{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ " Chapter 1 - The properties of gases" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the pressure in the glass flask\n", "#Initialzation of variables\n", "m=1.25 #g\n", "MN2=28.02 #g/mol\n", "T=20+273.15 #K\n", "V=0.25#L\n", "#Calculations\n", "P=m*8.31451*T/(MN2*V)\n", "#Results\n", "print '%s %.1f %s' %('Pressure in the gas flask = ',P,'kPa')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure in the gas flask = 434.9 kPa\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example I2 - Pg 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the partial pressures of Oxygen, Nitrogen and Argon\n", "#Initialzation of variables\n", "xN2=0.780\n", "xO2=0.210\n", "xAr=0.009\n", "P=100 #kPa\n", "#Calculations\n", "PN2=xN2*P\n", "PO2=xO2*P\n", "PAr=xAr*P\n", "#Results\n", "print '%s %.1f' %('Partial pressure of Nitrogen(kPa) = ',PN2)\n", "print '%s %.1f' %('\\n Partial pressure of Oxygen(kPa) = ',PO2)\n", "print '%s %.1f' %('\\n Partial pressure of Argon(kPa) = ',PAr)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Partial pressure of Nitrogen(kPa) = 78.0\n", "\n", " Partial pressure of Oxygen(kPa) = 21.0\n", "\n", " Partial pressure of Argon(kPa) = 0.9\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example I3 - Pg 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the percentage loss of speed of air molecules\n", "#Initialzation of variables\n", "import math\n", "T1=298. #K\n", "T2=273. #K\n", "#Calculations\n", "factor=math.sqrt(T2/T1)\n", "percentage=(1-factor)*100\n", "#Results\n", "print '%s %.3f' %('Factor by which speed is reduced = ',factor)\n", "print '%s %d' %('Percentage loss of speed of air molecules = ',percentage)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Factor by which speed is reduced = 0.957\n", "Percentage loss of speed of air molecules = 4\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example I4 - Pg 24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the ratio of rates of effusion\n", "#Initialzation of variables\n", "import math\n", "MH2=2.016 #g/mol\n", "MCO2=44.01 #g/mol\n", "#calculations\n", "ratio=math.sqrt(MCO2/MH2)\n", "#results\n", "print '%s %.3f' %('ratio of rates of effusion = ',ratio)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio of rates of effusion = 4.672\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example I5 - Pg 25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the mean free path and collision frequency\n", "#Initialzation of variables\n", "import math\n", "T=25+273. #K\n", "sigma=0.4*math.pow(10,(-18)) #m^2\n", "P=math.pow(10,5) #Pa\n", "c=481.8 #m/sec\n", "#Calculations\n", "Lambda=8.31451*T/(math.pow(2,0.5) *6.022*math.pow(10,23) *sigma*P)\n", "frequency=math.pow(2,0.5) *6.022*math.pow(10,23) *sigma*P*c/(8.31451*T)\n", "#Results\n", "print '%s %.1e %s' %('Mean free path =',Lambda,'m')\n", "print '%s %.1e %s' %('\\n Collision frequency =',frequency,'m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean free path = 7.3e-08 m\n", "\n", " Collision frequency = 6.6e+09 m\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }