{ "metadata": { "name": "", "signature": "sha256:6d073c49f372dda47c7aa22d6e606de390e394a91f8374089b05d9ccb3405267" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 - ELECTROSTATIC AND ELECTROMAGNETIC INTERFERENCE WITH COMMUNICATION LINES" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate Voltage induced per Km in the line in Volt\n", "import math\n", "#Given data :\n", "f=50.##Hz\n", "hor_con=1.2##horizontal configuration spacing in m\n", "x=0.85##telephone line location below power line in meter\n", "I=120.##current in power line in A\n", "d=0.4##spacing between conductors in meter\n", "dAD=math.sqrt(x**2.+((hor_con+d)/2.)**2.)##m\n", "dAC=math.sqrt(x**2.+((hor_con-d)/2.)**2.)##m\n", "dBD=dAC##m\n", "dBC=dAD##m\n", "M=d*math.log(math.sqrt(dAD*dBC/dAC/dBD))##mh/km\n", "Vm=2*math.pi*f*M*10.**-3*I##V\n", "print '%s %.3f' %(\"Voltage induced per Km in the line in Volt :\",Vm)#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage induced per Km in the line in Volt : 3.275\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 205" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate \n", "import math\n", "#Given data :\n", "f=50.##HzdAP=AO+5##m\n", "l=200.##km\n", "V=132.*1000.##V\n", "Load=28000.##kW\n", "pf=0.85##lagging power factor\n", "r=5./1000.##radius of conductor in m\n", "#From the figure given in question\n", "AO=math.sqrt(4.**2.-2.**2.)##m\n", "dAP=AO+5.##m\n", "dAQ=dAP+1.##m\n", "dBP=math.sqrt(5.**2.+2.**2.)##m\n", "dBQ=math.sqrt(6.**2.+2.**2.)##m\n", "MA=0.2*math.log(dAQ/dAP)##mH/km\n", "MB=0.2*math.log(dBQ/dBP)##mH/km\n", "MC=MB##mH/km\n", "M=MB-MA##mH/km(MA,MB and Mc are print '%s %.2f' %laced by 120 degree)\n", "I=Load*1000./math.sqrt(3.)/V/pf##A\n", "Vm=2.*math.pi*f*M*10.**-3.*I##V/km\n", "Vm1=Vm*l##V(For whole route)\n", "print '%s %.1f' %(\"Induced Voltage(For whole route) in Volts : \",Vm1)#\n", "VA=V/math.sqrt(3.)##V\n", "VB=V/math.sqrt(3.)##V\n", "hA=20.+AO##m\n", "VPA=VA*math.log((2.*hA-dAP)/dAP)/math.log((2.*hA-r)/r)##V\n", "VPB=VB*math.log((2.*hA-dBP)/dBP)/math.log((2.*hA-r)/r)##V\n", "VPC=VPB##V\n", "VP=VPB-VPA##V\n", "print '%s %.f' %(\"Potential of telephone conductor in Volts :\",VP)#\n", "#Answer in the book is wrong due to little accuracy as compared to scilab.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Induced Voltage(For whole route) in Volts : 88.9\n", "Potential of telephone conductor in Volts : 4409\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }