{ "metadata": { "name": "", "signature": "sha256:58c36c7b9784275db9287ae8c79867925c020abc46926776ba50c0c166f1d15f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 - SUPPLY SYSTEM" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate saving in copper\n", "#Given data :\n", "VL1=220.##Volts\n", "VL2=400.##Volts\n", "print '%s' %(\"We know, W=I**2*2*R=(P/VL)**2*2*rho*l/a\")#\n", "print '%s ' %(\"a=(P/VL)**2*2*rho*l/(I**2*2*R)\")#\n", "print '%s' %(\"v=2*(P/VL)**2*2*rho*l/(I1**2*2)*l\")#\n", "saving=(2./(VL1)**2.-2./(VL2)**2.)/(2./(VL1)**2.)*100.##%\n", "print '%s %.2f' %(\"% saving in copper : \",saving)#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "We know, W=I**2*2*R=(P/VL)**2*2*rho*l/a\n", "a=(P/VL)**2*2*rho*l/(I**2*2*R) \n", "v=2*(P/VL)**2*2*rho*l/(I1**2*2)*l\n", "% saving in copper : 69.75\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - pg 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate 3-phase four wire system material required\n", "print '%s' %(\"Two wire dc system : \")#\n", "print '%s' %(\"I1=P/V & W=2*I1**2*R1=2*P**2*rho*l/V**2/a1\")#\n", "print '%s' %(\"Therefore, Volume required, v1 is 2*a1*l=4*P**2*rho*l**2/V**2/W\")#\n", "print '%s ' %(\"Three phase four wire system : \")#\n", "print '%s ' %(\"I2=P/3/Vas Power by each phase is P/3 & W=3*I1**2*R2=P**2*rho*l/3/V**2/a2\")#\n", "print '%s ' %(\"Therefore, Volume required, v2 is 3.5*a2*l=3.5*P**2*rho*l**2/3/V**2/W\")#\n", "v2BYv1=3.5/3./4.##\n", "print '%s %.3f %s' %(\"For 3-phase four wire system material required is \",v2BYv1,\" times the material required in two wire system.\")#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Two wire dc system : \n", "I1=P/V & W=2*I1**2*R1=2*P**2*rho*l/V**2/a1\n", "Therefore, Volume required, v1 is 2*a1*l=4*P**2*rho*l**2/V**2/W\n", "Three phase four wire system : \n", "I2=P/3/Vas Power by each phase is P/3 & W=3*I1**2*R2=P**2*rho*l/3/V**2/a2 \n", "Therefore, Volume required, v2 is 3.5*a2*l=3.5*P**2*rho*l**2/3/V**2/W \n", "For 3-phase four wire system material required is 0.292 times the material required in two wire system.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate Additional load that can be tranmitted by converting sigle to 3-phase line\n", "import math\n", "print '%s ' %(\"For single phase ac system, P1=V*I1*cosd(fi) watts & W1=2*I1**2*R watts\")#\n", "print '%s ' %(\"Line losses=W1/P1*100=2*I1**2*R*100/V/I1/cosd(fi)\")#\n", "print '%s ' %(\"For three phase ac system, P2=sqrt(3)*V*I2*cosd(fi) watts & W2=3*I2**2*R watts\")#\n", "print '%s ' %(\"Line losses=W2/P2*100=3*I2**2*R*100/sqrt(3)/V/I2/cosd(fi)\")#\n", "#on equating W1/P1*100.=W2/P2*100.\n", "I2BYI1=2*math.sqrt(3.)/3.#\n", "P1=100\n", "P2=2*P1#\n", "Add_load=P2-P1#\n", "Percent_add_load=(P2-P1)/P1*100##%\n", "print '%s %.2f' %(\"Additional load that can be tranmitted by converting sigle to 3-phase line in %\",Percent_add_load)#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For single phase ac system, P1=V*I1*cosd(fi) watts & W1=2*I1**2*R watts \n", "Line losses=W1/P1*100=2*I1**2*R*100/V/I1/cosd(fi) \n", "For three phase ac system, P2=sqrt(3)*V*I2*cosd(fi) watts & W2=3*I2**2*R watts \n", "Line losses=W2/P2*100=3*I2**2*R*100/sqrt(3)/V/I2/cosd(fi) \n", "Additional load that can be tranmitted by converting sigle to 3-phase line in % 100.00\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 53 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate Extra power that can be supplied\n", "print '%s' %(\"For three wire dc system, line current I1=(VS-VL)/R & P1=2*VL*I1=2*VL*(VS-VL)/R\")#\n", "print '%s' %(\"For four wire three phase ac system, line current I2=(VS-VL)/R & P2=3*VL*I2*pf=3*VL*(VS-VL)/R\")#\n", "#P2=3/2*2*VL*(VS-VL)/R##It implies that P2=3/2*P1\n", "P1=100#\n", "P2=3./2.*P1#\n", "Diff=P2-P1#\n", "Percent_Diff=(Diff/P1*100)##%\n", "print '%s %.2f' %(\"Extra power that can be supplied in %\",Percent_Diff)#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For three wire dc system, line current I1=(VS-VL)/R & P1=2*VL*I1=2*VL*(VS-VL)/R\n", "For four wire three phase ac system, line current I2=(VS-VL)/R & P2=3*VL*I2*pf=3*VL*(VS-VL)/R\n", "Extra power that can be supplied in % 50.00\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Additional load\n", "pf=0.9##power factor\n", "print '%s' %(\"Three wire dc system : \")#\n", "print '%s' %(\"P1=2*I1*V & %P1loss=2*I1**2*R/(2*I1*V)*100=100*I1*R/V\")#\n", "print '%s' %(\"Three phase 4-wire ac system : \")#\n", "print '%s' %(\"P2=3*I1**2*V*pf & %P2loss=3*I2**2*R/(3*I2*V*pf)*100=100*I12*R/pf/V\")#\n", "#on equating P1loss=P2loss#\n", "I2BYI1=100*pf/100##ratio\n", "#P2=3*I2*V*pf\n", "P2BYI1V=3.*pf*I2BYI1#\n", "P2BYP1=P2BYI1V/2.#\n", "#LoadIncrease=(P2-P1)*100/P1#\n", "LoadIncrease=(P2BYP1-1.)*100.##%\n", "print '%s %.2f' %(\"% Additional load : \",LoadIncrease)#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Three wire dc system : \n", "P1=2*I1*V & %P1loss=2*I1**2*R/(2*I1*V)*100=100*I1*R/V\n", "Three phase 4-wire ac system : \n", "P2=3*I1**2*V*pf & %P2loss=3*I2**2*R/(3*I2*V*pf)*100=100*I12*R/pf/V\n", "% Additional load : 21.50\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate Weight of copper required for 3 conductors of 100 km length\n", "#Given data :\n", "import math\n", "Pin=100.##MW\n", "VL=380.##kV\n", "d=100.##km\n", "R=0.045##ohm/cm**2/km\n", "w=0.01##kg/cm**3\n", "Eta=90.##efficiency %\n", "cosfi=1.#\n", "IL=Pin*10.**6./math.sqrt(3.)/VL/10.**3./cosfi##Ampere\n", "W=Pin*(1-Eta/100)##MW\n", "LineLoss=W*10**6/3##Watts/conductor\n", "R1=LineLoss/IL**2##in ohm\n", "R2=R1/d##resistance per conductor per km\n", "a=R/R2##in cm**2\n", "volume=a*d*1000##cm**3 per km run\n", "weight=w*volume##kg per km run\n", "w3=3.*d*weight##kg(weight of copper required for 3 conductors for 100 km)\n", "print '%s %.2f' %(\"Weight of copper required for 3 conductors of 100 km length(in kg) : \",w3)#\n", "#Answer in the book is not accurate.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of copper required for 3 conductors of 100 km length(in kg) : 9349.03\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }