{ "metadata": { "name": "", "signature": "sha256:34e2c9e74989754957ab71e3380ee9241975584f70767576f7f879e815515185" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 - Fluid flow" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - Pg 223" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the velocity and area\n", "#Initialization of variables\n", "import math\n", "import numpy\n", "h1=1329.1 #Btu/lbm\n", "v1=6.218 #ft^3/lbm\n", "J=778.\n", "g=32.174\n", "m=1.\n", "#calculations\n", "p=([80., 60., 54.6, 40., 20.])\n", "h=([ 1304.1, 1273.8, 1265, 1234.2, 1174.8])\n", "v=([ 7.384, 9.208, 9.844, 12.554, 21.279])\n", "Fc=1.\n", "b=len(p)\n", "V2=numpy.zeros(b)\n", "A=numpy.zeros(b)\n", "for i in range (1,b):\n", "\tV2[i]=round(Fc*math.sqrt(2*J*g*(h1-h[i])),2)\n", "\tA[i]=round(m*v[i] /V2[i],5)\n", "\n", "V2 = 0+ V2\n", "A =0+ A\n", "#results\n", "print '%s' %('velocity (ft/s)= ')\n", "print(V2)\n", "print '%s' %('Area (ft^2)= ')\n", "print(A)\n", "#The initial values of velocity and area are 0 and infinity respectively\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity (ft/s)= \n", "[ 0. 1663.87 1791.37 2179.67 2779.33]\n", "Area (ft^2)= \n", "[ 0. 0.00553 0.0055 0.00576 0.00766]\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 228" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Area required in both cases\n", "#Initialization of variables\n", "import math\n", "n=1.4\n", "p1=50. #psia\n", "J=778.\n", "cp=0.24\n", "T1=520. #R\n", "k=n\n", "R=1545/29.\n", "m=1.\n", "p2=10. #psia\n", "#calculations\n", "rpt=(2/(n+1))**(n/(n-1))\n", "pt=p1*rpt\n", "Vtrev=223.77*math.sqrt(cp*T1*(1- rpt**((k-1)/k)))\n", "v1=R*T1/p1/144\n", "vt=v1*(p1/pt)**(1./k)\n", "At=m*vt/Vtrev\n", "V2rev=223.77*math.sqrt(cp*T1*(1-(p2/p1)**((k-1)/k)))\n", "v2=v1*(p1/p2)**(1/k)\n", "A2=m*v2/V2rev\n", "#results\n", "print '%s %.5f %s' %(\"Area required =\",At,\" ft^2\")\n", "print '%s %.5f %s' %(\"\\n Area in case 2 =\",A2,\" ft^2\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Area required = 0.00595 ft^2\n", "\n", " Area in case 2 = 0.00800 ft^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Throat area\n", "#Initialization of variables\n", "J=778.\n", "g=32.2\n", "pc=54.6 #psia\n", "h1=1329.1 #Btu/lbm\n", "h2=1265. #btu/lbm\n", "V2rev=1790. #ft/s\n", "cv=0.99\n", "m=1 #lbm\n", "cv2=0.96\n", "#calculations\n", "V2d=cv*V2rev\n", "hd=cv**2 *(h1-h2)\n", "h2d=h1-hd\n", "v2d=9.946\n", "A2d=m*v2d/V2d\n", "#results\n", "print '%s %.4f %s' %(\"Throat area in case 2 =\",A2d,\" ft^2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Throat area in case 2 = 0.0056 ft^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 234" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the mass flow rate\n", "#Initialization of variables\n", "import math\n", "p1=50. #psia\n", "pr=0.58\n", "#calculations\n", "p=p1*pr\n", "s1=1.6585\n", "h1=1174.1 #Btu/lbm\n", "sf=0.3680\n", "sfg=1.3313\n", "hfg=945.3\n", "vg=13.746\n", "hf=218.82\n", "x= (s1-sf)/sfg\n", "v2=vg*x\n", "h2=hf+x*hfg\n", "V2rev=223.77*math.sqrt(h1-h2)\n", "m=math.pi/4 *1/144. *V2rev/v2\n", "#results\n", "print '%s %.3f %s' %(\"mass flow rate =\",m,\" lbm/sec\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass flow rate = 0.572 lbm/sec\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 234" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Mass flow rate and Meta stable under cooling\n", "#Initialization of variables\n", "import math\n", "k=1.31\n", "p1=7200. #lbf/ft**2\n", "v1=8.515 #ft**3/lbm\n", "pr=0.6\n", "m1=0.574\n", "T1=741. #R\n", "#calculations\n", "V2rev=8.02*math.sqrt(k/(k-1) *p1*v1*(1- (pr)**((k-1)/k)))\n", "v2=v1*(1/pr)**(1/k)\n", "m=math.pi/4 *1/144 *V2rev/v2\n", "C=m/m1\n", "T2=T1*(0.887)\n", "t=250+460. #R\n", "dt=t-T2\n", "#results\n", "print '%s %.3f %s' %(\"Mass flow rate =\",m,\" lbm/sec\")\n", "print '%s %d %s' %(\"\\n Meta stable under cooling =\",dt,\"F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flow rate = 0.597 lbm/sec\n", "\n", " Meta stable under cooling = 52 F\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - Pg 240" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the average velocity and mass flow rate\n", "#Initialization of variables\n", "import math\n", "zm=0.216\n", "pm=62.3 #lbm/ft**2\n", "p1=0.0736 #lbm/ft**2\n", "g=32.2\n", "d=4.\n", "#calculations\n", "H=zm*(pm-p1)/12/p1\n", "V=math.sqrt(2*g*H)\n", "m=math.pi/4 *d**2 *V*p1\n", "#results\n", "print '%s %.1f %s' %(\"average velocity =\",V,\" ft/sec\")\n", "print '%s %.1f %s' %(\"\\n mass flow rate =\",m,\" lbm/sec\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "average velocity = 31.3 ft/sec\n", "\n", " mass flow rate = 29.0 lbm/sec\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - Pg 244" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the area of throat and area of exit\n", "#Initialization of variables\n", "import math\n", "p0=50. #psia\n", "T0=520. #R\n", "rho0=0.259 #lbm/ft^3\n", "p2=10. #psia\n", "mf=1. #lbm\n", "#calculations\n", "print '%s' %(\"From table B-17,\")\n", "pr=0.528\n", "Tr=0.833\n", "rhor=0.634\n", "ps=pr*p0\n", "Ts=Tr*T0\n", "rhos=rho0*rhor\n", "Vs=49.1*math.sqrt(Ts)\n", "As=mf/(Vs*rhos)\n", "p2r=p2/p0\n", "M2=1.71\n", "V2=1.487*Vs\n", "T2=0.632*Ts\n", "A2=As*1.35\n", "rho2=rhos*0.317\n", "#results\n", "print '%s %.5f %s' %(\"Area of throat =\",As,\"ft^2\")\n", "print '%s %.5f %s' %(\"\\n Area of exit =\",A2,\"ft^2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From table B-17,\n", "Area of throat = 0.00596 ft^2\n", "\n", " Area of exit = 0.00805 ft^2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - Pg 247" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Length of the pipe\n", "#Initialization of variables\n", "M1=0.2\n", "M2=0.4\n", "D=0.5 #ft\n", "f=0.015\n", "#calculations\n", "f1=14.5\n", "f2=2.31\n", "dl=(f1-f2)*D/f\n", "#results\n", "print '%s %.1f %s' %(\"Length of pipe =\",dl,\"ft\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of pipe = 406.3 ft\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the change in entropy\n", "#Initialization of variables\n", "import math\n", "py=20. #psia\n", "px=3.55 #psia\n", "R=1.986/29\n", "#calculations\n", "pr=py/px\n", "print '%s' %(\"from table B-19\")\n", "Mx=2\n", "My=0.577\n", "pr2=0.721\n", "ds=R*math.log(1./pr2)\n", "#results\n", "print '%s %.4f %s' %(\"Change in entropy =\",ds,\"Btu/lbm R\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from table B-19\n", "Change in entropy = 0.0224 Btu/lbm R\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Internal and net thrust\n", "#Initialization of variables\n", "M1=0.5\n", "M2=1.\n", "A1=0.5 #ft^2\n", "A2=1. #ft^2\n", "p1=14.7 #psia\n", "p2=14.7 #psia\n", "k=1.4\n", "#calculations\n", "thru=p2*144*A2*(1+k*M2**2)-p1*144*A1*(1+k*M1**2)\n", "net=thru-p1*144*(A2-A1)\n", "#results\n", "print '%s %d %s' %(\"Internal thrust =\",thru,\"lbf\")\n", "print '%s %d %s' %(\"\\n Net thrust =\",net,\" lbf\")\n", "print '%s' %(\"The answers are a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Internal thrust = 3651 lbf\n", "\n", " Net thrust = 2593 lbf\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }