{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter - 7 : Metal Oxide Semiconductor Field Effect Transistors (MOSFET)" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1\n", ": Page No 403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "V_GS = 0 # in V\n", "I_D = 4 # in mA\n", "R = 2 # in kohm\n", "V_DD = 15 # in V\n", "V_DS = V_DD - (I_D*R) # in V\n", "g_m = 2000 # in \u00b5S\n", "g_m= g_m*10**-6 # in S\n", "g_mo = g_m # in S\n", "R_D = 2 # in kohm\n", "R_D = R_D * 10**3 # in ohm\n", "R_L = 10 # in kohm\n", "R_L = R_L * 10**3 # in ohm\n", "r_d = (R_D*R_L)/(R_D+R_L) # in ohm\n", "A_v = g_m*r_d \n", "V_in = 20 # in mV\n", "V_out = A_v * V_in # in mV\n", "print \"The output voltage = %0.1f mV\" %V_out" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage = 66.7 mV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2\n", ": Page No 411" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V1 = 20 # in V\n", "V2 = 2 # in V\n", "V = V1-V2 # in V\n", "R = 1 # in kohm\n", "R = R * 10**3 # in ohm\n", "I_D = V/R # in A\n", "I_D = I_D * 10**3 # in mA\n", "print \"The drain current = %0.f mA\" %I_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 18 mA\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3\n", ": Page No 414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "# Given data\n", "I_DSS = 10 # in mA\n", "V_GS = 0 # in V\n", "I_D = 0 # in mA\n", "V_P = -4 # in V\n", "V_GS= np.arange(0,V_P,-0.1) # in V\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # mA\n", "plt.plot(V_GS,I_D) \n", "plt.xlabel(\"V_gs in volts\") \n", "plt.ylabel(\"I_D in mA\") \n", "plt.title(\"Transfer characteristics for an n-channel depletion type MOSFET\")\n", "print \"Transfer characteristics for an n-channel depletion type MOSFET Shown in figure\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transfer characteristics for an n-channel depletion type MOSFET Shown in figure\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEaCAYAAAAyinE1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFFf7N/DvYkeqCFgQUSwBC2LvYoy9xN6VGEt8jHls\nr1FjLHlijRqNSYwmGjXFbmLvJtiVJBp7CQZQURFBmkCA5X7/mB8b2gLqsjPA93Nde7G70+49O5x7\nz5yZMzoRERAREZmIhdoBEBFRwcLEQkREJsXEQkREJsXEQkREJsXEQkREJsXEQkREJpUvE0toaCha\nt24NGxsbTJ06NU+35ePjg3Xr1uXpNsxl4cKFGD169Esta21tjaCgIJPFcvv2bdSrVw82Njb44osv\nTLZerbGwsMDff/+tdhjp+Pn5oVKlSrme31T/Axs2bECrVq1eevnatWvj5MmTrxwH5b0XTixWVlaw\ntraGtbU1LCwsYGlpaXi9efPmvIgxk6+//hpOTk6Ijo7GkiVL8nRbOp0OOp0uT7eRG2+99RZmzZr1\nSuuYMWMGvvnmmxzny6oiiYmJgZub2yttP61PPvkE7dq1Q3R0NMaPH2+y9ZLpqfE/kNX+fu3aNbRu\n3drk21Lzx6OFhQWcnZ2h1+sN7yUlJcHJyQkWFumr53379qFx48awsrJC2bJlMXToUISEhBimJyYm\nYsqUKahUqRKsra1RpUoVTJo0yTDdzc0tXX1tY2ODx48fIygoCBYWFob3Ux/btm1Dly5dDK+LFy+O\nEiVKGF6PGzfO+Od60YKIjY1FTEwMYmJiULlyZezbt8/wetCgQYb5kpOTX3TVuRYcHAwPD4+XWjYv\n48pJSkqKattOu+PmxByVSHBwMDw9PV9q2Rf5LEQ5UfuHY5kyZXDw4EHD64MHD6JMmTLp4tqxYweG\nDBmCyZMnIzw8HNevX0eJEiXQsmVLREZGAlCOSFy8eBG//fYbYmJi4Ofnh/r16xvWodPp0tXX0dHR\nKFeunGF6VFSUYVpMTAz69++PAwcOGF4PGTIE06ZNM7xetWqV8Q8lr8DNzU2OHz8uIiK//vqrVKxY\nURYvXizlypWT4cOHy7Nnz6Rr167i6Ogo9vb20q1bN3nw4IFh+TZt2sisWbOkRYsWYm1tLR06dJCn\nT5+KiEh8fLwMGTJEHBwcxM7OTho1aiShoaHi6+srxYoVk+LFi4uVlZUcP35cUlJSZOHCheLu7i4O\nDg7Sv39/iYiIEBGRwMBA0el0sm7dOnF1dZU2bdpk+Vl27dolXl5eYmNjI+7u7nL48GEREfHx8TEa\no4hI3759pVy5cmJrayutW7eW69evG6b5+vrK2LFjpXPnzlK6dGk5fvy47Nu3T+rVqyc2NjZSqVIl\nmTt3bro4Tp06Jc2aNRM7OzupVKmSbNiwQb7++ut0n7lHjx4iIhISEiK9e/cWR0dHqVKliqxcudKw\nnjlz5kifPn1k6NChYmNjI2vXrpU5c+bI0KFDsy3fDz74QIoUKSIlS5YUKysree+990RERKfTyd27\nd0VEJC4uTiZPniyVK1cWW1tbadmypSQkJBhdZ0Zt27Y1bMPa2lr++usviYyMlGHDhomjo6NUrlxZ\n5s2bJykpKSIisn79emnevLlMmjRJHBwcZNasWZnWeeHCBWnatKnY2dlJ+fLlZfz48ZKYmGiYrtPp\nZPXq1VK9enWxs7OTd999N8v9ILXs+vXrJ8OHDxdra2upVauW/P7770bn1+v1Mn/+fHF3dxdra2tp\n0KCBYT/PbrsBAQHStm1bcXBwkLJly8qQIUMkMjLSML1y5cqydOlSqVu3rtja2sqAAQMkISFBRP79\nf1u2bJk4OTlJ+fLlZf369YZlExISZMqUKeLq6irOzs4yduxYiY+PNyzr4uJi9PMcOXJEatasKba2\ntjJ+/Hhp06aNrF271jB93bp14uHhIfb29tKxY0cJDg5OV84rV66UqlWrStmyZWXq1KnpvseWLVsa\n5r1586a88cYbUqZMGalZs6Zs27ZNRETWrFmT5f5euXJlOXbsmOHzTZgwQSpUqCAVKlSQiRMnyj//\n/JOrskkr4/4+fvx4effdd2XKlCnp5uvevbusWLHCEMfChQvF09NT7O3tZcSIEYbvRURk79694uXl\nJXZ2dtK8eXO5cuWK0bLW6XQyf/586devn+G9Pn36yPz580Wn04mISEpKiri6usqSJUvSLZuSkiK1\na9eW2bNni4hIt27dDDFmJW19nVZqHanX640uKyLy1ltvyYcffpjtPKlMmliKFi0q06dPl8TERImP\nj5fw8HD56aefJD4+XmJiYqRfv37Ss2dPw/Jt2rSRatWqyV9//SXx8fHi4+Mj06dPFxGR1atXS/fu\n3SU+Pl5SUlLk4sWLEh0dbfiAaSuXFStWSLNmzSQkJEQSExPlnXfekUGDBonIv4Xm6+srcXFx6XaA\nVBcuXBBbW1vDThsSEiK3bt0yxOju7p5ljCLKP0tsbKwkJibKxIkTpV69eoZpvr6+YmtrK2fPnhUR\n5Z/Bz89Prl27JiIiV65cEWdnZ9m1a5eIiAQFBYm1tbVs2bJFkpOTJTw8XP78888sP7Ner5f69evL\nxx9/LElJSfL3339L1apVDQlxzpw5UqxYMdm9e7eIKIlk7ty5MmzYsBzL18fHR9atW5eujNImlnHj\nxknbtm3l4cOHotfr5dy5c/LPP/9ku86MMm5j2LBh0rNnT4mNjZWgoCCpUaOGYfr69eulaNGi8sUX\nX4herzdUkGn98ccfcuHCBdHr9RIUFCQeHh7p/sl0Op10795doqKi5N69e+Lo6CiHDh3KMrY5c+ZI\nyZIl5eDBg5KSkiIzZsyQpk2bZjmviMgnn3widerUkTt37oiIyOXLlyU8PDzH7QYEBMixY8ckMTFR\nwsLCpHXr1jJx4kTDet3c3KRJkyby6NEjiYiIEA8PD1m9erWI/Pv/NmfOHElOTpYDBw6IpaWlITFN\nnDhR3nzzTXn27JnExMRI9+7dZcaMGYZljSWWsLAwsba2lp07d0pycrIsX75cihYtavgudu3aJdWq\nVZNbt26JXq+XefPmSfPmzdOV8+uvvy7Pnj2Te/fuSY0aNQxJKW1iiY2NFRcXF9mwYYPo9Xq5dOmS\nlC1bVm7cuCEimff31PJIrW9mzZolzZo1k7CwMAkLC5PmzZsb5s+pbDLKuC/6+/tLhQoVDAkxLCxM\nLC0t5cmTJyKiJJY6derIgwcPJCIiQlq0aGGocC9evChOTk7i7+8vKSkpsnHjRnFzczMkvYx0Op1c\nu3ZNnJ2dJSoqSiIiIsTZ2VmuXbtmSCw3b94UnU4nQUFBmZafM2eONGvWTERE5s2bJ66urrJq1Sq5\ncuWKIf605Zdax6WVWkcmJydnGWMq1RJL8eLFjRagiMilS5fE3t7e8NrHx0fmz59veL1q1Srp1KmT\niIh8++23RrN9xg/o4eGRLhM/fPhQihUrJnq93lBogYGBRuMaM2aMTJ48Octp2cWY0bNnz0Sn0xkq\nU19fX/H19TW6XRGRCRMmyKRJk0REZMGCBdK7d+8s58v4mc+fPy+urq7p5lmwYIGMGDFCRJQdLmPr\nLG2LJbvy9fHxSfcLVeTfxKLX66VUqVJZLpfdOrPbRnJyshQvXlxu3rxpmL5mzRrx8fEREaVCyvhZ\nc7J8+XLp1atXuvjPnDljeN2/f39ZtGhRlsvOmTNH2rdvb3h9/fp1KVWqlNFt1axZU/bs2ZPltBfZ\n7s8//yze3t6G125ubvLjjz8aXr///vsyduxYEVH+30qVKpXuV6aTk5NcuHBBUlJSpHTp0oYfAiIi\nZ8+elSpVqhiWNZZYNm7caKioUrm4uBgq3k6dOqWrhPV6vVhaWsq9e/cMnzf1x42I8v/Srl07EUmf\nWLZs2SKtWrVKt50xY8bIRx99JCLK/07GSixtfePu7i4HDx40TDt8+LC4ubnlWDZZyWp/9/DwkKNH\nj4qIyOeffy5du3ZNF8eaNWsMrw8cOCDu7u4iIjJ27NhMCbFmzZpy4sSJLLet0+kkICBARo0aJWvW\nrJGvvvpKxowZIwEBAYbEcurUKdHpdFnWrV999ZVUr15dRJTv4ssvv5QWLVpIiRIlpEKFCrJx40bD\nvJUrVxYrKyuxs7MTOzs7w/9Hah2Z+n7qI/XHdaoXSSwmPSvM0dERxYsXN7yOi4vDO++8Azc3N9ja\n2qJNmzaIioqCpBn3Mu0xvlKlSiE2NhYAMGzYMHTs2BEDBw5ExYoVMW3aNKP9I0FBQejVqxfs7e1h\nb28PT09PFC1aFKGhoYZ5sjsL5sGDB3B3dzc63ViMer0e06dPR7Vq1WBra4sqVaoAAJ4+fQpAOaaZ\ncbsXLlxA27Zt4eTkBDs7O6xZswbh4eEAgPv376Nq1apG40grODgYDx8+NHxme3t7LFy4EE+ePDHM\n4+LiYnT5nMrX2HHnp0+fIiEhIcvyepHvLO02nj59iqSkJFSuXNkwzdXVNV3HZE5nMd25cwfdunVD\n+fLlYWtri5kzZxrKNVXa79HS0tLwPWbF2dk53bwJCQlISUnBjz/+aOi87Nq1KwDle8vt/pN2u6Gh\noRg4cCBcXFxga2uLYcOGZRtz2n0PABwcHNJ18KauOywsDHFxcWjQoIFh3+jcubNhv8zOw4cPM+03\nacs+ODgYEyZMMKzXwcEBAIx+V66urnj48GGm7QQHB+PChQvp9t9NmzYZ/mdz6vd4+PBhpv0l7XaM\nlY0xGbc3fPhw/PDDDwCAH374AcOGDUs33dhnDA4OxrJly9J9rgcPHuDRo0fZbnv48OHYuHEjvv/+\newwfPjxdHVm2bFkAyHIdjx49gqOjIwDlRIBx48bh9OnTiIqKwsyZM/H222/j9u3bhu3s3r0bz549\nw7Nnz/DTTz+lW1d4eLhh2rNnz1CzZk2jMefEpIkl45ezbNky3LlzB/7+/oiKisKJEycgSispx3UV\nLVoUs2fPxvXr13H27Fns27cP3333XZbzurq64tChQ+kKJS4uDuXLlzcaW1qVKlVCQEBALj/lvzZt\n2oQ9e/bg+PHjiIqKQmBgIABk+/kGDx6Mnj174sGDB4iMjMTYsWMN87u6uuLu3btZLpcxfldXV1Sp\nUiXdZ46Ojsa+ffsM82dcJu3r7Mo3u7IqW7YsSpYsmWV5vch3lnGdxYoVS3c6871799JVcDlVNP/5\nz3/g6emJgIAAREVFYf78+S99skR22xoyZIih83L//v0AXnz/SV3/Bx98gCJFiuDatWuIiorC999/\nb5ITPMqWLYtSpUrhxo0bhn0jMjIS0dHROS5boUIF3L9/3/BaRNK9dnV1xddff51uv3v+/DmaNm1q\nmOfevXvpnlesWDHTdlxdXdGmTZt064mJicGXX34JIOfvu0KFCpn2lwoVKuT4+bKS1baGDh2K3bt3\n4/Lly7h16xZ69uyZbrqxz+jq6oqZM2em+1yxsbEYMGBAtjG0atUKjx8/xpMnT9CiRYt002rWrAkX\nFxds27Yt3fspKSnYuXMn2rVrl2l9JUqUwLhx42Bvb48bN25kXwB5IE+vY4mNjUWpUqVga2uLiIgI\nfPTRR5nmMVYJ//rrr7h69Sr0ej2sra1RrFgxFClSJMtlxo4diw8++MDwZYeFhWHPnj25jnPkyJFY\nv349fvnlF6SkpCAkJMSQ5bOLMTY2FiVKlECZMmXw/PlzfPDBBzl+ttjYWNjb26N48eLw9/fHpk2b\nDNMGDx6MY8eOYfv27UhOTkZ4eDguX74MQPkFnfZ6iMaNG8Pa2hqffPIJ4uPjodfrce3aNfz+++9G\nt532PT8/P6Pl6+zsbDTBWVhY4O2338bkyZPx6NEj6PV6nDt3DomJidmuMyup8RQpUgT9+/fHzJkz\nERsbi+DgYCxfvhxDhw41umxGsbGxsLa2hqWlJW7duoWvvvoq2/mzS/65+eGT1qhRozBr1iwEBARA\nRHDlyhVERETkuO7Y2FiULl0aNjY2CAkJMdmp8xYWFhg9ejQmTpyIsLAwAEqL4siRIzku27VrV1y/\nfh0///wzkpOTsXLlSjx+/NgwfezYsViwYIGhsoqKisL27dvTrWPp0qWIjIzE/fv3sXLlyiwr1a5d\nu+LOnTv44YcfkJSUhKSkJPz222+4desWgMz7e0aDBg3CvHnz8PTpUzx9+hT/+9//MrUqciur/d3F\nxQUNGzbE8OHD0bdvX5QoUcIwTUSwatUqhISEICIiAvPnzzd8xtGjR2P16tXw9/eHiOD58+fYv39/\ntq2lVHv37s2y3tLpdFi6dCnmzZuHzZs3IyEhAY8fP8aoUaMQGxtrOKV4xYoVOHHiBOLj45GcnIyN\nGzciNjYW3t7euSqHnPb7F/m/yNMWy8SJExEfH4+yZcuiefPm6Ny5c7a/otP+yg4NDUW/fv1ga2sL\nT09P+Pj4GHacjL/GJ0yYgB49eqBDhw6wsbFBs2bN4O/vbzSujBo1aoT169dj0qRJsLOzg4+PT7pf\nJMZiHD58OCpXroyKFSuidu3aaNasmdF5U61atQqzZ8+GjY0NPv7443T/dK6urjhw4ACWLVsGBwcH\neHt748qVKwCU5Hfjxg3Y29ujd+/esLCwwL59+/Dnn3+iatWqcHR0xJgxYwy/So21WFLfe/z4sdHy\nnTBhAnbs2IEyZcpg4sSJmcpr6dKlqFOnDho1agQHBwfMmDEDKSkp2a4zK2nj+/zzz1G6dGlUrVoV\nrVq1wpAhQzBixAijnyWrmDZt2gQbGxuMGTMGAwcOzPRdGCuLrOLKbj/NaPLkyejfvz86dOgAW1tb\njB49GgkJCUa3m2rOnDm4ePEibG1t0b17d/Tp0yfb7WSMK7t5Fy9ejGrVqqFp06awtbVF+/btcefO\nnRyXdXBwwPbt2zF9+nSULVsWAQEBaNmypWF6z549MW3aNAwcOBC2traoU6cODh8+nG4db775Jho0\naABvb29069YNI0eOzBS/tbU1jhw5gi1btqBixYooX748ZsyYgcTERACZ9/eMPvzwQzRs2BB169ZF\n3bp10bBhQ3z44Ye5KpuMjO3vvr6+uHr1aqZ9WKfTYfDgwejQoQPc3d1RvXp1w7YbNGiAb775BuPH\nj0eZMmVQvXr1bFvtaeP09PRMdxlF2mn9+/fH999/j+XLl6Ns2bKoVasW/vnnH5w5cwb29vYAgNKl\nS2PKlCkoX748HB0d8dVXX2Hnzp25vv7Mzs4u3XUsK1asyBRrbstVJy/68+wFvP3229i/fz+cnJxw\n9epVAEBERAQGDBiA4OBguLm5Ydu2bbCzs8urEIjIjCwsLBAQEJDrvkItO3XqFIYOHYrg4OB071ep\nUgXr1q3D66+/rlJk2penh8JGjBiBQ4cOpXtv0aJFhl9P7dq1w6JFi/IyBCKiF5aUlIQVK1a89BBI\nhV2eJpZWrVoZmmmp9uzZA19fXwBKU3PXrl15GQIRmZHaV7Gbws2bN2Fvb4/Q0NAsDwVTzoqae4Oh\noaGGUzmdnZ3TnRJMRPlbQRhux8PDI9vO9tSzP8k4VUc31soAj0REZDpmb7E4Ozvj8ePHKFeuHB49\negQnJ6cs56tWrZrRU16JiChr7u7uL3VdnimZvcXSo0cPbNy4EQCwcePGTBcepbp7967hYkotP+bM\nmaN6DIyTMTLOwh3nyZMCZ2fBvXuiiR/keZpYBg0ahObNm+P27duoVKkS1q9fj+nTp+Po0aOoUaMG\nfvnlF0yfPj0vQyAiKtCePAEGDwbWrwde4P5teSpPD4UZu/HXsWPH8nKzRESFgl4PDBkC+PoCnTur\nHc2/8uWtibXEx8dH7RByhXGaTn6IEWCcpqbFOD/+GEhOBubOVTuS9PL0yvtXodPpoNHQiIhUd/Qo\n8NZbwB9/AGkGwdZE3Wn2s8KIiOjVhIQAw4cDmzalTypawUNhRET5SFISMHAgMH480Lat2tFkjYfC\niIjykWnTgCtXgP37AYssmgZaqDt5KIyIKJ/YswfYvBm4eDHrpKIVbLEQEeUDgYFA06bArl1As2bG\n59NC3anhnEdERAAQHw/06QN88EH2SUUr2GIhItIwEWDkSCW5bNoE5DRurxbqTvaxEBFp2Nq1wIUL\nyiO/DAbPFgsRkUb99hvQtStw6hRQs2bultFC3ck+FiIiDXr6FOjXD1i9OvdJRSvYYiEi0hi9XhlU\n0tsbWLz4xZbVQt3JFgsRkcbMnasMLjl/vtqRvBx23hMRacjevcCGDcDvvwNF82kNnU/DJiIqeAIC\nlFOLd+8GnJ3Vjubl8VAYEZEGxMUpF0HOmZM/LoLMDjvviYhUJgIMG6Y8//77V7teRQt1Jw+FERGp\nbMUK4Pp14MyZ/HMRZHaYWIiIVPTLL8opxefPA5aWakdjGuxjISJSSXAwMHgw8OOPgJub2tGYDhML\nEZEK4uKAXr2A998H2rVTOxrTYuc9EZGZpXbWiwA//GDafhUt1J3sYyEiMrOC1lmfERMLEZEZFcTO\n+ozYx0JEZCYFtbM+IyYWIiIzKMid9Rmx856IKI/lZWd9RlqoO9nHQkSUx5YsAW7eVO4EWRA76zNi\nYiEiykP79wOffVawO+szYmIhIsojN28CI0Yow+BXqqR2NObDznsiojwQEQH06KEcBsvvw+C/KHbe\nExGZWHIy0KkT4OUFLFtm3m1roe5kYiEiMrEJE4Dbt4F9+8x/e2Et1J3sYyEiMqG1a4FDh4ALF/Lv\nPetfFVssREQmcuqUcnvhU6eAmjXViUELdadqnfcLFy5ErVq1UKdOHQwePBj//POPWqEQEb2y4GCg\nf3/l1sJqJRWtUCWxBAUF4ZtvvsHFixdx9epV6PV6bNmyRY1QiIhe2fPnwJtvKsO1dOyodjTqU+UI\noI2NDYoVK4a4uDgUKVIEcXFxqFixohqhEBG9kpQUYMgQoEEDYOJEtaPRBlVaLGXKlMGUKVPg6uqK\nChUqwM7ODm+88YYaoRARvZLp04HISOCrrwrHcC25oUqL5e7du1ixYgWCgoJga2uLfv364ccff8SQ\nIUPSzTd37lzDcx8fH/j4+Jg3UCKibKxbB/z8szJcS/Hi6sTg5+cHPz8/dTZuhCpnhW3duhVHjx7F\n2rVrAQDff/89zp8/jy+//PLfwDRwZgMRkTF+fsCAAcDJk9rqrNdC3anKobDXXnsN58+fR3x8PEQE\nx44dg6enpxqhEBG9sDt3lKSyaZO2kopWqJJYvLy8MHz4cDRs2BB169YFAIwZM0aNUIiIXkhEBNCt\nGzBvXsG/YdfL4gWSRES5lJionE7coAGwdKna0WRNC3UnEwsRUS6IAKNGAWFhSod9kSJqR5Q1LdSd\nhXQkGyKiF7NsGfDHH8Dp09pNKlrBxEJElINdu4Dly5XTiq2s1I5G+5hYiIiy8dtvwOjRwIEDhesu\nkK+Cd5AkIjIiMFAZA2ztWqBRI7WjyT+YWIiIsvDsGdClCzBjhpJcKPd4VhgRUQb//KOcVly/PvDp\np2pH82K0UHcysRARpSECDBsGxMUB27fnvzPAtFB3svOeiCiN2bOBgADgl1/yX1LRCiYWIqL/8+23\nyvhf584BlpZqR5N/8VAYERGAI0eA4cOBEyfy98CSWqg72WIhokLvyhVg6FBg5878nVS0gqcbE1Gh\n9uCBMlrxypVAq1ZqR1MwMLEQUaH17BnQqRPw3/8CAweqHU3BwT4WIiqUEhKADh2UIfA//bTg3K9e\nC3UnEwsRFTp6PdC/P1CsmHIWmEUBOnajhbqTnfdEVKiIABMmKIfBDh4sWElFK5hYiKhQWbQIOHUK\nOHkSKFFC7WgKJiYWIio0NmwA1qwBzp4FbG3VjqbgYh8LERUKBw8CI0YAv/4KeHioHU3e0ULdyRYL\nERV4/v7KVfW7dxfspKIV7LYiogLtr7+U+6msWwc0b652NIUDEwsRFVghIcq1Kv/7H9Cjh9rRFB5M\nLERUIEVEKEnlnXeUe9aT+bDznogKnNhY4I03gJYtgSVLCs5V9bmhhbqTiYWICpTERKB7d6BiRaVf\npTAlFUAbdScTCxEVGHo9MHiwkly2bweKFsLzXrVQdxbCYieigkgEePdd4MkT5ZqVwphUtIJFT0QF\nwuzZwG+/KRdAliypdjSFGxMLEeV7K1YA27YpY4DZ2KgdDTGxEFG+9t13yv1UTp8GnJzUjoYAJhYi\nysd27gSmTQN++QVwdVU7GkrFxEJE+dLBg8C4ccChQxz/S2uYWIgo3zlxAvD1VQaV9PZWOxrKiEO6\nEFG+cuEC0K8fsHUr0KyZ2tFQVlRLLJGRkejbty88PDzg6emJ8+fPqxUKEeUTly8rg0muXw+0bat2\nNGSMaofCJkyYgC5dumDHjh1ITk7G8+fP1QqFiPKBW7eAzp2BL74AunZVOxrKjipDukRFRcHb2xt/\n//230Xm0MCwBEWlDYCDQpg3w8cdK3woZp4W6U5VDYYGBgXB0dMSIESNQv359jB49GnFxcWqEQkQa\nFxKijFQ8fTqTSn6hSmJJTk7GxYsXMW7cOFy8eBGlS5fGokWL1AiFiDTsyRMlqYwdq5xaTPnDS/Wx\nxMfHY9++fejXr99LbdTFxQUuLi5o1KgRAKBv375ZJpa5c+canvv4+MDHx+eltkdE+U9YGNCuHTBw\nIDB1qtrRaJefnx/8/PzUDiOdXPex6PV6HDp0CJs3b8bRo0fRsmVL7Ny586U33Lp1a6xduxY1atTA\n3LlzER8fj8WLF/8bmAaOExKROsLDgddfV84A+9//Ct89VV6FFurObBOLiODEiRPYvHkzDhw4gCZN\nmuDUqVMIDAyEpaXlK2348uXLGDVqFBITE+Hu7o7169fD1tb238A0UDhEZH4REUpLpVMnYMECJpUX\npYW6M9vE4uLiAk9PT7z99tvo3r07SpcujSpVqiAwMDDvA9NA4RCReUVGKn0qPj6F75bCpqKFujPb\nzvu+ffsiICAAW7duxd69e3mtCRHlmagooGPHwnmf+oImxz6WlJQU+Pn5YfPmzTh48CAiIyOxbt06\ndO3aFVZWVnkXmAayLhGZR3S0klQaNAA+/5xJ5VVooe58oQskExMTcfjwYWzevBmHDx9GeHh43gWm\ngcIhorxS7uRZAAAZrElEQVQXG6v0p9SpA6xaxaTyqrRQd770lffx8fEoVaqUqeMx0ELhEFHeev4c\n6NIFqFEDWLMGsOCwuK9MC3Vnrr7GvXv3wtvbG/b29rC2toa1tTWcnZ3zOjYiKsBiY5WkUrUqk0pB\nk6sWi7u7O37++WfUrl0bFmb69rWQdYkob8TEKANKvvYa8PXXTCqmpIW6M1dfp4uLC2rVqmW2pEJE\nBVfq2V+1azOpFFS5arGcP38es2fPRtu2bVG8eHFlQZ0OkydPzrvANJB1ici0IiOVpNKoEc/+yita\nqDtzNVbYrFmzYG1tjYSEBCQmJuZ1TERUAEVEAB06KNepLF/OpFKQ5arFUrt2bVy7ds0c8RhoIesS\nkWmEhytX1Ldrx4sf85oW6s5cHd3s0qULDh8+nNexEFEBFBamDCjZsSOTSmGRqxaLlZUV4uLiULx4\ncRQrVkxZUKdDdHR03gWmgaxLRK8mNFRppfTsqdz9kUkl72mh7lTl1sS5oYXCIaKXl3rnxwEDgDlz\nmFTMRQt1J0/0IyKTCwwEWrcG3noLmDuXSaWwYWIhIpO6dUtJKlOmANOmqR0NqeGlbk1MRJSVP/9U\nrqhftAjw9VU7GlJLrhOLXq9HaGgokpOTDe+5urrmSVBElP+cPw+8+Sbw5ZdA375qR0NqylVi+fzz\nz/HRRx/ByckJRYoUMbx/9erVPAuMiPKPX39VOuk3bFAGlqTCLdeDUPr7+8PBwcEcMQHQxpkNRJSz\n/fuBESOAbduUWwqTurRQd+aq897V1RU2NjZ5HQsR5TPbtwNvvw3s3cukQv/K1aGwKlWqoG3btuja\ntavZBqEkIm1btw6YNQs4cgTw8lI7GtKSXCUWV1dXuLq6IjExEYmJiRAR6HhiOlGhJAIsXqzcnMvP\nT7n7I1FavPKeiHItJQWYOlVppRw+DFSooHZElJEW6s5sWywTJkzAZ599hu7du2eaptPpsGfPnjwL\njIi0JSkJGDUKCAgATp4E7O3Vjoi0KtvEMnz4cADAlClTMk3joTCiwiMuDujfXzkMdvQoYGmpdkSk\nZTwURkTZevYM6N4dqFIF+PZb4P8GOCeN0kLdybHCiMiohw+BNm2Axo2BjRuZVCh3mFiIKEsBAcpt\nhAcNApYtAyxYW1AucVchokwuXABatQJmzFAe7FKlF5FjYtmwYQPq168PS0tLWFpaomHDhti4caM5\nYiMiFezZo/SpfPMNMHq02tFQfpTtWWEbN27EZ599hk8//RTe3t4QEVy6dAlTp06FTqcznDVGRAXD\n6tXA//6njP/VqJHa0VB+le1ZYU2aNMGWLVtQpUqVdO8HBQVhwIABuHDhQt4FpoEzG4gKCxFg5kxg\nxw7g4EHA3V3tiOhlaaHuzLbFEhMTkympAICbmxtiYmLyLCgiMp/ERGDkSKWz/swZwNFR7Ygov8s2\nsZQsWfKlphFR/hAVBfTpA1hZAceP88JHMo1sD4WVKlUK1apVy3La3bt3ERcXl3eBaaA5R1SQhYQo\nN+Vq2RJYuRJIcw8/yse0UHdm22K5efOmueIgIjO6fBno0QMYNw54/32eTkymZZIhXZo1a4Zz5869\n8HJ6vR4NGzaEi4sL9u7dmz4wDWRdooIo9Y6PX3yhjP9FBYsW6k6TXCCZkJDwUst99tln8PT05ICW\nRGYgAnz2mXJtyp49TCqUd1S78v7Bgwc4cOAARo0apXp2JSrokpOB8eOVix7PngWaNlU7IirIcnUH\nybwwadIkLFmyBNHR0WqFQFQoREUBAwYoz8+cAWxt1Y2HCj5VWiz79u2Dk5OT4Wp+IsobQUFAixbK\nBY/79jGpkHmYpMXy3XffvdD8Z8+exZ49e3DgwAEkJCQgOjoaw4cPz7SeuXPnGp77+PjAx8fHBNES\nFQ7nzwO9ewPTpwPvvcczvwoqPz8/+Pn5qR1GOtmeFWZlZWW0Y12n05nkMNaJEyewdOlSnhVGZEKb\nNwP//S+wfj3QrZva0ZA5aaHuzLbFEhsba5YgeFYYkWno9cqYX9u2KVfS162rdkRUGPHWxEQFRFQU\nMHiwcn/67duBsmXVjojUoIW6kzf6IioA7txRTiGuUgU4coRJhdTFxEKUzx05otztcdIk5Wp63pee\n1KbadSxE9GpEgOXLgSVLlPuotGqldkRECiYWonwoIQF45x3gyhXltOLKldWOiOhfPBRGlM/cvw+0\naQPExwOnTzOpkPYwsRDlI7/8AjRuDPTtC2zdCpQurXZERJnxUBhRPiCi9KUsXw78+CPw+utqR0Rk\nHBMLkcZFRyv3T3nwAPD3BypVUjsiouzxUBiRht24oRz6cnQETp5kUqH8gYmFSKO2b1c66adNA1av\nBkqUUDsiotzhoTAijUlKAmbMAHbuBA4fBurXVzsiohfDxEKkIffvAwMHAjY2wO+/Aw4OakdE9OJ4\nKIxII/bvBxo1Anr0UJ4zqVB+xRYLkcqSkoAPP1TuobJjB9CypdoREb0aJhYiFaUe+rK1BS5e5KjE\nVDDwUBiRStIe+tq3j0mFCg62WIjMLO2hr507gRYt1I6IyLSYWIjM6O5dYMgQoEwZHvqigouHwojM\nQAT47jvlLo+DBvHQFxVsbLEQ5bGoKOA//wEuXwaOHQO8vNSOiChvscVClIfOnAHq1QPs7IDffmNS\nocKBLRaiPJCcDMybp4zx9fXXyplfRIUFEwuRiQUFKR30lpZKB32FCmpHRGRePBRGZCIiwPr1yrUp\nPXsqA0gyqVBhxBYLkQk8fgyMGQPcuwccPw7Urat2RETqYYuF6BVt36500Nepo9zhkUmFCju2WIhe\nUkQEMH488McfwK5dyjUqRMQWC9FLOXhQaZmULQtcusSkQpQWWyxELyA6Gpg6FTh0CNi4EWjXTu2I\niLSHLRaiXDp4UOlHSU4GrlxhUiEyhi0WohyEhwOTJgGnTgHr1gFvvKF2RETaxhYLkREiwLZtQO3a\nymjEV68yqRDlBlssRFl49AgYNw64fRv46SegWTO1IyLKP9hiIUpDBPj2W2WwyNq1lTO+mFSIXgxb\nLET/5/ZtpZUSFQUcPcqRiIleFlssVOjFxwOzZyu3CO7RAzh/nkmF6FWoklju37+Ptm3bolatWqhd\nuzZWrlypRhhEOHxYOYX45k3lRlwTJgBF2Y4neiU6ERFzb/Tx48d4/Pgx6tWrh9jYWDRo0AC7du2C\nh4fHv4HpdFAhNCokHj5UTiH+7Tfgiy+ALl3UjojINLRQd6rSYilXrhzq1asHALCysoKHhwcePnyo\nRihUyOj1wOefK4e6qlcHrl1jUiEyNdUb/UFBQbh06RKaNGmidihUwJ09C7z3HmBtDZw8CaRpIBOR\nCamaWGJjY9G3b1989tlnsLKyyjR97ty5huc+Pj7w8fExX3BUYISEANOmAX5+wOLFwODBgE6ndlRE\npuHn5wc/Pz+1w0hHlT4WAEhKSkK3bt3QuXNnTJw4MdN0LRwnpPwtIQFYvhxYtgx45x1gxgwgi98v\nRAWKFupOVVosIoKRI0fC09Mzy6RC9CpEgL17gcmTlYscL1wA3N3Vjoqo8FClxXL69Gm0bt0adevW\nhe7/jkksXLgQnTp1+jcwDWRdyn9u3gQmTlRuEfzZZ0CHDmpHRGReWqg7VTsUlhMtFA7lH2FhwMcf\nA5s3AzNnAu++CxQrpnZUROanhbqTV95TvhYfDyxc+O8ZXjduKC0WJhUi9ah+ujHRy9DrgR9+AGbN\nAho3Bs6dU65LISL1MbFQvnPkCPD++0Dp0sDWrRx9mEhrmFgo37h8WUkogYHAokVAr168HoVIi9jH\nQpp36xYwYADQqRPQvTtw/TrQuzeTCpFWMbGQZv39N+DrC7RuDdSvDwQEAOPHs2OeSOuYWEhzHjwA\nxo5VOuWrVgX++ksZkqV0abUjI6LcYGIhzQgNVYay9/IC7OyUOzrOmQPY2qodGRG9CCYWUt3Dh8rw\nKx4eQEqK0oeyaBHg4KB2ZET0MphYSDVBQco95mvXVsb3unpVGYalXDm1IyOiV8HEQmZ35w4wYgTQ\noIFyyOvWLWUU4ooV1Y6MiEyB17GQ2Vy5AixYAPzyi3LDrYAAwN5e7aiIyNTYYqE8JQL8+ivQrRvQ\nsaPSSrl7VxmKhUmFqGBii4XyRFISsH07sHSpMlDk5MnK61Kl1I6MiPIah80nk4qKAr75Bli5Urm5\n1v/7f0DnzoAF28ZEZqGFupMtFjKJ4GAlmaxfrySSXbuUq+WJqPDh70h6aSkpykjDPXsqSUSnA/78\nE/jxRyYVosKMLRZ6Yc+eARs2AF99BVhaKndr/PFHDrlCRAomFsq1S5eAL78Edu4EunRRDns1b85R\nhokoPSYWylZsLLBtG7B2rTI45DvvKBc0OjurHRkRaRXPCqNMRICzZ4FvvwV++kkZtv7tt4GuXYGi\n/ClCpGlaqDtZTZDBo0fAd98pCUWnA0aOBG7e5NhdRPRimFgKufh4YP9+YONG4PRpoE8fpe+kWTP2\nnRDRy2FiKYSSk4Hjx4FNm4A9e5RhVoYMATZvBqys1I6OiPI79rEUEiLAuXNKMtm+HXBzAwYPBvr3\nB8qXVzs6IjIVLdSdbLEUYCkpwO+/Kx3wW7cq43QNHgycOQNUq6Z2dERUUDGxFDBJScDJk8DPPyvD\nqlhZAb16Kc/r1mW/CRHlPSaWAiA+Xhla5eefgX37gCpVlGRy9Khyu18iInNiH0s+FRgIHDwIHDoE\nnDihdMD36qWM21WpktrREZFatFB3MrHkE/HxSgI5dEhJKFFRQKdOyqN9e8DBQe0IiUgLtFB3MrFo\nlF6v3MrXz085zHXmDFCvnpJIOncGvLx4jxMiykwLdScTi0akTSR+fsCpU8p4XD4+QLt2wBtvAHZ2\nKgdJRJqnhbqTiUUlCQnAxYvA+fPKIa6TJ5WhU3x8lEebNhxKhYhenBbqTiYWMxAB7t5VksiFC8rf\n69eVM7aaNFGSCBMJEZmCFupOJhYTS0lRksjly8rj4kUlmZQqBTRtqiSSpk2VOyxaWqodLREVNFqo\nO1VLLIcOHcLEiROh1+sxatQoTJs2LX1gGiicnERHA9eu/ZtELl9WXjs4KJ3rXl5Kh3uTJkDFimpH\nS0SFgRbqTlUSi16vR82aNXHs2DFUrFgRjRo1wubNm+GR5mo+LRQOoFzJ/vffwJ07wO3byt/U59HR\nQKVKfmjZ0seQSOrW1WYnu5+fH3x8fNQOI0f5Ic78ECPAOE0tv8SphbpTlRNW/f39Ua1aNbi5uaFY\nsWIYOHAgdu/erUYoiI9XEsWxY8pw8R99pNyHpH17oHp1wNpaucHV6tVASAjg7Q3Mng389ptyd8WB\nA/2wdi3w3nvKDbG0mFQA5Z8iP8gPceaHGAHGaWr5JU4tUGVIl5CQEFRKc3m4i4sLLly48Mrr1euV\nyj4mRnmEhwNhYcCTJ8rfjM8fPVJaHS4ugKvrv49mzYABA5TnVasCxYu/cmhERIWGKolF94ojId6/\nr9w/JG0SiYlRWh+lSyutDGtrpa/D0RFwclL+urkBjRsrzx0dlbOwnJ15oSERkUmJCs6dOycdO3Y0\nvF6wYIEsWrQo3Tzu7u4CgA8++OCDjxd4uLu7m7tKz0SVzvvk5GTUrFkTx48fR4UKFdC4ceNMnfdE\nRJQ/qXIorGjRovjiiy/QsWNH6PV6jBw5kkmFiKiA0OwFkkRElD9prtt62bJlsLCwQERERJbTDx06\nhNdeew3Vq1fH4sWLzRwdMGvWLHh5eaFevXpo164d7t+/n+V8bm5uqFu3Lry9vdG4cWNNxqh2WU6d\nOhUeHh7w8vJC7969ERUVleV8apYlkPs41S7P7du3o1atWihSpAguXrxodD61yzO3capdnhEREWjf\nvj1q1KiBDh06IDIyMsv51CjP3JTNf//7X1SvXh1eXl64dOmSWeIyULeLJ7179+5Jx44dxc3NTcLD\nwzNNT05OFnd3dwkMDJTExETx8vKSGzdumDXG6Ohow/OVK1fKyJEjs5zP2Gcwh9zEqIWyPHLkiOj1\nehERmTZtmkybNi3L+dQsS5HcxamF8rx586bcvn1bfHx85I8//jA6n9rlmZs4tVCeU6dOlcWLF4uI\nyKJFizSzf+ambPbv3y+dO3cWEZHz589LkyZNzBafiIimWiyTJ0/GJ598YnS6Fi6stLa2NjyPjY1F\n2bJljc4rKh1lzE2MWijL9u3bw+L/zvVu0qQJHjx4YHRetcoSyF2cWijP1157DTVq1MjVvGqWZ27i\n1EJ57tmzB76+vgAAX19f7Nq1y+i85izP3JRN2tibNGmCyMhIhIaGmi1GzSSW3bt3w8XFBXXr1jU6\nT1YXVoaEhJgjvHRmzpwJV1dXbNy4EdOnT89yHp1OhzfeeAMNGzbEN998Y+YIc45RK2WZ6ttvv0WX\nLl2ynKZ2WaZlLE6tlWd2tFSexmihPENDQ+Hs7AwAcHZ2Nloxm7s8c1M2Wc2T3Q83UzPrWWHt27fH\n48ePM70/f/58LFy4EEeOHDG8l9UvgFe9sDK3jMW5YMECdO/eHfPnz8f8+fOxaNEiTJo0CevXr880\n75kzZ1C+fHmEhYWhffv2eO2119CqVSvNxKiVsgSU77948eIYPHhwluvI67I0RZxaKs+caKU8s6N2\nec6fPz9TPMZiMkd5ZowlNzLWoeYqU8DMieXo0aNZvn/t2jUEBgbCy8sLAPDgwQM0aNAA/v7+cHJy\nMsxXsWLFdB3R9+/fh4uLi9nizGjw4MFGf2WXL18eAODo6IhevXrB39/fpDvbq8aolbLcsGEDDhw4\ngOPHjxudJ6/L0hRxaqU8c0ML5ZkTLZSns7MzHj9+jHLlyuHRo0fp6qK0zFGeaeWmbDLO8+DBA1Q0\n5xDrZu3RySVjnWFJSUlStWpVCQwMlH/++UeVDr07d+4Ynq9cuVKGDh2aaZ7nz58bOtBjY2OlefPm\ncvjwYU3FqIWyPHjwoHh6ekpYWJjRedQuS5HcxamF8kzl4+Mjv//+e5bTtFCeqbKLUwvlOXXqVMOI\nIAsXLsyy816N8sxN2aTtvD937pzZO+81mViqVKliSCwhISHSpUsXw7QDBw5IjRo1xN3dXRYsWGD2\n2Pr06SO1a9cWLy8v6d27t4SGhmaK8+7du+Ll5SVeXl5Sq1Yts8eZmxhF1C/LatWqiaurq9SrV0/q\n1asn//nPfzLFqXZZ5jZOEfXL86effhIXFxcpWbKkODs7S6dOnTLFqYXyzE2cIuqXZ3h4uLRr106q\nV68u7du3l2fPnmWKU63yzKpsVq9eLatXrzbM8+6774q7u7vUrVs327ME8wIvkCQiIpPSzFlhRERU\nMDCxEBGRSTGxEBGRSTGxEBGRSTGxEBGRSTGxEBGRSTGxEBGRSTGxUL70+uuvpxtbDgBWrFiBcePG\nmXxbe/fuzdP7gQQFBaFOnToAgMuXL+PgwYN5ti0ic2BioXxp0KBB2LJlS7r3tm7danQgy1fRvXt3\nTJs2zeTrzcqlS5dw4MABs2yLKK8wsVC+1KdPH+zfvx/JyckAlF/9Dx8+RMuWLbOcX0Qwbtw4eHh4\noEOHDujatSt27twJAJg+fTpq1aoFLy8vTJ06NdOyGzZswHvvvQcAeOuttzBhwgS0aNEC7u7uhnWk\nNWPGDKxatcrweu7cuVi2bBkA5W6UderUQd26dbFt27Z0yyUlJWH27NnYunUrvL29sW3bNpw4cQLe\n3t7w9vZG/fr1ERsb+xKlRWReZh3dmMhUypQpg8aNG+PAgQPo0aMHtmzZggEDBhidf+fOnQgODsbN\nmzcRGhoKDw8PjBw5EuHh4di1axdu3boFAIiOjs60bMbhxh8/fowzZ87g5s2b6NGjB/r06ZNu+oAB\nAzBx4kTDYbnt27fjyJEj2LlzJy5fvowrV64gLCwMjRo1Qps2bQzLFStWDB9//DH++OMPrFy5EgDQ\no0cPrFq1Cs2aNUNcXBxKlCjxcgVGZEZssVC+lfZw2NatWzFo0CCj8545cwb9+/cHoAyH3rZtWwCA\nnZ0dSpYsiZEjR+Lnn39GqVKlst2mTqdDz549AQAeHh5Z3vypXr16ePLkCR49eoTLly/D3t4eFStW\nxOnTpzF48GDodDo4OTmhTZs28Pf3T7esKAPDGl63aNECkyZNwueff45nz56hSJEiuSgZInUxsVC+\n1aNHDxw/fhyXLl1CXFwcvL29s50/q/FWixQpAn9/f/Tt2xf79u1Dp06dctxu8eLFs10nAPTr1w87\nduzAtm3bMHDgQABKUso4f043X5o2bRrWrVuH+Ph4tGjRArdv384xPiK1MbFQvmVlZYW2bdtixIgR\nOXbat2jRAjt37oSIIDQ0FH5+fgCA58+fIzIyEp07d8ann36Ky5cvZ1r2ZQYAHzBgADZv3owdO3ag\nX79+AIBWrVph69atSElJQVhYGE6ePInGjRunW87GxgYxMTGG13fv3kWtWrXw/vvvo1GjRkwslC+w\nj4XytUGDBqF3796ZOsIz6tOnD44fPw5PT09UqlQJ9evXh62tLWJiYvDmm28iISEBIoLly5dnWjbj\nbWmNPU/L09MTsbGxcHFxMdw3vVevXjh37hy8vLyg0+mwZMkSODk5ISgoyLCetm3bYtGiRfD29saM\nGTNw+vRp/Prrr7CwsEDt2rXRuXPnFy4jInPj/Vio0Hj+/DlKly6N8PBwNGnSBGfPnjV6u1kienls\nsVCh0a1bN0RGRiIxMRGzZ89mUiHKI2yxUIFy9epVDB8+PN17JUuWxLlz51SKiKjwYWIhIiKT4llh\nRERkUkwsRERkUkwsRERkUkwsRERkUkwsRERkUv8fqco5ssBOZXcAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f9785cf0a50>" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4\n", ": Page No 414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_GS = 0 # in V\n", "I_DSS = 10 # in mA\n", "I_D = I_DSS # in mA\n", "R_D = 1.5 # in kohm\n", "V_DD = 20 # in V\n", "V_DS = V_DD - (I_D*R_D) # in V\n", "print \"The value of V_DS = %0.f V\" %V_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V_DS = 5 V\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.5\n", ": Page No 415" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_D = 5 # in mA\n", "V_GS1 = 8 # in V\n", "V_GS2 = 4 # in V\n", "V_GS = 6 # in V\n", "K = I_D/(V_GS1-V_GS2)**2 # in mA/V**2\n", "I_D = K*(V_GS-V_GS2)**2 # in mA\n", "print \"The drain current = %0.2f mA\" %I_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 1.25 mA\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.6\n", ": Page No 415" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_T = 1 # in V\n", "I_D = 4 # in mA\n", "V_GS = 5 # in V\n", "V_GSth = 1 # in V\n", "K = I_D/(V_GS-V_GSth)**2 # in mA/V**2\n", "print \"The value of K = %0.2f mA/V**2\" %K" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of K = 0.25 mA/V**2\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7\n", ": Page No 415" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_GS = 3 # in V\n", "V_GSth=2 # inV\n", "# Part (a)\n", "print \"Part (a) : For V_DS= 0.5 V\"\n", "V_DS= 0.5 # in V\n", "if V_DS<(V_GS-V_GSth) :\n", " print \"Transistor is in ohmic region\"\n", "else :\n", " print \"Transistor is in saturation region\"\n", "\n", "# Part (b)\n", "print \"Part (b) : For V_DS= 1 V\"\n", "V_DS= 1 # in V\n", "if V_DS<(V_GS-V_GSth) :\n", " print \"Transistor is in ohmic region\"\n", "else :\n", " print \"Transistor is in saturation region\"\n", "\n", "# Part (c)\n", "print \"Part (c) : For V_DS= 5 V\"\n", "V_DS= 5 # in V\n", "if V_DS<(V_GS-V_GSth) :\n", " print \"Transistor is in ohmic region\"\n", "else :\n", " print \"Transistor is in saturation region\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a) : For V_DS= 0.5 V\n", "Transistor is in ohmic region\n", "Part (b) : For V_DS= 1 V\n", "Transistor is in saturation region\n", "Part (c) : For V_DS= 5 V\n", "Transistor is in saturation region\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.8\n", ": Page No 416" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 4 # in mA\n", "V_GSoff = -2 # in V\n", "V_GS = -0.5 # in V\n", "I_D = I_DSS*(1-(V_GS/V_GSoff))**2 # in mA\n", "print \"At V_GS=-0.5 V, the drain current = %0.2f mA\" %I_D\n", "V_GS = -1 #in V\n", "I_D = I_DSS*(1-(V_GS/V_GSoff))**2 # in mA\n", "print \"At V_GS=-1.0 V, the drain current = %0.f mA\" %I_D\n", "V_GS = -1.5 # in V\n", "I_D = I_DSS*(1-(V_GS/V_GSoff))**2 # in mA\n", "print \"At V_GS=-1.5 V, the drain current = %0.2f mA\" %I_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At V_GS=-0.5 V, the drain current = 2.25 mA\n", "At V_GS=-1.0 V, the drain current = 1 mA\n", "At V_GS=-1.5 V, the drain current = 0.25 mA\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.9\n", ": Page No 416" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 12 # in mA\n", "I_DSS= I_DSS*10**-3 # in A\n", "I_D = I_DSS # in A\n", "V_DD = 12 # in V\n", "R_D = 470 # in ohm\n", "V_DS = V_DD - (I_D*R_D) # in V\n", "print \"The circuit drain current = %0.f mA\" %(I_D*10**3)\n", "print \"The drain source voltage = %0.2f V\" %V_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The circuit drain current = 12 mA\n", "The drain source voltage = 6.36 V\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.10\n", ": Page No 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_D = 12 # in mA\n", "I_D= I_D*10**-3 # in A\n", "I_DSS = I_D # in A\n", "V_DS = 6.36 # in V\n", "g_mo = 4000 # in \u00b5S\n", "g_mo=g_mo*10**-6 # in S\n", "g_m = g_mo # in S\n", "R_D = 470 # in ohm\n", "R_L = 2 # in kohm\n", "R_L = R_L * 10**3 # in ohm\n", "r_d = (R_D*R_L)/(R_D+R_L) # in ohm\n", "print \"The value of r_d = %0.2f \u03a9\" %r_d\n", "A_v = g_m*r_d \n", "print \"The value of A_v = %0.2f\" %A_v\n", "V_in = 100 # in mV\n", "V_in = V_in *10**-3 # in V\n", "V_out = A_v*V_in # in V\n", "print \"The value of Vout = %0.2f V\" %V_out" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of r_d = 380.57 \u03a9\n", "The value of A_v = 1.52\n", "The value of Vout = 0.15 V\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.11\n", ": Page No 417 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_DS = 0.1 # in V\n", "I_D = 10 # in mA\n", "I_D= I_D*10**-3 # in A\n", "R_DS = V_DS/I_D # in ohm\n", "print \"Part (a) The value of R_DS(on) = %0.f ohm\" %R_DS\n", "V_DS = 0.75 # in V\n", "I_D = 100 # in mA\n", "I_D= I_D*10**-3 # in A\n", "R_DS = V_DS/I_D # in ohm \n", "print \"Part (b) The value of R_DS(on) = %0.1f ohm\" %R_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a) The value of R_DS(on) = 10 ohm\n", "Part (b) The value of R_DS(on) = 7.5 ohm\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.12\n", ": Page No 418 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_D = 500 # in mA\n", "V_GS = 3 # in V\n", "R_DS = 2 # in ohm\n", "V_DD = 20 # in V\n", "R1 = 1 # in kohm\n", "R1 = R1 * 10**3 # in ohm\n", "V_out = (R_DS/(R1+R_DS))*V_DD # in V\n", "print \"The output voltage = %0.2f V\" %V_out" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage = 0.04 V\n" ] } ], "prompt_number": 32 } ], "metadata": {} } ] }