{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 - Accounting for the rate laws" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Max. velocity and Michaelis constant\n", "#Initialization of variables\n", "import math\n", "import numpy as np\n", "from numpy import linalg\n", "S=[10, 20, 40, 80, 120, 180, 300]\n", "v=[0.32, 0.58, 0.9, 1.22, 1.42, 1.58, 1.74]\n", "#calculations\n", "n=len(S)\n", "def fun1(x):\n", "\tfor i in range(0,len(x)):\n", "\t\tx[i]=1000./(x[i])\n", "\treturn x\n", "\n", "\n", "def fun2(x):\n", "\tfor i in range(0,len(x)):\n", "\t\tx[i]=1./(x[i])\n", "\treturn x\n", "bys=fun1(S)\n", "byv=fun2(v)\n", "x=bys\n", "y=byv\n", "A = np.vstack([x, np.ones(len(x))]).T\n", "m1, b1 = np.linalg.lstsq(A, y)[0]\n", "print '%s' %(\"From graph,\")\n", "vmax=1/b1\n", "Km=m1*1000./b1\n", "#results\n", "print '%s %.2f %s' %(\"Max. velocity =\",vmax,\" mumol/L s\")\n", "print '%s %.1f %s' %(\"\\n Michaelis constant =\",Km,\" mumol/L\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From graph,\n", "Max. velocity = 2.10 mumol/L s\n", "\n", " Michaelis constant = 55.0 mumol/L\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 257" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Equilibrium constant\n", "#Initialization of variables\n", "c=1.234\n", "m=2.044\n", "#calculations\n", "Ki=c/m\n", "#results\n", "print '%s %.2f' %(\"KI = \",Ki)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "KI = 0.60\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the no. of diheptane molecules destroyed \n", "#Initialization of variables\n", "import math\n", "P=50. #J/s\n", "l=313.*math.pow(10,-9) #m\n", "h=6.62608*math.pow(10,-34) #Js\n", "N=6.023*math.pow(10,23)\n", "c=2.99792*math.pow(10,8) #m/s\n", "yiel=0.21\n", "#calculations\n", "rate=P*l/(h*c)\n", "Frate=yiel*rate\n", "molrate=Frate/N\n", "#results\n", "print '%s %.1e %s' %(\"No.of diheptane molecules destroyed =\",Frate,\" s^-1\")\n", "print '%s %.2e %s' %(\"\\n Moles of diheptane molecules destroyed =\",molrate,\"mol s^-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No.of diheptane molecules destroyed = 1.7e+19 s^-1\n", "\n", " Moles of diheptane molecules destroyed = 2.75e-05 mol s^-1\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example I1 - Pg 243" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Equilibrium constant for dimerization\n", "#Initialization of variables\n", "import math\n", "kf=8.18*math.pow(10,8) #L/mol s\n", "kb=2*math.pow(10,6) #s^-1\n", "#calculations\n", "K=kf/kb\n", "#results\n", "print '%s %.1e' %(\"Equilibrium constant for dimerization = \",K)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equilibrium constant for dimerization = 4.1e+02\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example I2 - Pg 248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate if the reaction step is far from equilibrium and calculate the heat generated\n", "#Initialization of variables\n", "import math\n", "F16bP=1.9*math.pow(10,-5) #mmol/L\n", "ADP=1.3/1000. #mmol/L\n", "ATP=11.4/1000. #mmol/L\n", "F6P=8.9*math.pow(10,-5) #mmol/L\n", "k=1.2*1000.\n", "#calculations\n", "Q=F16bP*ADP/(F6P*ATP)\n", "if(Q