{ "metadata": { "name": "", "signature": "sha256:6dda6a8235cbc517967b1f5033dd3771eb08f1241054f5c218f55be7d9c59b8c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 19 - Fundamentals of heat transfer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - Pg 381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the experimental value of thermal conductivity and Required temperature\n", "#Initialization of variables\n", "import math\n", "r1=1.12 #in\n", "r2=3.06 #in\n", "t1=203 #F\n", "t2=184 #F\n", "r3=2.09 #in\n", "po=11.1 #watts\n", "#calculations\n", "km=po*3.413*(12/r1-12/r2)/(4*math.pi*(t1-t2))\n", "dt=po*3.413*(12/r1-12/r3)/(4*math.pi*km)\n", "t3d=t1-dt\n", "#results\n", "print '%s %.2f %s' %(\"The experimental value of thermal conductivity =\",km,\"Btu/hr ft F\")\n", "print '%s %.1f %s' %(\"\\n Required temperature =\",t3d,\" F\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The experimental value of thermal conductivity = 1.08 Btu/hr ft F\n", "\n", " Required temperature = 189.1 F\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 383" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the heat loss and Temperature required\n", "#Initialization of variables\n", "import math\n", "r1=4.035 #in\n", "r2=4.312 #in\n", "r3=5.312 #in\n", "r4=6.812 #in\n", "k12=25 #Btu/hr ft F\n", "k23=0.05 #Btu/hr ft F\n", "k34=0.04 #Btu/hr ft F\n", "t1=625. #F\n", "t4=125. #F\n", "l=100. #ft\n", "hr=1.7 #Btu/hr ft^2 F\n", "#calculations\n", "Rs=1/(2.*math.pi*l) *(math.log(r2/r1) /k12+math.log(r3/r2) /k23 +math.log(r4/r3) /k34)\n", "Qd=(t1-t4)/Rs\n", "dt=Qd*12/(hr*math.pi*2*l*6.812)\n", "t0=t4-dt\n", "#results\n", "print '%s %d %s' %(\"Heat loss =\",Qd,\"Btu/hr\")\n", "print '%s %d %s' %(\"\\n Temperature required =\",t0,\"F\")\n", "print '%s' %(\"The answers given in the textbook are a bit different due to rounding off error\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat loss = 30231 Btu/hr\n", "\n", " Temperature required = 75 F\n", "The answers given in the textbook are a bit different due to rounding off error\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 396" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Coefficient of heat transfer\n", "#Initialization of variables\n", "import math\n", "dout=1 #in\n", "d1=0.049 #in\n", "t1=70. #F\n", "t2=80. #F\n", "rho=62.2 #lbm/ft^3\n", "mum=2.22 #lbm/ft hr\n", "k=0.352 #Btu/hr ft F\n", "cp=1 #Btu/lbm F\n", "vel=500000. #lbm/hr\n", "n=100. #tubes\n", "#calculations\n", "D=dout-2*d1\n", "t=(t1+t2)/2.\n", "V=vel/n *4*144/(math.pi*D**2 *rho)\n", "Re=rho*V*D/(mum*12)\n", "Pr=cp*mum/k\n", "Nu=0.023*Re**0.8 *Pr**0.4\n", "hc=Nu*k*12/D\n", "#results\n", "print '%s %d %s' %(\"Coefficient of heat transfer =\",hc,\"Btu/hr ft^2 F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Coefficient of heat transfer = 1040 Btu/hr ft^2 F\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 397" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Coefficient of heat transfer and Percentage change\n", "#Initialization of variables\n", "import math\n", "d1=0.5 #ft\n", "t1=200. #F\n", "t2=80. #F\n", "ta=400. #F\n", "rho=0.0662 #lbm/ft**3\n", "mum=0.0483 #lbm/ft hr\n", "k=0.0167 #Btu/hr ft F\n", "cp=0.2408 #Btu/lbm F\n", "rho2=0.0567 #lbm/ft**3\n", "mum2=0.0542 #lbm/ft hr\n", "k2=0.0190 #Btu/hr ft F\n", "cp2=0.2419 #Btu/lbm F\n", "g=32.17\n", "#calculations\n", "ti=(t1+t2)/2.\n", "bet=1/(460.+ti)\n", "Pr1=cp*mum/k\n", "Gr1=d1**3 *rho**2 *3600**2 *g*bet*(t1-t2)/mum**2\n", "Gr1pr1=Gr1*Pr1\n", "hc1=k/d1 *0.53*(Gr1pr1)**0.25\n", "Q1=hc1*(t1-t2)\n", "tf=(ta+t2)/2.\n", "bet2=1/(460.+tf)\n", "Pr2=cp2*mum2/k2\n", "Gr2=d1**3 *rho2**2 *3600**2 *g*bet2*(ta-t2)/mum2**2\n", "Gr2pr2=Gr2*Pr2\n", "hc2=k2/d1 *0.53*(Gr2pr2)**0.25\n", "Q2=hc2*(ta-t2)\n", "per=100*(Q2-Q1)/Q1\n", "#results\n", "print '%s %.3f %s' %(\"Coefficient of heat transfer in case 1=\",hc1,\" Btu/hr ft^2 F\")\n", "print '%s %.3f %s' %(\"\\n Coefficient of heat transfer in case 2 =\",hc2,\"Btu/hr ft^2 F\")\n", "print '%s %d %s' %(\"\\n Percentage change =\",per,\"percent\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Coefficient of heat transfer in case 1= 1.076 Btu/hr ft^2 F\n", "\n", " Coefficient of heat transfer in case 2 = 1.312 Btu/hr ft^2 F\n", "\n", " Percentage change = 225 percent\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 398" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Temperature o wing surface and Heat transfer convective\n", "#Initialization of variables\n", "chord=40. #ft\n", "v=1200. #mph\n", "t1=80. #F\n", "t2=200. #F\n", "mu=0.0447 #lbm/ft hr\n", "rho=5280. #lbm/ft**3\n", "cp=0.2404 #Btu/lbm F\n", "k=0.0152 #Btu/hr ft F\n", "J=778.\n", "gc=32.17 #ft/s**2\n", "mu2=0.0514 #lbm/ft hr\n", "k2=0.0179 #Btu/hr ft F\n", "cp2=0.2414 #Btu/lbm F\n", "#calculations\n", "Re=rho*v*chord*0.0735/mu\n", "r=(mu*cp/k)**(1./3.)\n", "tav=t1+ r*v**2 *rho**2 /(2*gc*J*cp*3600**2)\n", "ts=t1+ 0.5*(t2-t1)+ 0.22*(tav-t1)\n", "Re2=v*rho*chord*0.0610/mu2\n", "Pr2=cp2*mu2/k2\n", "hc=cp2*v*rho*0.0610 *0.037*Re2**(-0.2) *Pr2**(-0.667)\n", "Q2=hc*(t2-tav)\n", "#results\n", "print '%s %.1f %s' %(\"Temperature of wing surface =\",tav,\" F\")\n", "print '%s %d %s' %(\"\\n Heat transfer convective =\",Q2,\"Btu/hr ft^2\")\n", "print '%s' %(\"The answers are a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature of wing surface = 309.3 F\n", "\n", " Heat transfer convective = -9711 Btu/hr ft^2\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - Pg 413" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the percent of radiation emitted by surface and percent absorbed\n", "#Initialization of variables\n", "import math\n", "r1=1. #in\n", "r2=5. #in\n", "F12=1.\n", "#calculations\n", "F21=4*math.pi*r1**2 *F12/(4*math.pi*r2**2)*100\n", "F22=(1-F21/100.)*100.\n", "#results\n", "print '%s %d %s' %(\"Percent of radiation emitted by surface 2 on small sphere =\",F21,\" percent\")\n", "print '%s %d %s' %(\"\\n Remaining\",F22, \"percent is absorbed by inner surface of larger sphere\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percent of radiation emitted by surface 2 on small sphere = 4 percent\n", "\n", " Remaining 96 percent is absorbed by inner surface of larger sphere\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - Pg 413" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Net exchange of radiation\n", "#Initialization of variables\n", "short=2. #ft\n", "apart=3. #ft\n", "lon=4. #ft\n", "T1=2260. #R\n", "T2=530. #R\n", "sigma=0.1714\n", "#calculations\n", "A1=short*lon\n", "ratio=short/apart\n", "print '%s' %(\"from curve 3\")\n", "F=0.165\n", "Q12=A1*F*sigma*((T1/100)**4 -(T2/100)**4)\n", "#results\n", "print '%s %d %s' %(\"Net exchange of radiation =\",Q12,\"Btu/hr\")\n", "print '%s' %(\"The answer in the textbook is a bit different due to rounding off error in textbook.\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from curve 3\n", "Net exchange of radiation = 58844 Btu/hr\n", "The answer in the textbook is a bit different due to rounding off error in textbook.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - Pg 416" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Net exchange of radiation\n", "#Initialization of variables\n", "F=0.51\n", "A1=8 #ft^2\n", "sigma=0.1714\n", "T1=2260. #R\n", "T2=530. #R\n", "#calculations\n", "Q12=A1*F*sigma*((T1/100)**4 -(T2/100)**4)\n", "#results\n", "print '%s %d %s' %(\"Net exchange of radiation =\",Q12,\"Btu/hr\")\n", "print '%s' %(\"The answer in the textbook is a bit different due to rounding off error in textbook.\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Net exchange of radiation = 181881 Btu/hr\n", "The answer in the textbook is a bit different due to rounding off error in textbook.\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Net exchange of radiation\n", "#Initialization of variables\n", "F=0.51\n", "A1=8. #f^2\n", "sigma=0.1714\n", "T1=2260. #R\n", "T2=530. #R\n", "#calculations\n", "F12=1/(1/0.51 +(1/0.9 -1) +(1/0.6 -1))\n", "Q12=A1*F12*sigma*((T1/100)**4 -(T2/100)**4)\n", "#results\n", "print '%s %d %s' %(\"Net exchange of radiation =\",Q12,\"Btu/hr\")\n", "print '%s' %(\"The answer in the textbook is a bit different due to rounding off error in textbook.\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Net exchange of radiation = 130225 Btu/hr\n", "The answer in the textbook is a bit different due to rounding off error in textbook.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Percentage change in total heat transfer\n", "#Initialization of variables\n", "em=0.79\n", "sigma=0.1714\n", "T1=660. #R\n", "T2=540. #R\n", "T3=860. #R\n", "#calculations\n", "Q1=em*sigma*((T1/100)**4 -(T2/100)**4)\n", "Q2=em*sigma*((T3/100)**4 -(T2/100)**4)\n", "Qh1=129+Q1\n", "Qh2=419+Q2\n", "per=100*(Qh2-Qh1)/Qh1\n", "#results\n", "print '%s %.1f %s' %(\"Percentage change in total heat transfer =\",per,\"percent\")\n", "print '%s' %(\"The answer in the textbook is a bit different due to rounding off error in textbook.\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage change in total heat transfer = 285.7 percent\n", "The answer in the textbook is a bit different due to rounding off error in textbook.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - Pg 419" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Error in probe reading\n", "#Initialization of variables\n", "Tp=12.57\n", "Tw=10.73\n", "ep=0.8\n", "sig=0.1714\n", "hc=7\n", "#calculations\n", "dt=ep*sig*(Tp**4-Tw**4)/hc\n", "#results\n", "print '%s %d %s' %(\"Error in probe reading =\",dt,\"F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Error in probe reading = 229 F\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - Pg 420" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Heat transfer in both cases\n", "#Initialization of variables\n", "import math\n", "l=6 #ft\n", "d1=0.55 #in\n", "d2=0.75 #in\n", "h1=280. #Btu/hr ft^2 F\n", "h2=2000. #Btu/fr ft^2 F\n", "k=220. #Btu/hr ft F\n", "t2=212. #F\n", "t1=60. #F\n", "f=500. #Btu/hr ft^2 F\n", "#calculations\n", "A2=math.pi*d1*l/12\n", "A3=math.pi*d2*l/12\n", "Rt=1/(h1*A2) + 1/(h2*A3) +math.log(d2/d1) /(2*math.pi*k*l)\n", "Q=(t2-t1)/Rt\n", "Rt2=Rt+ 1/(f*A2)\n", "Q2=(t2-t1)/Rt2\n", "#results\n", "print '%s %d %s' %(\"Heat transfer =\",Q,\"Btu/hr\")\n", "print '%s %d %s' %(\"\\n Heat transfer in case 2=\",Q2,\" Btu/hr\")\n", "print '%s' %(\"The answer in the textbook is a bit different due to rounding off error in textbook.\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat transfer = 33074 Btu/hr\n", "\n", " Heat transfer in case 2= 21994 Btu/hr\n", "The answer in the textbook is a bit different due to rounding off error in textbook.\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - Pg 422" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Overall Heat transfer coefficient\n", "#Initialization of variables\n", "import math\n", "l=6 #ft\n", "d1=0.55 #in\n", "d2=0.75 #in\n", "h1=280. #Btu/hr ft^2 F\n", "h2=2000. #Btu/fr ft^2 F\n", "k=220. #Btu/hr ft F\n", "t2=212. #F\n", "t1=60. #F\n", "#calculations\n", "A2=math.pi*d1*l/12\n", "A3=math.pi*d2*l/12\n", "Rt=1/(h1*A2) + 1/(h2*A3) +math.log(d2/d1) /(2*math.pi*k*l)\n", "U3=1/(A3*Rt)\n", "#results\n", "print '%s %.1f %s' %(\"Overall Heat transfer coefficient =\",U3,\"Btu/hr ft^2 F\")\n", "print '%s' %(\"The answer in the textbook is a bit different due to rounding off error in textbook.\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Overall Heat transfer coefficient = 184.7 Btu/hr ft^2 F\n", "The answer in the textbook is a bit different due to rounding off error in textbook.\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - Pg 427" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Parameters X and Z\n", "#Initialization of variables\n", "t1=300. #F\n", "t2=260. #F\n", "t3=200. #F\n", "t4=160. #F\n", "#calculations\n", "X=(t2-t4)/(t1-t4)\n", "Z=(t1-t3)/(t2-t4)\n", "#results\n", "print '%s %.3f %s %.1f %s' %(\"Parameters X and Z are\",X, \"and\",Z,\"respectively\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Parameters X and Z are 0.714 and 1.0 respectively\n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }