#ohms\n", "vr=18.;#voltage in volts\n", "am=0.2;#current in amperes\n", "#calculations and results\n", "apr=vr/am;#in ohms\n", "rv=5000.;#ohms\n", "im=vr/rv;#amperes\n", "rxi=am-(im);#in amperes\n", "rx=vr/rxi;#ohms\n", "print \"true value of resistance is,(Ohm)=\",round(rx,3)\n", "per=((rx-apr)/rx)*100;#percentage error\n", "print \"part (ii)\"\n", "print \"percentage error is,(%)=\",per\n", "rvv=am*(ra+rx);#reading of voltmeter\n", "print \"part (iii)\"\n", "print \"reading of voltmeter is,(V)=\",round(rvv,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11 : pg 96" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (i)\n", "resistance of shunt (range 0-100mA) Rsh1 is,(Ohm)= 5.556\n", "part (ii)\n", "resistance of shunt (range 0-500mA) Rsh2 is,(Ohm)= 1.02\n", "part (iii)\n", "resistance of shunt (range 0-1A) Rsh2 is,(Ohm)= 0.505\n", "part (iv)\n", "resistance of shunt (range 0-5A) Rsh2 is,(Ohm)= 0.1\n" ] } ], "source": [ "# Example 5.11;resistance\n", "#calculate the resistance in all cases\n", "# given :\n", "im=10.;#mA\n", "i=100.;#mA\n", "#calculations and results\n", "m=i/im;#multiplying factor\n", "rm=50;#ohms\n", "rsh=rm/(m-1);#in ohms\n", "print \"part (i)\"\n", "print \"resistance of shunt (range 0-100mA) Rsh1 is,(Ohm)=\",round(rsh,3)\n", "i1=500.;#mA\n", "m1=i1/im;#multiplying factor\n", "rm1=50.;#ohms\n", "rsh1=rm1/(m1-1);#in ohms\n", "print \"part (ii)\"\n", "print \"resistance of shunt (range 0-500mA) Rsh2 is,(Ohm)=\",round(rsh1,3)\n", "im2=1;#A\n", "i2=100.;#A\n", "m2=i2/im2;#multiplying factor\n", "rm2=50.;#ohms\n", "rsh2=rm2/(m2-1);#in ohms\n", "print \"part (iii)\"\n", "print \"resistance of shunt (range 0-1A) Rsh2 is,(Ohm)=\",round(rsh2,3)\n", "im3=1;#A\n", "i3=500.;#A\n", "m3=i3/im3;#multiplying factor\n", "rm3=50.;#ohms\n", "rsh3=rm3/(m3-1);#in ohms\n", "print \"part (iv)\"\n", "print \"resistance of shunt (range 0-5A) Rsh2 is,(Ohm)=\",round(rsh3,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12 : pg 98" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "load power is,(kW)= 1.5\n" ] } ], "source": [ "# Example 5.12;load power\n", "#calculate the load power\n", "# given :\n", "k=600.;#in rev./kwh.\n", "nr=5.;#number of revolutions\n", "t=20.;#time in seconds\n", "#calculations\n", "lp=(1/k)*nr*((60*60)/t);#power in kW\n", "#results\n", "print \"load power is,(kW)=\",lp\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }