{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter - 6 : Field Effect Devices (JFET)" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1\n", ": Page No 351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "V_D = 10 # in V\n", "R = 10*10**3 # in ohm\n", "I_D = V_D/R # in A\n", "V_P = 4 # in V\n", "I_DSS = 10 # in mA\n", "I_DSS = I_DSS * 10**-3 # in A\n", "R_DS = V_P/I_DSS # in ohm\n", "V_D = (R_DS/(R+R_DS))*V_D # in V\n", "print \"The drain voltage = %0.3f V\" %V_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain voltage = 0.385 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2\n", ": Page No 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_P = 4 # in V\n", "I_DSS = 10 # in mA\n", "I_DSS =I_DSS *10**-3 # in A\n", "R_DS = V_P/I_DSS # in ohm\n", "V_DD = 30 # in V\n", "I_D = 2.5 # in mA\n", "R_D = 2 # in kohm\n", "V_D = V_DD - (I_D*R_D) # in V\n", "print \"The drain voltage = %0.f V\" %V_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain voltage = 25 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3\n", ": Page No 355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "# Given data\n", "R2 = 1 # in M ohm\n", "R2 = R2*10**6 # in ohm\n", "R1 = 2 # in M ohm\n", "R1 = R1*10**6 # in ohm\n", "V_DD = 30 # in V\n", "R_D= 1*10**3 # in ohm\n", "V_G = (R2/(R1+R2))*V_DD # in V\n", "R_S= 2*10**3 # in ohm\n", "I_D= V_G/R_S # in A\n", "V_D= V_DD-I_D*R_D # in V\n", "V_DS= V_D-V_G # in V\n", "R_D= R_D+R_S # in ohm\n", "I_Dsat=V_DD/R_D*10**3 # in mA\n", "print \"The value of I_D = %0.f mA\" %(I_D*10**3)\n", "print \"The value of V_DS = %0.f volts\" %V_DS\n", "print \"Thus the Q-point = (\",int(V_DS),\"V,\",int(I_D*10**3),\"mA)\" \n", "V_D= np.arange(0,V_DD,0.1) # in V\n", "I_D= (V_DD-V_D)/R_D*10**3 # in mV\n", "plt.plot(V_D,I_D) \n", "plt.plot([0,15],[5,5], '--')\n", "plt.plot([15,15],[0,5], '--')\n", "plt.ylabel(\"I_D in mA\")\n", "plt.xlabel(\"V_DS in volts\")\n", "plt.title(\"DC load line\")\n", "print \"DC load line shown in figure\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of I_D = 0 mA\n", "The value of V_DS = 30 volts\n", "Thus the Q-point = ( 30 V, 0 mA)\n", "DC load line shown in figure" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEaCAYAAAD3+OukAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHgtJREFUeJzt3XtwVPX5x/HPRrCAAUyihEvA0GCAhFyWW7SKbERFiSAt\nlxARLUSttSqoRbHTn4Sxw0XUIVrHegMiZULSdkC5BRANUgullaCpiGggiBCoAgpJwBg8vz8oawJJ\nyG529+zZ837N7AzZ63PmaJ58zvM9Zx2GYRgCANhSmNkFAADMQxMAABujCQCAjdEEAMDGaAIAYGM0\nAQCwMZoAbGvx4sUaMmSIX947LCxMe/bsafAxl8ul119/XZK0dOlSDR8+3C81AM1BE4AlxMbGql27\ndurQoYMiIiJ0zTXX6OWXX9a5p7ls27ZNI0aMUEREhKKiopSWlqbFixebU3QjHA6HHA6HJGnixIla\nt26dyRXBzmgCsASHw6FVq1bp+PHj+uKLLzRjxgzNmzdP2dnZ7uds2bJFw4YNU3p6usrKynTkyBG9\n9NJLKioqMrFyILjRBGA57du318iRI1VQUKC8vDzt3LlTkjR9+nT98pe/1PTp0xUZGSlJ6t+/v5Yt\nW9as9/3HP/6hQYMG6dJLL9XgwYO1ZcsW92OLFi1SQkKCOnTooLi4OL3yyiv1Xjt//nx17dpVMTEx\nWrhwYbO35dxDUmFhYXr55ZcVHx+viIgIPfDAA/Wev3DhQiUkJCgyMlI333yzvvjii2Z/FtAQmgAs\na9CgQYqJidHmzZtVXV2trVu3auzYsV6919GjR5WRkaFp06bp6NGjeuSRR5SRkaGjR49KkqKjo7V6\n9WodP35cixYt0sMPP6ySkhJJUlFRkZ599lm9/fbb2r17t95+++0Wbdfq1av173//Wx999JEKCwvd\nh4vefPNNzZkzR8uXL9fXX3+tIUOGKCsrq0WfBdAEYGldu3bV0aNHdezYMf3www/q0qWLV++zevVq\n9e7dWxMnTlRYWJgmTJigPn36aOXKlZKkESNGqGfPnpKk6667TjfddJM2b94sSSosLNSUKVOUkJCg\ndu3aadasWS3aphkzZqhDhw7q3r270tPT9eGHH0qS/vSnP+mJJ55Q7969FRYWpieeeEI7duzQ/v37\nW/R5sDeaACztyy+/VGRkpCIjIxUWFqaKigqv3ufgwYPq0aNHvfuuuOIKHTx4UJK0du1aXXXVVYqK\nilJERITWrFmjI0eOSJIqKirUvXt39+vOfR9Pde7c2f3vdu3aqbKyUpK0b98+TZ06VREREe7BtyQd\nOHCgRZ8He6MJwLL+9a9/6eDBg7r22mvVtm1bXX311frrX//q1Xt169ZN+/btq3ffvn371K1bN333\n3XcaM2aMHnvsMf33v//VsWPHNGLECPfKpC5dutQ7Nu+v4/Q9evTQK6+8omPHjrlvVVVVuuqqq/zy\nebAHmgAs4+wv3ePHj2vVqlXKysrSpEmTlJiYKEl6+umntXjxYj3zzDPuv9I//PDDZh03v+WWW7R7\n927l5+ertrZWBQUF2rVrl2699VbV1NSopqZGl112mcLCwrR27VqtX7/e/drx48dr8eLF+uSTT1Rd\nXd3iw0HnbvPZ7b7vvvs0e/Zs9yD822+/1V/+8heffRbsiSYAyxg5cqQ6dOigHj16aM6cOXr00Ue1\naNEi9+NXX3213nnnHb3zzjuKi4tTVFSUfvWrXykjI6PB96u7Xj8qKkqrVq3Ss88+q8suu0zPPPOM\nVq1apcjISLVv317PP/+8xo8fr8jISOXn5+u2225zv8/NN9+sadOm6frrr1d8fLyGDRvmft8LqVvD\n2Z8be3z06NF6/PHHNWHCBHXs2FFJSUmcY4AWc/jzS2WmTJmi1atXq1OnTiotLZV0ZhVGZmam9u3b\np9jYWBUWFurSSy/1VwkAgCb4NQlMnjz5vBN15s6dqxtvvFG7d+/WsGHDNHfuXH+WAABogl+TgCSV\nl5dr5MiR7iTQp08fbdq0SdHR0Tp06JBcLpd27drlzxIAAI0I+Ezg8OHDio6OlnTmBJzDhw8HugQA\nwP+YOhg+dygGAAisVoH+wLOHgTp37qyKigp16tSpweeFh/dSVVVZgKsDAGuLi4vT559/3uznBzwJ\njBo1Snl5eZKkvLw8jR49usHnVVWVaflyQ126GJo61VBVleFeMx0Kt5kzZ5peA9vHtrF9oXcrK/Ps\nj2e/NoGsrCz97Gc/06effqru3btr0aJFmjFjhjZs2KD4+Hi98847mjFjRqOvHz1aKi2VvvpKSkmR\n/nepFgCAj/j1cFB+fn6D93tylcWoKGnpUmnFCikzUxo/Xpo9W2rXzldVAoB9WeaM4VBLBS6Xy+wS\n/CqUty+Ut01i++zG7+cJeMvhcKix0laskO6/n1QAAOdq6ndnQyyTBOoKtVQAAGaxZBKoi1QAAD+y\nRRKoi1QAAN6zfBKoi1QAwO5slwTqIhUAgGdCKgnURSoAYEe2TgJ1kQoA4MJCNgnURSoAYBckgQaQ\nCgCgYbZIAnWRCgCEMpLABZAKAOBHtksCdZEKAIQakoAHSAUA7M7WSaAuUgGAUEAS8BKpAIAdkQQa\nQCoAYFUkAR8gFQCwC5LABZAKAFgJScDHSAUAQhlJwAOkAgDBjiTgR6QCAKGGJOAlUgGAYEQSCBBS\nAYBQQBLwAVIBgGBBEjABqQCAVZEEfIxUAMBMJAGTkQoAWAlJwI9IBQACjSQQREgFAIIdSSBASAUA\nAoEkEKRIBQCCEUnABKQCAP5CErAAUgGAYEESMBmpAIAvWSYJzJkzR4mJiUpKStLtt9+u7777zqxS\nTEUqAGAmU5pAeXm5Xn31VW3fvl2lpaU6ffq0li1bZkYpQSEqSlq6VJo/X8rMlKZNk6qrza4KgB2Y\n0gQ6dOig1q1bq7q6WrW1taqurla3bt3MKCWokAoABJopTSAyMlKPPvqoevTooa5du+rSSy/VDTfc\nYEYpQYdUACCQWpnxoWVlZVqwYIHKy8vVsWNHjRs3TkuXLtXEiRPrPS8nJ8f9b5fLJZfLFdhCTTR6\ntDRkiPTQQ2dSwcKFZ34GgLqKi4tVXFzs9etNWR1UUFCgDRs26LXXXpMkLVmyRFu3btWLL774Y2E2\nWR3UHKwgAtBcllgd1KdPH23dulUnT56UYRh6++23lZCQYEYplsCsAIC/mNIEUlJSdOedd2rgwIFK\nTk6WJN17771mlGIZzAoA+AMni1nQkSNnZgXbtjErAFCfp787aQIWxqwAwLksMROAbzArANBSJIEQ\nQSoAIJEEbItUAMAbJIEQRCoA7IskAFIBgGYjCYQ4UgFgLyQB1EMqANAUkoCNkAqA0EcSQKNIBQDO\nRRKwKVIBEJpIAmgWUgEAiSQAkQqAUEISgMdIBYB9kQRQD6kAsDaSAFqEVADYC0kAjSIVANZDEoDP\nkAqA0EcSQLOQCgBrIAnAL0gFQGgiCcBjpAIgeJEE4HekAiB0kATQIqQCILiQBBBQpALA2kgC8BlS\nAWA+kgBMQyoArIckAL8gFQDmIAkgKJAKAGsgCcDvSAVA4JAEEHRIBUDwIgkgoEgFgH+RBBDUSAVA\ncCEJwDSkAsD3SAKwDFIBYD6SAIICqQDwDcskgW+++UZjx45V3759lZCQoK1bt5pVCoIAqQAwh2lJ\n4K677tLQoUM1ZcoU1dbWqqqqSh07dvyxMJKAbZEKAO95+rvTlCbw7bffyul0as+ePY0+hyZgb0eO\nSA89JG3bJi1cKA0ZYnZFgDVY4nDQ3r17dfnll2vy5Mnq37+/7rnnHlVXV5tRCoJUVJS0dKk0f76U\nmSlNmybxnwjge6Y0gdraWm3fvl3333+/tm/frksuuURz5841oxQEOWYFgH+18uZFJ0+e1KpVqzRu\n3DivPjQmJkYxMTEaNGiQJGns2LENNoGcnBz3v10ul1wul1efB2s7mwpWrDiTCpgVAD8qLi5WcXGx\n169v9kzg9OnTKioqUn5+vjZs2KBrr71Wf/vb37z+4Ouuu06vvfaa4uPjlZOTo5MnT2revHk/FsZM\nAA1gVgA0zaeDYcMwtGnTJuXn52vNmjVKS0vT5s2btXfvXrVr4Z9hH374oe6++27V1NQoLi5OixYt\nYnUQmo0VREDDfNoEYmJilJCQoClTpmjkyJG65JJL1LNnT+3du9cnxTZZGE0AF0AqAM7n09VBY8eO\n1eeff66CggKtXLlSVVVVLS4Q8BVWEAEt12QTWLBggT7//HM9+OCD2rhxo3r37q2vvvpKBQUFqqys\nDFSNQJNYQQR4z6OTxWpqarRu3Trl5+dr3bp1OnLkiP8K43AQvMCsAHYXsDOGT548qbZt23rz0mah\nCcBbzApgZ345Y3jlypVyOp2KiIhQ+/bt1b59e0VHR3tdJOBPzAqA5mtWEoiLi9Py5cvVr18/hYUF\n5iRjkgB8gVQAu/FLEoiJiVFiYmLAGgDgK6QCoGnNSgJbt27Vk08+qfT0dF188cVnXuhw6JFHHvFf\nYSQB+BipAHbglyTwf//3fwoPD9epU6dUWVmpyspKnThxwusiATOQCoDzNSsJ9OvXT//5z38CUY8b\nSQD+RCpAqPJLEhgxYoTWrVvndVFAsCEVAGc0KwmEh4erurpaF198sVq3bn3mhQ6Hjh8/7r/CSAII\nEFIBQoklvl6yOWgCCDTONkYosMTXSwLBiGsQwY5IAkADSAWwKpIA4AOkAtiFR18vefjwYdXW1rrv\n69Gjh/8KIwkgSJAKYCV+GQy/8MILmjVrljp16qSLLrrIfX9paal3VTanMJoAgggriGAVfmkCcXFx\n2rZtm6KiolpUnCccDoeUc/79M4fOVI7r/AdyinM0a9Msns/z/fr8FSukskk52p+dQypAUPJLE0hP\nT9f69evd5wgEAkkAQcvh0MTbDVIBgpJfmsCUKVO0e/duZWRkcAE5wOGQDINZAYKSX1YH9ejRQzfc\ncINqamrcF4/jAnKwO1YQIRRwngDgqZycM7c6SAUIFj49HDR16lTl5uZq5MiRDX7QW2+95V2VzSmM\nJgCLYQURgoFPm8AHH3ygAQMGqLi4uMEPGjp0qFdFNqswmgAsilQAM3EBOSAIkApgFpoAEERIBQg0\nrh0EBBFWECHY0QQAT52zMuhC+BYzBLMLNoHFixerf//+ateundq1a6eBAwcqLy8vELUBwWnW+ZeX\naA5SAYJRq6YezMvLU25urp577jk5nU4ZhqGSkhJNnz5dDodDd955Z6DqBELC2VSwYsWZVMCsAGZr\ncjCclpamZcuWqWfPnvXuLy8vV2Zmpv75z3/6rzAGwwhW/7tsREuxggj+4NPB8IkTJ85rAJIUGxvL\nZSOAFmJWgGDQZBNo06aNV48BaD5mBTBTk4eD2rZtq169ejX4WFlZmar9+GcLh4MQtBq4dpCvcF4B\nWsqnJ4uVl5c3+eLY2Nhmf5CnaAKwK2YFaAlTzhi++uqrtWXLFo9fd/r0aQ0cOFAxMTFauXJl/cJo\nArA5UgG8YcoZw6dOnfLqdbm5uUpISDjzVZIA6mFWgEAw7YzhL7/8UmvWrNHdd9/NX/xAI1hBBH8z\nrQk8/PDDmj9/vsLCuHIFcCGkAviLKb+BV61apU6dOrnPQgYsxU8rgy6EVAB/8MlguLS0VElJSc1+\n/u9+9zstWbJErVq10qlTp3T8+HGNGTNGb7zxxo+FORyaOXOm+2eXyyWXy9XSUoGW89EZwy3BCiKc\nVVxcXO+Lv2bNmuW71UHh4eGNDm0dDoeOHz/e/EobsWnTJj3zzDOsDoJ1BEETOIsVRDiXT1cHVVZW\n6sSJEw3efNEAzmJ1EOAdZgVoKb5ZDPBUECWBukgFkPhmMcC2SAXwBk0A8FSdBQvBhhVE8BSHg4AQ\nxQoiezLl2kH+QBMAfINZgb0wEwBQD7MCNIUkANgIqSD0kQQANIpUgHPRBABPmXTtIF9hBRHq4nAQ\n4KkgPVnMG6wgCj2sDgL8LYSawFnMCkIHMwEAHmNWYF8kAcBTIZgE6iIVWBtJAECLkArshSYAeCqI\nrx3kK6wgsg8OBwFoEiuIrIXVQQD8glmBNTATAOAXzApCE0kAgMdIBcGLJADA70gFoYMmAHjK4tcO\n8hVWEIUGDgcBngrxk8W8wQqi4MHqIMDfaAKNYlZgPmYCAEzDrMB6SAKAp0gCzUIqMAdJAEBQIBVY\nA00A8JQNrh3kK6wgCn4cDgIQEKwgCgxWBwEIaswK/IuZAICgxqwguJAEAJiGVOB7JAEAlkEqMB9N\nAPAU1w7yKVYQmYvDQYCnOFnMb1hB1HKsDgL8jSbgd8wKvMdMAIDlMSsIHJIA4CmSQECRCjxjiSSw\nf/9+paenKzExUf369dPzzz9vRhkALIBU4F+mJIFDhw7p0KFDSk1NVWVlpQYMGKAVK1aob9++PxZG\nEkCwyslhhZBJSAUXZokk0LlzZ6WmpkqSwsPD1bdvXx08eNCMUgDP0QBMQyrwPdNnAuXl5Ro6dKg+\n/vhjhYeHu+8nCQBoCqmgYZ7+7mzlx1ouqLKyUmPHjlVubm69BnBWTp2/uFwul1wuV+CKAxDURo8+\ncx7BQw+dSQV2Pa+guLhYxcXFXr/etCTw/fff69Zbb9Utt9yiadOmnfc4SQBAc5EKfmSJmYBhGMrO\nzlZCQkKDDQAAPMGswHumNIH3339ff/7zn/Xuu+/K6XTK6XSqqKjIjFIAzzEYDkpcg8g7pg+GG8Ph\nIAQtThYLena+BhHXDgL8jSZgGXacFVhiJgAAgcCs4MJIAoCnSAKWZJdUQBIAgAaQChpGEwA8NXOm\n2RXAS6wgOh+HgwDYUqiuIGJ1EAB4INRmBcwEAMADdp8VkAQA4H9CIRWQBADAS3ZMBTQBwFNcOyik\n2W0FEYeDAE9xsphtWHEFEauDAH+jCdiOlWYFzAQAwMdCeVZAEgA8RRKwtWBPBSQBAPCjUEsFNAHA\nU1w7yPZCaQURh4MAoAWCbQURq4MAwATBMitgJgAAJrDqrIAkAAA+ZmYqIAkAgMmslApoAoCnuHYQ\nmsEqK4g4HAR4ipPF4KFAriBidRDgbzQBeCkQswJmAgAQpIJxVkASADxFEoAP+CsVkAQAwAKCJRXQ\nBABPce0g+EgwrCDicBAABAFfrSBidRAAWFhLZwXMBADAwgI9KyAJAECQ8iYVkAQAIEQEIhXQBABP\nce0gBJC/VxCZ1gSKiorUp08fXXnllZo3b55ZZQCemzXL7ApgQ/5KBaY0gdOnT+uBBx5QUVGRdu7c\nqfz8fH3yySdmlGKa4uJis0vwq1DevmKzC/CzUN53krW3zx+pwJQmsG3bNvXq1UuxsbFq3bq1JkyY\noDfffNOMUkxj5f8QmyOUt6/Y7AL8LJT3nRQa2+fLVGBKEzhw4IC6d+/u/jkmJkYHDhwwoxQAsCRf\npQJTmoDD4TDjYwEg5JxNBdXV0jffePEGhgm2bNliDB8+3P3z7Nmzjblz59Z7TlxcnCGJGzdu3Lh5\ncIuLi/Po97EpJ4vV1taqd+/e2rhxo7p27arBgwcrPz9fffv2DXQpAGBrrUz50Fat9Mc//lHDhw/X\n6dOnlZ2dTQMAABME7WUjAAD+F3RnDIf6SWSxsbFKTk6W0+nU4MGDzS6nxaZMmaLo6GglJSW57zt6\n9KhuvPFGxcfH66abbtI3Xk2rgkND25eTk6OYmBg5nU45nU4VFRWZWGHL7N+/X+np6UpMTFS/fv30\n/PPPSwqNfdjYtoXK/jt16pTS0tKUmpqqhIQEPfHEE5K82HctnvL6UG1trREXF2fs3bvXqKmpMVJS\nUoydO3eaXZZPxcbGGkeOHDG7DJ957733jO3btxv9+vVz3zd9+nRj3rx5hmEYxty5c43HH3/crPJa\nrKHty8nJMZ599lkTq/KdiooKo6SkxDAMwzhx4oQRHx9v7Ny5MyT2YWPbFkr7r6qqyjAMw/j++++N\ntLQ0Y/PmzR7vu6BKAnY5icwIoSNwQ4YMUURERL373nrrLd11112SpLvuuksrVqwwozSfaGj7pNDZ\nh507d1ZqaqokKTw8XH379tWBAwdCYh82tm1S6Oy/dv+7rGhNTY1Onz6tiIgIj/ddUDUBO5xE5nA4\ndMMNN2jgwIF69dVXzS7HLw4fPqzo6GhJUnR0tA4fPmxyRb73wgsvKCUlRdnZ2ZY8VNKQ8vJylZSU\nKC0tLeT24dltu+qqqySFzv774YcflJqaqujoaPehL0/3XVA1ATucRPb++++rpKREa9eu1YsvvqjN\nZn27dIA4HI6Q26+//vWvtXfvXu3YsUNdunTRo48+anZJLVZZWakxY8YoNzdX7du3r/eY1fdhZWWl\nxo4dq9zcXIWHh4fU/gsLC9OOHTv05Zdf6r333tO7775b7/Hm7LugagLdunXT/v373T/v379fMTEx\nJlbke126dJEkXX755fr5z3+ubdu2mVyR70VHR+vQoUOSpIqKCnXq1MnkinyrU6dO7v+57r77bsvv\nw++//15jxozRpEmTNHr0aEmhsw/Pbtsdd9zh3rZQ23+S1LFjR2VkZOiDDz7weN8FVRMYOHCgPvvs\nM5WXl6umpkYFBQUaNWqU2WX5THV1tU6cOCFJqqqq0vr16+utOgkVo0aNUl5eniQpLy/P/T9fqKio\nqHD/e/ny5Zbeh4ZhKDs7WwkJCZo2bZr7/lDYh41tW6jsv6+//tp9KOvkyZPasGGDnE6n5/vOn5Nr\nb6xZs8aIj4834uLijNmzZ5tdjk/t2bPHSElJMVJSUozExMSQ2L4JEyYYXbp0MVq3bm3ExMQYCxcu\nNI4cOWIMGzbMuPLKK40bb7zROHbsmNlleu3c7Xv99deNSZMmGUlJSUZycrJx2223GYcOHTK7TK9t\n3rzZcDgcRkpKipGammqkpqYaa9euDYl92NC2rVmzJmT230cffWQ4nU4jJSXFSEpKMp5++mnDMAyP\n9x0niwGAjQXV4SAAQGDRBADAxmgCAGBjNAEAsDGaAADYGE0AAGyMJgAANkYTgOVcf/31Wr9+fb37\nFixYoPvvv7/B55eXl6tt27bq37+/EhISlJaW5j6jUjpzwbtbb71VqampSkxMVEZGRoPvc8011/hu\nIxrgcrm0fft2SdLs2bP9+lnAWTQBWE5WVpaWLVtW776CggLdfvvtjb6mV69e2r59u3bu3Klly5Zp\nwYIFWrx4sSTpySef1PDhw7Vjxw59/PHHjX6Z0fvvv++zbWhI3Qt9zZkzx6+fBZxFE4DljBkzRqtX\nr1Ztba2kM3/pHzx4UNdee22zXt+zZ08999xz7m+aOnTokLp16+Z+vF+/fg2+Ljw8XJJUXFwsl8ul\ncePGqW/fvrrjjjvOe+6uXbuUlpbm/rm8vFzJycmSpI0bN6p///5KTk5Wdna2ampq3M8zDEMzZszQ\nyZMn5XQ6NWnSJFVXVysjI0OpqalKSkpSYWFhs7YTaA6aACwnMjJSgwcP1po1ayRJy5YtU2Zmpkfv\n4XQ6tWvXLknSb37zG2VnZ+v666/X7Nmz611grK66f6nv2LFDubm52rlzp/bs2XNeSujTp49qampU\nXl4u6UxSmTBhgk6dOqXJkyersLBQH330kWpra/XSSy/V+4y5c+eqbdu2Kikp0ZIlS7R27Vp169ZN\nO3bsUGlpqW6++WaPthVoCk0AllT3kFBBQYGysrI8en3dS2bddNNN2rNnj+655x7t2rVLTqdTX3/9\ndZOvHzx4sLp27SqHw6HU1FT3L/u6xo8fr4KCAklSYWGhMjMz9emnn6pnz57q1auXpDPf/PTee+81\n+VnJycnasGGDZsyYob///e/q0KGDR9sKNIUmAEsaNWqUNm7cqJKSElVXV8vpdHr0+pKSEiUkJLh/\njoiIUFZWlt544w0NGjTogr+Yf/KTn7j/fdFFF7kPTdWVmZmpwsJCffbZZ3I4HIqLizvvOc25fuOV\nV16pkpISJSUl6fe//72eeuqpC74GaC6aACwpPDxc6enpmjx5cpMD4YaUl5dr+vTpevDBByVJ7777\nrqqrqyVJJ06cUFlZma644ooW1/jTn/5UF110kZ566ilNmDBBktS7d2+Vl5errKxMkrRkyRK5XK7z\nXtu6dWt3Y6moqFCbNm00ceJE/fa3v3WvIAJ8oZXZBQDeysrK0i9+8YtmDUrLysrUv39/nTp1Su3b\nt9fUqVN15513SpI++OADPfDAA2rVqpV++OEH3XPPPRowYMB571F3JnDuV/Y19hV+mZmZeuyxx/SH\nP/xBktSmTRstWrRI48aNU21trQYPHqz77rvvvNfde++9Sk5O1oABAzRp0iRNnz5dYWFhuvjii+vN\nEICW4vsEAMDGOBwEADbG4SCEjNLSUvchnrPatGmjLVu2mFQREPw4HAQANsbhIACwMZoAANgYTQAA\nbIwmAAA2RhMAABv7f2bQfoJhPpDQAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7ffba61e4e10>" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4\n", ": Page No 358" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_DD = 15 # in V\n", "R = 3 # in kohm\n", "I_D = V_DD/R # in mA\n", "R_D = 1 # in kohm\n", "V_D = V_DD - (I_D*R_D) # in V\n", "print \"The drain voltage = %0.f V\" %V_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain voltage = 10 V\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5\n", ": Page No 362" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "R_D = 3.6 # in K ohm\n", "R_L = 10 # in K ohm\n", "r_d = (R_D*R_L)/(R_D+R_L) # in K ohm\n", "g_m = 5000 # in \u00b5S\n", "g_m= g_m*10**-6 # in S\n", "A_v = g_m *r_d \n", "V_out = A_v # in V\n", "print \"The output volatge = %0.1f mV\" %(V_out*10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output volatge = 13.2 mV\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.6\n", ": Page No 370" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_GS = -2 # in V\n", "V_P = -5 # in V\n", "V_DS = V_GS-V_P # in V\n", "I_DSS = 8 # in mA\n", "I_DS = I_DSS*( 1-(V_GS/V_P) )**2 # in mA\n", "print \"The drain current = %0.2f mA\" %I_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 2.88 mA\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7\n", ": Page No 370" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 8.4 # in mA\n", "I_DSS= I_DSS*10**-3 # in A\n", "V_P = -3 # in V\n", "V_GS = -1.5 # in V\n", "I_D = I_DSS*( 1-(V_GS/V_P) )**2 # in A\n", "print \"The drain current = %0.1f mA\" %(I_D*10**3)\n", "V_GS1 = 0 # in V\n", "g_mo = -( (2*I_DSS)/V_P ) # in A/V\n", "g_m = g_mo*(1-(V_GS/V_P)) # in A/V\n", "print \"Transconductacne = %0.1f mA/V\" %(g_m*10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 2.1 mA\n", "Transconductacne = 2.8 mA/V\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.8\n", ": Page No 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_P = -4 # in V\n", "V_GS = -2 # in V\n", "I_DSS = 10 # in mA\n", "I_DSS= I_DSS*10**-3 # in A\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # in A\n", "print \"The drain current = %0.1f mA\" %(I_D*10**3)\n", "V_DS = V_P # in V\n", "print \"The minimum value of V_DS = %0.f V\" %V_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 10.0 mA\n", "The minimum value of V_DS = -4 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.9\n", ": Page No 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "# Given data\n", "I_DSS = -40 # in mA\n", "V_P = 5 # in V\n", "I_D = -15 # in mA\n", "V_GS = V_P*(1-sqrt(I_D/I_DSS)) # in V\n", "print \"The gate source voltage = %0.3f V\" %V_GS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The gate source voltage = 1.938 V\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.10\n", ": Page No 372" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 4 # in mA\n", "I_DSS= I_DSS*10**-3 # in A\n", "V_P = -4 # in V\n", "V_GG = -2 # in V\n", "V_GS = V_GG # in V\n", "print \"The value of V_GS = %0.f V\" %V_GS\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # in A\n", "print \"The value of I_D = %0.f mA\" %(I_D*10**3)\n", "V_DD = 10 # in V\n", "R_D = 5 # in kohm\n", "R_D = R_D * 10**3 # in ohm\n", "V_DS = V_DD - (I_D*R_D) # in V\n", "print \"The value of V_DS = %0.f V\" %V_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V_GS = -2 V\n", "The value of I_D = 1 mA\n", "The value of V_DS = 5 V\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.11\n", ": Page No 373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import symbols, solve, N#Given data\n", "I_D= symbols('I_D')\n", "# Given data\n", "V_DD= 20 # in V\n", "R1= 2.1*10**6 # in \u03a9\n", "R2= 270*10**3 # in \u03a9\n", "R_D= 4.7 # in k\u03a9\n", "R_S= 1.5 # in k\u03a9\n", "I_DSS= 8 # in mA\n", "V_P= -4 # in V\n", "V_G= V_DD*R2/(R1+R2) # in V\n", "# V_GS= V_G-R_S*I_D (as Vs= I_D*R_S) and \n", "# I_D= I_DSS*(1-V_GS/V_P)**2 # in A\n", "# I_D= I_DSS*(1-(V_G-R_S*I_D)/V_P)**2 # in mA or\n", "# I_D= I_D**2*I_DSS*R_S**2/V_P**2 + I_D*(2*R_S*I_DSS/V_P-2*V_G*R_S*I_DSS/V_P**2-1) + I_DSS*(1+V_G**2/V_P**2-2*V_G/V_P)\n", "expr= I_D**2*I_DSS*R_S**2/V_P**2 + I_D*(2*R_S*I_DSS/V_P-2*V_G*R_S*I_DSS/V_P**2-1) + I_DSS*(1+V_G**2/V_P**2-2*V_G/V_P)\n", "I_D , x1= solve(expr, I_D)\n", "I_DQ= I_D # in mA\n", "print \"The value of I_DQ = %0.2f mA\" %I_DQ\n", "V_GSQ= V_G-R_S*I_D # in V\n", "print \"The value of V_GSQ = %0.3f V\" %V_GSQ\n", "V_DSQ= V_DD-I_DQ*(R_D+R_S) # in V\n", "print \"The value of V_DSQ = %0.2f V\" %V_DSQ\n", "V_S= I_D*R_S # in V\n", "V_D= V_S+V_DSQ #in V\n", "V_DS= V_D-V_G # in V\n", "print \"The value of V_S = %0.3f V\" %V_S\n", "print \"The value of V_D = %0.3f V\" %V_D\n", "print \"The value of V_DS = %0.3f V\" %V_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of I_DQ = 2.65 mA\n", "The value of V_GSQ = -1.698 V\n", "The value of V_DSQ = 3.57 V\n", "The value of V_S = 3.976 V\n", "The value of V_D = 7.542 V\n", "The value of V_DS = 5.263 V\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.12\n", ": Page No 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import symbols, solve, N\n", "I_D= symbols('I_D')\n", "# Given data\n", "V_DD= 20 # in V\n", "I_DSS= 9 # in mA\n", "V_BB= -10 # in V\n", "R_S= 1.5 # in k\u03a9\n", "R_D= 1.8 # in k\u03a9\n", "V_P= -3 # in V\n", "V_G=0 \n", "# V_S= I_D*R_S+V_BB \n", "# V_GS= V_G-V_S or\n", "# V_GS= V_G-(I_D*R_S+V_BB)\n", "# I_D= I_DSS*(1-V_GS/V_P)**2 or\n", "# I_D**2*R_S**2 + I_D*[2*R_S*V_BB+2*V_P*R_S-V_P**2/I_DSS]+[V_P**2+V_BB**2+2*V_BB*V_P]\n", "expr = I_D**2*R_S**2 + I_D*(2*R_S*V_BB+2*V_P*R_S-V_P**2/I_DSS)+(V_P**2+V_BB**2+2*V_BB*V_P)\n", "I_D , x1= solve(expr, I_D)\n", "I_DQ= I_D # in mA\n", "print \"The value of I_DQ = %0.2f mA\" %I_DQ\n", "V_GS= V_G-(I_D*R_S+V_BB) # in V\n", "V_GSQ= V_GS # in V\n", "print \"The value of V_GSQ = %0.3f volts\" %V_GSQ\n", "V_DS= V_DD-I_D*(R_D+R_S)-V_BB # in V\n", "print \"The value of V_DS = %0.3f volts\" %V_DS\n", "V_S= I_D*R_S+V_BB # in V\n", "print \"The value of V_S = %0.3f volts\" %V_S\n", "V_D= V_S+V_DS # in V\n", "print \"The value of V_D = %0.3f volts\" %V_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of I_DQ = 6.91 mA\n", "The value of V_GSQ = -0.371 volts\n", "The value of V_DS = 7.185 volts\n", "The value of V_S = 0.371 volts\n", "The value of V_D = 7.555 volts\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.13\n", ": Page No 376" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_S = 1.7 # in V\n", "R_S = 0.51 # in kohm\n", "R_S= R_S*10**3 # in ohm\n", "V_DD = 18 # in V\n", "R_D = 2*10**3 # in ohm\n", "V_GS = -1.7 # in V\n", "V_P = - 4.5 # in V\n", "I_DQ = V_S/R_S #in A\n", "print \"The value of I_DQ = %0.2f mA\" %(I_DQ*10**3)\n", "V_GSQ = -V_S # in V\n", "print \"The value of V_GSQ = %0.1f V\" %V_GSQ\n", "I_DSS = I_DQ/( (1-(V_GS/V_P))**2 ) # in A\n", "print \"The value of I_DSS = %0.1f mA\" %(I_DSS*10**3)\n", "V_D = V_DD - (I_DQ*R_D) # in V\n", "print \"The value of V_D = %0.2f V\" %V_D\n", "V_DS = V_D-V_S # in V\n", "print \"The value of V_DS = %0.2f V\" %V_DS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of I_DQ = 3.33 mA\n", "The value of V_GSQ = -1.7 V\n", "The value of I_DSS = 8.6 mA\n", "The value of V_D = 11.33 V\n", "The value of V_DS = 9.63 V\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.14\n", ": Page No 377" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "# Given data\n", "I_DSS = 12 # in mA\n", "V_GS = 0 # in V\n", "I_D = 0 # in mA\n", "V_P = -6 # in V\n", "V_GS= np.arange(0,V_P,-0.1) # in V\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # mA\n", "plt.subplot(1,2,1)\n", "plt.plot(V_GS,I_D) \n", "plt.xlabel('V_GS in volts')\n", "plt.ylabel('I_D in mA')\n", "plt.title('n-channel device')\n", "V_P = 6 # in V\n", "V_GS= np.arange(0,V_P,0.1) # in V\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # mA\n", "plt.subplot(1,2,2)\n", "plt.plot(V_GS,I_D) \n", "plt.xlabel(\"V_GS in volts\")\n", "plt.ylabel(\"I_D in mA\")\n", "plt.title(\"p-channel device\")\n", "print \"\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEaCAYAAAAWvzywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVdX6B/DvAUUlnDBBEAlDkXlwALMsIHFIyQEHxClw\n+Nl0MzOzm5ZaKuX13tDMzFQcQa3UVJyVnOchnHIAnKGUUBH0CKzfHytOoIAH2PusffZ+P8/jI3IO\ne73ge17WWXsNOsYYAyGEEM2wEB0AIYQQ06LCTwghGkOFnxBCNIYKPyGEaAwVfkII0Rgq/IQQojFU\n+CUSHx+P9u3biw7jCW+88QYmTJhg1HPT09NhYWGBwsLCKrW5e/duuLu7V+kaRDkot/+hltymwq9y\nOp0OOp3OpG22b98e586dM2mbRHsotyuPCr8G0Bo9olaU25Wj+cLv4uKCGTNmwM/PD/Xq1UNkZCQe\nPnxY5vOvXr2KXr16wc7ODs8++yzefffdEo9/+OGHsLW1xfPPP49NmzYZPr9w4UJ4enqiTp06cHV1\nxffff294LDk5GU5OTvjvf/8Le3t7ODo6Ij4+3vD4G2+8gbfffhvdunVDnTp10LZtW6SmphoeP3fu\nHMLCwtCgQQO4u7tj1apVRn3vhYWFGDNmDBo2bAhXV1ds2LChxON37tzB0KFD4ejoCCcnJ0yYMAGF\nhYV4+PAh6tWrh9OnTxue++eff8La2hq3bt1CcnIymjRpYtTPbMGCBfD09IStrS06d+6MK1euGBU7\neToXFxfExsbCy8sLtra2iImJodz+m+Zzm2mci4sLCwoKYjdv3mRZWVnMw8ODfffdd6U+Nz8/n/n6\n+rLRo0ez3Nxc9uDBA7Z3717GGGMLFy5k1atXZz/88AMrLCxkc+bMYY6Ojoav3bBhA0tNTWWMMfbr\nr78ya2trduzYMcYYYzt37mTVqlVjn332GcvPz2dJSUnM2tqaZWdnM8YYGzJkCGvQoAE7fPgwy8/P\nZwMGDGCRkZGMMcZycnKYk5MTi4+PZwUFBez48ePs2WefZWfOnGGMMfbGG2+w8ePHl/r9zJkzh7m7\nu7Nr166xrKwsFhwczCwsLFhBQQFjjLEePXqwkSNHstzcXPbHH3+wwMBANnfuXMYYYzExMeyTTz4x\nXOubb75hXbp0MXw/Tk5OZf7M9uzZwxhjbM2aNaxZs2bs3LlzrKCggH3xxResXbt2Ffr/I2V77rnn\nmI+Pj+H/98UXXywzFyi3tZXbVPhdXNiyZcsM/x47diwbOXJkqc/dt28fa9iwoSF5ilu4cCFr1qyZ\n4d/3799nOp2OZWZmlnqtHj16sLi4OMYYT6ZatWqVuK6dnR07ePAgY4y/OIYPH254LCkpibm7uzPG\nGEtMTGTt27cvce0RI0awSZMmMcbKf3GEhIQYkp0xxrZs2cJ0Oh0rKChgGRkZrEaNGiwvL8/w+PLl\ny1lISAhjjLFt27YxV1dXw2Pt2rVjS5YsMXw/RS+O8n5mnTt3ZvPnzzf8u6CggFlbW7MrV66UGi+p\nGBcXlxL/v0lJSSX+z4qj3NZWblcT/Y5DCRo1amT4uFatWrhx4wYAoEuXLtizZw8AYO7cuahWrRqe\ne+45WFiUPkJW/DrW1tYAgJycHNjZ2WHjxo2YNGkSLly4gMLCQuTm5sLX19fw/AYNGpS4rrW1NXJy\ncgDwm1j29vYlYix67PLlyzh48CDq169veDw/Px+DBw9+6vd98+bNEm9bnZ2dDR9fvnwZjx49goOD\ng+FzhYWFhucEBwcjNzcXhw4dgp2dHU6ePImePXs+0cbVq1fL/JldvnwZ7733Hj744IMSn79+/XqJ\nuEjlPf7/S7lNuQ0AVPgfU3yWwMaNG0s8tn//fly5cgUFBQWwtLQ0+poPHz5EREQEli5diu7du8PS\n0hI9e/aU5MaUs7MzXnnlFWzZsqXCX+vg4FBi3LH4x02aNEGNGjVw+/btUhPb0tISffv2RUJCAuzs\n7BAeHo5nnnnmiec1adKkzJ+Zs7MzJkyYgP79+1c4dmKcx/9/HR0dAVBuaz23NX9z93HlJWxQUBAc\nHBwwbtw45Obm4sGDB9i3b99Tr6nX66HX6/Hss8/CwsICGzdurFAylxdT165dcf78eSxduhSPHj3C\no0ePcPjwYcOUs/K+tm/fvpg5cyauX7+Ov/76C7GxsYbHHBwc0LFjR4wePRr37t1DYWEhLl26hF27\ndhmeExUVhcTERCxfvhxRUVGlthEYGFjmz2zkyJGYOnUqzpw5A4DfcDP25h15OsYYvv32W1y/fh1Z\nWVmYMmUKIiMjS30u5ba2cpsK/2PKmxtsYWGBdevW4eLFi3B2dkaTJk2wcuXKMr+u6N+1a9fGzJkz\n0bdvX9ja2iIhIQHdu3cv9bnGxlT82lu2bEFiYiIaN24MBwcHfPzxx9Dr9U/9foYPH45OnTrBz88P\nrVu3RkRERInnLl68GHq93jAzoU+fPsjIyDA8HhgYCBsbG9y8eRNdunQpNT5LS8syf2Y9evTARx99\nhMjISNStWxc+Pj7YvHlzmT8HUjE6nQ5RUVHo2LEjXF1d0bx5c4wfP77U51Juayu3dUyK92RliImJ\nwYYNG2BnZ4eUlBQAfErY+vXrYWVlBVdXVyxcuBB169aVKwRCZGEOud20aVPMnz8foaGhwmIgyiRr\njz86OrrEfF8A6NixI06fPo2TJ0/Czc0N06ZNkzMEQmRBuU3MmayFv3379iXuyANAWFiY4YZKUFAQ\nrl27JmcIhMiCcpuYM6GzehYsWKDYu96EVIUScjstLU1o+0S5hN3cnTJlCqysrMq8Y06IuaLcJkon\npMcfHx+PpKQkbN++vcznNGvWDJcuXTJhVERLXF1dcfHiRcmva0xuN2zYDLduUW4TeRiV23IvDU5L\nS2Pe3t6Gf2/cuJF5enqyP//8s9yvM0Fo7LPPPpO9DVO1o5Y25G4nJ4exOnWkyS+t57Ya8kFtbTBm\nXH7JOtTTv39/tGvXDr///juaNGmCBQsW4N1330VOTg7CwsIQEBCAt956S84QCClhwwYgKKjq16lq\nbl+/XvUYCKksWYd6EhISnvhcTEyMnE0SUq7ERCAyEti6tWrXqWpur1oFjBpVtRgIqSxNr9wNDg5W\nTTtqaUPOdu7cAbZvB3r1kuXyFZKYKO/1KR+02YaxZF25WxU6nY5O1yGSWrwY+OknYO1asfml0+nQ\nsCHDwYNA06ZCQiAqZkxua7rHT7SlaJhHCSIi5O/1E1IW6vETTbh1C3B15TdVbWzE9/iTkxn+9S/g\n5EkhIRAVox4/IX/78UegSxde9JWgfXvg9m2g2NGuhJgMFX6iCcuXA0paSGthwYedSpkcRIjsaKiH\nqN7Vq4C/P3DjBlCjBv+c6KEexhiOHgX69gUuXgTK2bKekAqhoR5CwG+i9ur1T9FXipYtgWrVgEOH\nREdCtIYKP1G9hARAiZvA6nQ8LhruIaZGQz1E1c6dA0JD+XBP8fOwlTDUAwC//w4EBwPXrpWMj5DK\noqEeonnLlwP9+im3qLZoATg6Ajt3io6EaAkVfqJajAHLlgEDBoiOpHwDBvA4CTEVKvxEtQ4e5DdP\nW7USHUn5IiOBNWuAvDzRkRCtoMJPVKuot6/0qZKOjvyX0/r1oiMhWkGFn6jSo0fAypXKWrRVHhru\nIaZEhZ+o0rZtfOfLZs1ER2KcXr34Dd6sLNGREC2gwk9UadkyYOBA0VEYr25doFMnvqcQIXKjwk9U\nJyeHj5f37Ss6kooZMABYulR0FEQLqPAT1VmzBnjxRcDOTnQkFdOlC3DmDJCeLjoSonZU+InqLFkC\nDBokOoqKs7Li71LoJi+RG23ZQFTl5k3A05MfuGJtXfbzlLJlw+P27QNiYoCzZ5U/DZUoE23ZQDQn\nIQHo0aP8oq9kL7wA5OcDR4+KjoSoGRV+oirmOsxTRKfjs5GWLBEdCVEzGuohqnHqFNC5M3D58tM3\nZVPqUA8AXLgAvPQS37GzenUTBkZUgYZ6iKYsWcKnRCp1J05jNW8OPP88sGWL6EiIWlHhJ6pQUMDn\nwA8eLDoSaQweDCxeLDoKolZU+Ikq7NgBODgAXl6iI5FGv37Apk1AdrboSIgaUeEnqrBokXp6+wBg\nawuEhfGN5giRmqyFPyYmBvb29vDx8TF8LisrC2FhYXBzc0PHjh2RTV0aUkX37vEtGkx5rq4pcpuG\ne4hcZC380dHR2LRpU4nPxcbGIiwsDOfPn8err76K2NhYOUMgGvDTT8ArrwANG5quTVPkdpcuwPnz\nwKVLVboMIU+QtfC3b98e9evXL/G5X375BUOGDAEADBkyBGvWrJEzBKIBIoZ5TJHb1avzdzHU6ydS\nM/kYf2ZmJuzt7QEA9vb2yMzMNHUIREUuXwZSUoBu3URHIk9uDxnCC39hYZUvRYiB0Ju7Op0OOtqQ\nhFTB4sX8zNoaNURHUpJUuR0QANSuDezeLUFQhPytmqkbtLe3R0ZGBho1aoSbN2/Crpy9cydOnGj4\nODg4GMHBwfIHSMwGY0B8PLBixdOfm5ycjOTkZFnjkSO3dTrgjTf49/nKK5KGS1SiMrkt+5YN6enp\nCA8PR0pKCgBg7NixaNCgAT766CPExsYiOzu71JtgtGUDeZpdu4C33uJDPRXtXEuRX6bK7cxMwN0d\nuHoVsLGpUshEA4zKLyajyMhI5uDgwKpXr86cnJzYggUL2O3bt9mrr77KmjdvzsLCwthff/1V6tfK\nHBpRgehoxqZPr9zXVjW/TJ3b4eGMLVxYpZCJRhiTX7RJGzFLOTlAkyb8xCoHh4p/vZI3aSvNzz8D\nM2cCMo9WERWgTdqIav38Mz9esTJF3xx16wacPg2kpoqOhKgBFX5ilhYu5Dc9tcLKCoiK4msWCKkq\nGuohZufSJaBtW75ffWWncZrbUA8AnDwJhIcDaWnmv/U0kQ8N9RBVio/n++4rbe6+3Pz8+LYUO3aI\njoSYOyr8xKwUFPDhjuho0ZGIERPDh7kIqQoq/MSsbN8O2Nnx3q8W9e8PJCUBf/0lOhJizqjwE7Oy\nYAHv9WqVrS0/VzghQXQkxJzRzV1iNrKy+Fm0aWnAYxtjVpg53twtsmUL8PHHwNGjEgZFVINu7hJV\nWboU6Nq16kXf3L36KnDrFnD8uOhIiLmiwk/MAmPADz8Aw4aJjkQ8S0s+3DV/vuhIiLmioR5iFg4f\n5tsvX7gAWEjQXTHnoR4AuHKFb9l87RpQq5ZEgRFVoKEeoho//AAMHSpN0VcDZ2egTRu+dQUhFUU9\nfqJ4RRuynT4NODpKc01z7/EDwI8/ArNnAzt3ShAUUQ3q8RNVWLUKaN9euqKvFq+/zn8ZXrwoOhJi\nbqjwE8UrGuYhJVlZ8UPmf/hBdCTE3NBQD1G0U6eATp34oerVJDwoVA1DPQBw7hwQHMxv9lpZSXJJ\nYuZoqIeYvXnz+NRFKYu+mri7Ay1aAOvWiY6EmBPq8RPFysvjN3WPHAFcXKS9tlp6/ABf2LZ0KbBp\nk2SXJGaMevzErP30E9C6tfRFX20iIvgvx7Q00ZEQc0GFnyjW998DI0aIjkL5atUCBg6klbzEeDTU\nQxSp6Kbl1atA9erSX19NQz0An9YZFsZvgsvx8yLmg4Z6iNmaO5ff1KUiZhwvL75z6fr1oiMh5oB6\n/ERxim7qHj4MNG0qTxtq6/ED/AbvkiXA5s2SX5qYEerxE7O0ahUQGChf0Ver3r2BY8eA1FTRkRCl\no8JPFOe774CRI0VHYX5q1gSGDOE3xQkpDw31EEU5eRLo1o1PTZRz0ZYah3oA4Px5vq/RlStAjRqy\nNEEUjoZ6iNmZO5cftkIrdSvHzQ3w9gZWrxYdCVEy6vETxbh3D3juOSAlBWjcWN621NrjB/h2zbNm\nAb/+KlsTRMGox0/MytKlQGio/EVf7bp351s1nzolOhKiVMIK/7Rp0+Dl5QUfHx9ERUXh4cOHokIh\nCsAYMGcO8OaboiOpOtG5Xb06Hy777juTNkvMiJDCn56ejnnz5uHYsWNISUlBQUEBEhMTRYRCFGLv\nXkCv5z1+c6aU3B4+HFi+nA+fEfI4IYW/Tp06qF69OnJzc5Gfn4/c3Fw0pvf3mvbtt7y3r9OJjqRq\nlJLbTk5ASAiwbJnJmyZmQEjht7W1xQcffABnZ2c4OjqiXr166NChg4hQiAJkZgIbN/I56OZOSbn9\n1lv8FyrNkSCPEzJp7tKlS/j666+Rnp6OunXrok+fPli2bBkGDBhQ4nkTJ040fBwcHIzg4GDTBkpM\n4ocf+KrTevXkayM5ORnJycnyNfA3JeV2aCgfPtuzh8/tJ+pUmdwWMp1zxYoV2Lp1K374+7DQJUuW\n4MCBA5g9e/Y/gdF0Tk3Iz+dbM6xbB/j7m65dufJLabk9axYv/CtWmKQ5ogCKnc7p7u6OAwcOIC8v\nD4wxbNu2DZ6eniJCIYKtXcsPWjFl0ZeT0nJ7yBBg61bg+nVhIRAFElL4/fz8MHjwYLRu3Rq+vr4A\ngBF04oYmffMN8M47oqOQjtJyu04doH9/2r+HlEQrd4kwp04BHTsC6emAlZVp21bzyt3HnTkDvPoq\nP6TF1D9nYnqKHeohBABmz+ZHK1IxkpenJ+DhwbdyIASgHj8RJDub39Q9fRpwdDR9+1rq8QN807bp\n04F9+0zaLBGAevxEsebPB157TUzR16LwcODGDX6qGSFU+InJFRTwm7r/+pfoSLSjWjXg7beBmTNF\nR0KUgHY9Jya3fj1gbw8EBYmORFuGDeMHsmdkAI0aiY6GiEQ9fmJyM2dSb1+E+vWBfv34YTdE2+jm\nLjGplBSgUycxUziL09rN3SKnTwMdOvCfPx3NqE50c5coTlwc34WTpnCK4eXFj2akLRy0jXr8xGT+\n+ANo0YIfCN6wodhYtNrjB4CkJOCTT4Bjx8x/G2zyJOrxE0WZOxeIiBBf9LWuc2cgLw/YtUt0JESU\nShX+vLw8rFq1SupYiIo9fMj3hh81SnQk5dNCbltYAO+9B/zvf6IjIaIYXfgLCgqwYcMGDBw4EC4u\nLnRUIqmQFSsAHx8+vqw0WsztwYP5ds2XLomOhIhQ7hg/Ywy//vorEhISkJSUhKCgIOzevRtpaWmw\ntraWNzAa41cNxoCWLYEpU/hqXSXQ6XTYuXOnpnN73Dg+5BMXJzoSIiVj8qvcwu/k5ARPT0/ExMQg\nPDwczzzzDJo2bYq0tDTJg30iMIW8OEjV7djBV42ePs2HGZRAp9MhLCxM07l97Rrg68t7/fXri46G\nSKXKN3d79+6NixcvYsWKFVi3bh3u378vaYBEG2bMAEaPVk7RL6L13HZyArp1o736teip0zkLCwuR\nnJyMhIQEbNy4EdnZ2Zg/fz66du0KGxsb+QJTSK+IVM3Zs0BICF8wVLOm6Gj+odPpUFBQoPncPnkS\n6NoVSE2ltRVqUeWhnsfp9Xps3rwZCQkJ2Lx5M27fvl3lIMsMTEEvDlJ5w4fznuVnn4mOpKTH80vL\nud2hAz+icdAg0ZEQKUhe+IvLy8tDrVq1KhWYMZT24iAVl5kJuLsrY8HW48rLL63l9saN/EbviRO0\noEsNJFvAtW7dOgQEBKB+/fqoXbs2ateuDXt7e0mCJOo1ezbQt6/yin5xlNt8QVdBAbBtm+hIiKkY\n1eN3dXXF6tWr4e3tDQsT3aFTWq+IVMz9+/yErT17ADc30dE8qSi/KLe5+Hhg+XJgyxbRkZCqkqzH\n7+TkBC8vL5O9MIj5W7AAaN9emUW/OMptLiqKH8p+4oToSIgpGNXjP3DgAD799FOEhITA6u9b/zqd\nDqNHj5YvMAX2iohx8vOB5s2BhASgbVvR0ZSuKL8ot/8xfTov/MuWiY6EVIUx+WXUCVwTJkxA7dq1\n8eDBA+j1ekmCI+r1449AkybKLfrFUW7/Y8QIfkLX5cvAc8+JjobIyagev7e3N06dOmWKeAyU2isi\n5WMMaNUKmDyZLw5SqqL8otwuaexYvqEebeNgviQb43/ttdewefNmSYIi6rZ1Ky8cStmT52kot0sa\nNQpYsgS4dUt0JERORvX4bWxskJubCysrK1SvXp1/oU6Hu3fvyheYgntFpGyhoUB0tPIXAxXlF+X2\nk4YPBxo3BiZOFB0JqQxZF3DJTekvDvKkgwf5Yd4XLgB/11DF0vIJXE9z4QLQrh2QlgbIuHMFkQmd\nwEVMKjYWGDNG+UWflK95c76/0rx5oiMhchFW+LOzs9G7d294eHjA09MTBw4cEBUKkcCZM8D+/UBM\njOhIxFNDbo8bx3dVffhQdCREDsIK/3vvvYfXXnsNZ8+exW+//QYPDw9RoRAJxMYC774LyHyGiVlQ\nQ263bAl4efEbvUR9jB7jLygoQGZmJvLz8w2fc3Z2rlSjd+7cQUBAAFJTU8sOTOHjoOQfqalAYCBw\n8SJQr57oaIxTPL8ot0u3axd/B3fuHFDNqBU/RAkkW8A1a9YsTJo0CXZ2drC0tDR8PiUlpVKBpaWl\noWHDhoiOjsbJkyfRqlUrxMXFyX7kHZHHV18B//d/5lP0i6PcLtvLLwMODsDKlXxLB6IeRm/SdujQ\nITRo0ECSRo8cOYIXXngB+/btQ5s2bTBq1CjUqVMHkydP/icwnQ6fFdvEPTg4GMHBwZK0T6Rz/To/\nRP3335W9C2dycjKSk5MN/540aZJhkzbK7bJt2sRv2P/2m/JOUCNcWbldLmaE4OBgptfrjXmqUW7e\nvMlcXFwM/969ezfr2rVriecYGRoR7P33+R9zU5RflNvlKyxkrFUrxlavFh0JMZYx+WXUUE/Tpk0R\nEhKCrl27SrKRVaNGjdCkSROcP38ebm5u2LZtG7y8vCp1LSLOn3/y7XwrOSqiCJTb5dPpgE8+Ab74\nAujenQ5qUQujCr+zszOcnZ2h1+uh1+vBGIOuihkwa9YsDBgwAHq9Hq6urli4cGGVrkdMb8YMoH9/\nvsrTXFFuP1337vzozI0bzWcrDlI+WrlLKuXWLaBFC+D4caCSE2CEopW7FbNqFf9Fv38/9fqVrspb\nNrz33nuIi4tDeHh4qRf/5Zdfqh5lWYGZ4YtDSz75hBf/uXNFR1I5RflFuW2cwkJ+E/+//wU6dRId\nDSlPlQv/0aNH0apVqxJ3jItf/JVXXqlykGUGZoYvDq3IyuLL+o8eBVxcREdTOUX5RbltvIQEYNYs\nYO9e6vUrGW3SRmTx6ad8Guf8+aIjqTwa6qm4ggK+mvebb4AOHURHQ8pChZ9Irqi3f/gwP63JXFHh\nr5xly4BvvwX27KFev1LR7pxEcv/9L9Czp3kXfVJ5kZH8l//WraIjIVVBPX5itNu3ATc38x7bL0I9\n/spLTAS+/ppm+CiVJD3++Ph4tGzZEtbW1rC2tkbr1q2xaNEiyYIk5mPGDCAiwvyLfhHK7crp0we4\nd49v50DMVHnLeuPj45m/vz/bsWMH++uvv1hWVhbbvn07a9myJVu0aJERi4cr7ymhERP74w/GbG0Z\nS08XHYk0AFBuV8HKlYy1bs23dCDKYkx+lTvUExQUhMTERDRt2rTE59PT09GvXz8cPHhQtl9I5v52\nWG3GjAHy8oDZs0VHIg2dTofU1FTK7UoqLAQCAoDJk/nKXqIcVd6W+d69e0+8MADAxcUF9+7dq1p0\nxGzcuAEsWACcOiU6EmlRbleehQXw+efA+PFAeDjt3Gluyv3vqlmzZqUeI+oyZQo/kMPRUXQkpkG5\nbZzwcKBWLb5fPzEv5Q711KpVC82aNSv1sUuXLiE3N1e+wFTwdlgN0tOBVq34KUxK3m+/onQ6Hby9\nvUt9jHLbeNu2AW+/DZw+Tad0KUWVF3Clp6eX+8UuMk7vUNOLw5xFRwNOTvxtvZrodDqkpaWV+Tjl\ntnEYA0JCgMGD+btCIp7JVu6+8MIL2L9/f1UvU4KaXhzm6vRp/qK+cAGoW1d0NNIyNr8ot59u3z6+\nsOv8eYBGycQz2crdBw8eSHEZojDjxwNjx6qv6FcE5fbTtWvHZ/jMmSM6EmIsuhdPSnXgAHDkCB+/\nJeRppk4FYmOBu3dFR0KMQYWfPIExYNw4YOJEPmuDkKfx8gK6dOGru4nyUeEnT9i0CcjIAIYMER0J\nMScTJ/ItmzMyREdCnkaSm7spKSnw8fGRIh4Dtd0AMxcFBf+syOzRQ3Q08jE2vyi3K+aDD/gK72+/\nFR2JdlV5Vo+NjU2ZB0/rdDrclXFAT80vDiWLjwfmzVP/fus6nQ42NjZlPka5XTm3bwPu7jx/WrQQ\nHY020UEspELy8viLNTGRz9RQM9qWWT5ffcUnB/z8s+hItIkOYiEVMnMm0KaN+os+kde77/IZYXv3\nio6ElIV6/AQA8OefgIcHX4zj5iY6GvlRj19eixfzef379ql7yFCJqMdPjDZxIhAVpY2iT+Q3cCCg\n19MGbkpFPX6Cs2eBl1/mG7E1aCA6GtOgHr/8kpP5Xk9nz9JWDqZEPX5ilA8/5Au2tFL0iWkEBwN+\nfvzeEVEW6vFr3NatwMiRwJkzQI0aoqMxHerxm8b583yywJkzgJ2d6Gi0gXr8pFz5+cD77wP/+Y+2\nij4xHTc3vmXz+PGiIyHFCS38BQUFCAgIQHh4uMgwNGvuXMDeXt0rdEWgvC7p00+BX34BTpwQHQkp\nIrTwx8XFwdPTs8zVwUQ+WVnApEnA11/TdDupUV6XVK8ez7X33uMbABLxhBX+a9euISkpCcOGDdPM\neKeSTJwI9O4NSLwNjeZRXpdu2DAgOxv48UfRkRBAYOF///33MX36dFhY0G0GU0tJ4dsyTJ4sOhL1\nobwunaUln90zZgwg43HGxEhCjkdev3497OzsEBAQgOTk5DKfN3HiRMPHwcHBCA4Olj02tWOML6mf\nNAl49lnR0ZhOcnJyubkmBWPzGtBmbr/yCp/hM22a+s5wFqkyuS1kOue///1vLFmyBNWqVcODBw9w\n9+5dREREYPHixf8EpqEpb6aUmAh8+SXfS8XSUnQ04siRX8bktVxtm4tr1wB/f+DgQcDVVXQ06mQW\nu3P++uuv+M9//oN169aV+LyWXxxyycnh+/EkJgIvvig6GrHkzq+y8toUbSvdl1/ybZtL+dEQCZjN\nPH6a/WBknV/pAAAXGklEQVQakycDoaFU9E2F8rp0o0bxhV1U+MUR3uMvi9Z7RVI7dYoX/ZQUPndf\n62jlrljbtgHDhwOnTwPW1qKjURez6fETeTEGvPUWv6FLRZ8oQYcOQNu2wJQpoiPRJurxa8CiRfwQ\n7AMHtH1Dtzjq8Yt34wbg6wvs3s3vPRFpmMXN3bLQi0Mat28DXl7A+vVA69aio1EOKvzKEBcHrF4N\n7NxJK8ilQkM9BGPGAP36UdEnyvTOO3y2WXy86Ei0hXr8KrZzJzBkCL+BVru26GiUhXr8ynH8ONC5\nM5+A0LCh6GjMH/X4NezBA+D//o+P7VPRJ0oWEAAMGgSMHi06Eu2gHr9KjR/Pj7z76SfRkSgT9fiV\n5f59wNsb+O47oFMn0dGYN7q5q1EnTgAdOwInTwIODqKjUSYq/MqzZQswYgRfa0LvUiuPCr8G5ecD\nQUH8pll0tOholIsKvzJFR/OiT+f0Vh4Vfg368ku+KnLLFpoeVx4q/MqUlcXPiFi5krYWqSwq/Bpz\n7hzw0kvA4cNA06aio1E2KvzK9fPPwMcf8yHLWrVER2N+qPBrSH4+7yENGcK3ZyDlo8KvbP37A46O\nwIwZoiMxP1T4NeTLL/nwztatAB3+9HRU+JXt9u1/hnxeekl0NOaFCr9GnDnDTzc6fBhwcREdjXmg\nwq98a9YAH37IZ6fRDp7Go8KvAXo98MILfLHWiBGiozEfVPjNw6BBQN26fCEiMQ4Vfg2YMIEveV+3\njmbxVAQVfvOQnc138Jw3jxZ2GYsKv8rt3w/07MlnPzRqJDoa80KF33xs384nLZw8CTRoIDoa5aO9\nelQsJwcYPBj49lsq+kTdXn0V6NMHePNNfqgQqTrq8ZupmBj+94IFYuMwV9TjNy8PHgBt2vCN3GhF\nevmMya9qJoqFSGjFCmDPHuDYMdGREGIaNWsCCQlASAif3tm8ueiIzBv1+M3M5cu857NxI9Cqleho\nzBf1+M3T7Nn80Ja9ewErK9HRKBPd3FWZR4+A4GCge3dg7FjR0Zg3KvzmiTGe/y1aANOni45Gmajw\nq0zR/iUbNtDq3Kqiwm++bt/mh7fMmQN07So6GuWhwq8imzcDw4bxcX06nq7qqPCbt717gYgI4MgR\nwMlJdDTKQtM5VeL6deCNN4ClS6noEwLwDQlHjQIiI/kQKKkY6vErnF7Px/XDw/lQD5EG9fjNX2Eh\nf124u9MunsXRUI8KjBoFpKbyDatoXF86VPjVISuLz26bPh3o3Vt0NMpA8/jN3IoVfA+eI0eo6BNS\nGltbYNUqoEsXfli7u7voiMyDkHJy9epVhISEwMvLC97e3phJB2w+4bff+Lm5P/4I1K8vOhpiLMpt\n02vdGpg2je9bdfeu6GjMg5ChnoyMDGRkZMDf3x85OTlo1aoV1qxZAw8Pj38C0/Db4awsvkjr88+B\nqCjR0aiTXPlFuS3Om28CN24Aq1dr+x2yYmf1NGrUCP7+/gAAGxsbeHh44MaNGyJCUZz8fH7sXM+e\nVPTNEeW2OHFxfI7/55+LjkT5hI/xp6en4/jx4wgKChIdiiJ8+CFfnRgbKzoSUlWU26ZlZcWHRgMD\n+Xh/RIToiJRLaOHPyclB7969ERcXBxsbG5GhKML33wNJScCBA0A14b+SSVVQbovRqBGfAdepE9C0\nKdCypeiIlElYeXn06BEiIiIwcOBA9OjRo9TnTJw40fBxcHAwgoODTROcADt38tO09uyhm7lySE5O\nRnJysknaotwWq2VL4Lvv+J4+Bw8Cjo6iI5JXZXJbyM1dxhiGDBmCBg0a4H//+1+pz9HSDbCzZ/ki\nrYQEIDRUdDTaIFd+UW4rx9SpfOhn1y5AS2+6FLuAa8+ePXj55Zfh6+sL3d8HxU6bNg2dO3f+JzCN\nvDgyM/lh6Z99xo+XI6YhV35RbisHY8Dw4cDNm8DatdoZPlVs4TeGFl4c9+/znn7XrkCxd/7EBGjl\nrjY8egR068bH++fMAf7+XaxqVPgV7NEjPgZpb8+PT9RCQioJFX7tuHsXePllPstnwgTR0ciPtmxQ\nqMJCfmauhQWfyUNFnxD51KnDT6x76SXe0RoxQnRE4lHhNzHG+Fz91FRg61agenXRERGifg4O/EyL\nl18GGjSgOf5U+E1s8mRe8JOTAWtr0dEQoh3NmvHT6zp3Bp55hv+tVRre0cL0ZswAli/nhd/WVnQ0\nhGhPQADfy2fwYODXX0VHIw4VfhOZPRv45htg2zY+zkgIEaNdOyAxEejTB9i3T3Q0YlDhN4HZs/lB\nETt2AE2aiI6GEBIaCixeDPTooc3iT4VfZt9+y4v+zp18LjEhRBk6d9Zu8afCL6MZM/7p6VPRJ0R5\niop/9+68c6YVVPhlwBgwaRKfo79rF/D886IjIoSUpXNnYOVKoG9fvjuuFlDhl1hhIfD++8BPP/Gi\nT2P6hChfSAg/3zo6mm+WqHY0j19Cej3wxhvAtWt8qhhtr0yI+WjbFti+nR/cnpkJjBolOiL5UI9f\nInfu8M3W8vL4CkEq+oSYH29vfibG3LnA2LH8HbwaUeGXQHo68OKLQIsWfP/vWrVER0QIqaznnuPF\n/8ABPu6fmys6IulR4a+iAwf4gpARI/gCLUtL0RERQqqqQQO+wr5WLb51+s2boiOSFhX+KliwAHj9\ndT5751//Eh0NIURKNWrwqZ6vvw60acOPcVQL2o+/EvR64IMPgC1b+Mk+7u6iIyIVRfvxk4pYtw4Y\nOhSYNo3/rWR0EIsMLl/m436NGgGLFgH16omOiFQGFX5SUWfP8u2cg4L4NixK3V3XmPyioZ4K+OUX\nIDCQb+60Zg0VfUK0xMMDOHQIyM/ndeD0adERVR71+I1w/z4f2tm8GVi6lM/gIeaNevykshjj9/fG\njQM++wx4+21lnaJHPX4J7N8PtGoF5OQAJ05Q0SdE63Q6Ps6/dy8f7n3tNb5o05xQ4S9DXh4wZgzQ\nqxc/NWvpUqBuXdFREUKUws2N7+r5wgv8gJcffuDvBswBDfWUYuNG4J13+DjezJlAw4ZCwiAyoqEe\nIqWUFL7Pj40N34rd01NcLDTUU0Hp6UDv3sC77/K79gkJVPQJIU/n48Pn+ffuDbzyCh//v3dPdFRl\no8IPvs/OuHF8LN/Xl//21vJBzISQirO05CMFv/3GV/q6uQHz5gEFBaIje5KmC//9+8CXXwLNmwN/\n/MEL/qef0l47hJDKc3DgN33XrweWLeMbv61YoawN3zQ5xp+dDXz3HRAXB7z8MjBxIp+jS7SDxviJ\nKTDG9/yZMIFv9jZuHF8AWr26fG3Syt3HXLoEzJkDLFzIp2CNHcvH5oj2UOEnpsQYsGkT8NVXQFoa\n39srOlqe7dsVfXN306ZNcHd3R/PmzfHll1/K1s7Dh/w0rC5d+EELFhbAsWPAkiVU9Ik8TJXbxHzo\ndLwG7dzJj3k8fpwfyRoTA+zeLWAaKBMgPz+fubq6srS0NKbX65mfnx87c+ZMiedUJbSHDxnbtImx\n4cMZs7VlLDSUsUWLGMvNLfm8nTt3VrqNijBFO2ppw1TtyJX6cue2sSgflN9GZiZjX37JmJcXY02b\nMvbvfzN2+DBjhYVVa8eY/BLS4z906BCaNWsGFxcXVK9eHZGRkVi7dm2lr8cYcPEiPzWnTx++gdrk\nyfyu+vHj/Di1wYOfvGmbnJxctW/ESKZoRy1tmLIdOUid25VF+aD8Nuzs+HBzSgo/wKmgABgwgB8E\nM3w4f2fwxx/yxCLkzN3r16+jSbFTyJ2cnHDQyM2uc3P5GNmZM3yTpGPH+GEoVlZAaCgQHs4XXTk4\nyBU9IWWrSm4TbdLpgJYt+Z9p04Dff+dbvi9Zwg94atCAD1P7+fEZQu7uQJMmVbtBLKTw64zc0Ygx\nfgf81i0gK4vPjb17F3B25ivjvL2BQYP4SjknJ5mDJsQIxuY2IaXR6Xhhd3fnN4ALC4Fz53jnNiUF\n2LaN/2LIyODvGOzs+C+Gdu347ESjVW00qXL279/POnXqZPj31KlTWWxsbInnuLq6MgD0h/7I8sfV\n1ZVym/6o8o8xuS1kOmd+fj5atGiB7du3w9HREYGBgUhISIAHTaYnZo5ym5gDIUM91apVwzfffINO\nnTqhoKAAQ4cOpRcGUQXKbWIOFLuAixBCiDwUvVfPrFmz4OHhAW9vb3z00UeytDFx4kQ4OTkhICAA\nAQEB2LRpkyztAMCMGTNgYWGBrKwsWa4/YcIE+Pn5wd/fH6+++iquXr0qeRsffvghPDw84Ofnh169\neuHOnTuSt7Fq1Sp4eXnB0tISx44dk/z6ohZYmaLdmJgY2Nvbw0fG1YlXr15FSEgIvLy84O3tjZkz\nZ0rexoMHDxAUFAR/f394enri448/lryNIgUFBQgICEB4eLhsbbi4uMDX1xcBAQEIDAyUpY3s7Gz0\n7t0bHh4e8PT0xIEDB8p+sqR3tiS0Y8cO1qFDB6bX6xljjP3xxx+ytDNx4kQ2Y8YMWa5d3JUrV1in\nTp2Yi4sLu337tixt3L171/DxzJkz2dChQyVvY8uWLaygoIAxxthHH33EPvroI8nbOHv2LPv9999Z\ncHAwO3r0qKTXNmaBlRxM1e6uXbvYsWPHmLe3t+TXLnLz5k12/Phxxhhj9+7dY25ubrJ8L/fv32eM\nMfbo0SMWFBTEdu/eLXkbjDE2Y8YMFhUVxcLDw2W5PmNM1td9kcGDB7P58+czxvjPLDs7u8znKrbH\nP2fOHHz88ceo/vdk1YYybozPTDDaNXr0aHz11VeytlG7dm3Dxzk5OXj22WclbyMsLAwWFjxtgoKC\ncE2GM+fc3d3h5uYm+XUBcQusTNVu+/btUV+ODWCKadSoEfz9/QEANjY28PDwwI0bNyRvx9raGgCg\n1+tRUFAAW1tbydu4du0akpKSMGzYMNnrgJzXv3PnDnbv3o2YmBgA/F5T3XKODFRs4b9w4QJ27dqF\ntm3bIjg4GEeOHJGtrVmzZsHPzw9Dhw5Fdna25Ndfu3YtnJyc4OvrK/m1H/fJJ5/A2dkZixYtwrhx\n42Rta8GCBXjttddkbUNqpS2wun79umrblVt6ejqOHz+OoKAgya9dWFgIf39/2NvbIyQkBJ4yHGv1\n/vvvY/r06YbOjFx0Oh06dOiA1q1bY968eZJfPy0tDQ0bNkR0dDRatmyJ4cOHIzc3t8znC5nVUyQs\nLAwZGRlPfH7KlCnIz8/HX3/9hQMHDuDw4cPo27cvUlNTJW/nzTffxKeffgqAj5F/8MEHmD9/vqRt\nTJs2DVu2bDF8riq/+ctqZ+rUqQgPD8eUKVMwZcoUxMbG4v3338fChQslbwPg35eVlRWioqIq/k0Y\n2YYcRC2wUuPCrpycHPTu3RtxcXGwsbGR/PoWFhY4ceIE7ty5g06dOiE5ORnBwcGSXX/9+vWws7ND\nQECA7Fs27N27Fw4ODvjzzz8RFhYGd3d3tG/fXrLr5+fn49ixY/jmm2/Qpk0bjBo1CrGxsZg8eXKp\nzxda+Ldu3VrmY3PmzEGvXr0AAG3atIGFhQVu376NBg0aSNpOccOGDat00SmrjVOnTiEtLQ1+fn4A\n+FvLVq1a4dChQ7Czs5OsncdFRUVVujf+tDbi4+ORlJSE7du3V+r6xrQhl8aNG5e46X316lU4mWDZ\nt6h25fLo0SNERERg4MCB6NGjh6xt1a1bF127dsWRI0ckLfz79u3DL7/8gqSkJDx48AB3797F4MGD\nsXjxYsnaKOLw9x4yDRs2RM+ePXHo0CFJC7+TkxOcnJzQpk0bAEDv3r0RGxtb5vMVO9TTo0cP7Nix\nAwBw/vx56PX6ShX9p7l586bh49WrV0s+G8Lb2xuZmZlIS0tDWloanJyccOzYsUoV/ae5cOGC4eO1\na9ciICBA8jY2bdqE6dOnY+3atahZs6bk13+c1OOirVu3xoULF5Ceng69Xo8VK1bg9ddfl7QNJbUr\nB8YYhg4dCk9PT4waNUqWNm7dumUYds3Ly8PWrVslz+epU6fi6tWrSEtLQ2JiIkJDQ2Up+rm5ubj3\n9wG89+/fx5YtWySvM40aNUKTJk1w/vx5AMC2bdvg5eVV9hfIepu5CvR6PRs4cCDz9vZmLVu2lG3b\n1EGDBjEfHx/m6+vLunfvzjIyMmRpp0jTpk1lu7sfERHBvL29mZ+fH+vVqxfLzMyUvI1mzZoxZ2dn\n5u/vz/z9/dmbb74peRs///wzc3JyYjVr1mT29vasc+fOkl4/KSmJubm5MVdXVzZ16lRJry263cjI\nSObg4MCsrKyYk5MTW7BggeRt7N69m+l0Oubn52fIg40bN0raxm+//cYCAgKYn58f8/HxYV999ZWk\n139ccnKybLN6UlNTmZ+fH/Pz82NeXl6y/d+fOHGCtW7dmvn6+rKePXuWO6uHFnARQojGKHaohxBC\niDyo8BNCiMZQ4SeEEI2hwk8IIRpDhZ8QQjSGCj8hhGgMFX5CCNEYKvwSCQ0NLbEfDwB8/fXXeOut\nt8r8mgsXLqBbt25o1qwZWrdujdDQUOzevRsAkJmZiW7dusHf3x9eXl7o2rVrqdd48cUXpfsmShEc\nHGzYE3/q1KmytkWUh/JapWRZQqZB33//PYuOji7xubZt25a5h3heXh5r3rw5W7duneFzp06dYvHx\n8YwxxkaMGMFmzpxpeCwlJUWGqJ+u+J74NjY2QmIg4lBeqxP1+CUSERGBDRs2ID8/HwDfrvbGjRt4\n6aWXSn3+smXL8OKLL6Jbt26Gz3l5eWHIkCEAgIyMDDRu3NjwmLe3d6nXKdoVsWjnwj59+sDDwwMD\nBw584rnnzp0rsX1uenq6Yavo7du3o2XLlvD19cXQoUOh1+sNz2OMYdy4ccjLy0NAQAAGDRqE3Nxc\ndO3aFf7+/vDx8cHKlSuN+jkR80J5rc68psIvEVtbWwQGBiIpKQkAkJiYiH79+pX5/DNnzqBly5Zl\nPv72229j6NChCA0NxdSpU0tsJldc8e1+T5w4gbi4OJw5cwapqanYu3dviee6u7tDr9cjPT0dALBi\nxQpERkbiwYMHiI6OxsqVK/Hbb78hPz8fc+bMKdFGbGwsatWqhePHj2PJkiXYuHEjGjdujBMnTiAl\nJQWdO3d+6s+ImB/Ka3XmNRV+CfXv3x+JiYkAePL179+/3OezYtsk9ezZEz4+PoiIiAAAdOzYEamp\nqRg+fDjOnTuHgIAA3Lp1q9zrBQYGwtHRETqdDv7+/oYXQnF9+/bFihUrAAArV65Ev3798Pvvv6Np\n06Zo1qwZAGDIkCHYtWtXuW35+vpi69atGDduHPbs2YM6deqU+3xiviiv1YcKv4Ref/11bN++HceP\nH0dubm6528h6eXmVOEh89erViI+PL3EQe/369dG/f38sXrwYbdq0eWrS1qhRw/CxpaWl4e15cf36\n9cPKlStx4cIF6HQ6uLq6PvEcZsS+fc2bN8fx48fh4+OD8ePH4/PPP3/q1xDzRHmtPlT4JWRjY4OQ\nkBBER0c/9WSqqKgo7N27F+vWrTN87v79+4a3uDt37jQcnXbv3j1cunQJzz33XJVjfP7552FpaYnP\nP/8ckZGRAIAWLVogPT0dly5dAgAsWbKk1AMvqlevbnjR3bx5EzVr1sSAAQMwZsyYEi92oi6U1+oj\n9AQuNerfvz969er11JtCNWvWxPr16zF69GiMGjUK9vb2qF27NsaPHw8AOHr0KN555x1Uq1YNhYWF\nGD58OFq1avXEdYqPhT5+vF9Zx/3169cPY8eOxRdffGGIZeHChejTpw/y8/MRGBiIkSNHPvF1I0aM\ngK+vL1q1aoVBgwbhww8/hIWFBaysrEqMnRL1obxWF9qPnxBCNIaGegghRGNoqEdmKSkpGDx4cInP\n1axZE/v37xcUESFVR3lt3miohxBCNIaGegghRGOo8BNCiMZQ4SeEEI2hwk8IIRpDhZ8QQjTm/wFW\n/IkRN7BkXwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7f3598da4ed0>" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.15\n", ": Page No 378" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 30 # in mA\n", "V_GS = -5 # in V\n", "V_GS_off = -8 # in V\n", "I_D = I_DSS*(1-(V_GS/V_GS_off))**2 # in mA\n", "print \"The drain current = %0.3f mA\" %I_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 4.219 mA\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.16\n", ": Page No 378" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "# Given data\n", "I_D = 1.5 # in mA\n", "I_DSS = 5 # in mA\n", "V_P = -2 # in V\n", "V_GS = V_P*(1-sqrt(I_D/I_DSS)) # in V\n", "V_G = 0 # in V\n", "V_S = V_G-V_GS # in V\n", "R_S = V_S/I_D # in kohm\n", "print \"The source resistance = %0.f ohm\" %(R_S*10**3)\n", "V_DD = 20 # in V\n", "V_DS= 10 # in V\n", "R_D = (V_DD-(V_DS+(I_D*R_S)))/(I_D) # in kohm\n", "print \"The diode resistance = %0.f K ohm\" %R_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The source resistance = 603 ohm\n", "The diode resistance = 6 K ohm\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.17\n", ": Page No 379" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "# Given data\n", "I_D = 0.8 # in mA\n", "I_D= I_D*10**-3 # in A\n", "I_DSS = 1.645 # in mA\n", "I_DSS= I_DSS*10**-3 # in A\n", "V_P = -2 # in V\n", "V_GS = V_P * (1-sqrt(I_D/I_DSS)) # in V\n", "print \"The gate source voltage = %0.2f V\" %V_GS\n", "g_mo = -((2*I_DSS)/V_P) # in A/V\n", "g_m = g_mo*(1-(V_GS/V_P)) # in A/V\n", "print \"The transconductance = %0.2f mA/V\" %(g_m*10**3)\n", "R_S = -(V_GS/I_D) # in ohm\n", "print \"The source resistance = %0.f ohm\" %R_S\n", "AdB= 20 # in dB\n", "A= 10**(AdB/20) \n", "R_D= A/g_m # in ohm\n", "print \"The value of R_D = %0.2f k\u03a9\" %(R_D*10**-3)\n", "\n", "# Note: There is calculation error to find the value of R_S in the book . So the answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The gate source voltage = -0.61 V\n", "The transconductance = 1.15 mA/V\n", "The source resistance = 757 ohm\n", "The value of R_D = 8.72 k\u03a9\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.18\n", ": Page No 381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_GG = 2 # in V\n", "V_GS = -V_GG # in V\n", "print \"The value of V_GS = %0.f V\" %V_GS\n", "I_DSS = 10 # in mA\n", "V_P = -8 # in V\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # in mA\n", "I_DQ= I_D # in mA\n", "print \"The value of I_DQ = %0.3f mA\" %I_DQ\n", "R_D = 2 # in K ohm\n", "V_DD = 16 # in V\n", "V_DS = V_DD - (I_D*R_D) # in V\n", "print \"The value of V_DS = %0.2f V\" %V_DS\n", "V_D = V_DS # in V\n", "print \"The value of V_D = %0.2f V\" %V_D\n", "V_G = V_GS # in V\n", "print \"The value of V_G = %0.f V\" %V_G\n", "V_S = 0 # in V\n", "print \"The value of V_S = %0.f V\" %V_S" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V_GS = -2 V\n", "The value of I_DQ = 5.625 mA\n", "The value of V_DS = 4.75 V\n", "The value of V_D = 4.75 V\n", "The value of V_G = -2 V\n", "The value of V_S = 0 V\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.19\n", ": Page No 381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_GS = 10 # in V\n", "I_G = 0.001 # in \u00b5A\n", "R_GS = V_GS/I_G # in M\u03a9\n", "print \"The gate source resistance = %0.f M\u03a9\" %R_GS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The gate source resistance = 10000 M\u03a9\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.20\n", ": Page No 382" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "del_VDS = 1.5 # in V\n", "del_ID = 120 * 10**-6 # in A\n", "r_d = del_VDS/del_ID # in ohm\n", "r_d = r_d * 10**-3 # in kohm\n", "print \"The drain resistance of the JFET = %0.1f K ohm\" %r_d" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain resistance of the JFET = 12.5 K ohm\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.21\n", ": Page No 382" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 8.4 # in mA\n", "V_P = -3 # in V\n", "V_GS = -1.5 # in V\n", "I_D = I_DSS*(1-(V_GS/V_P))**2 # in mA\n", "g_mo = -( (2*I_DSS)/V_P ) # in mA/V\n", "g_m = g_mo*(1-(V_GS/V_P)) # in mA/V\n", "print \"The value of g_m = %0.1f mA/V\" %g_m" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of g_m = 2.8 mA/V\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.22\n", ": Page No 383" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import symbols, solve, N\n", "#Given data\n", "V_GS= symbols('V_GS')\n", "# Given data\n", "V_DD= 20 # in V\n", "I_DSS= 9 # in mA\n", "V_P= -3 # in V\n", "R1= 0.3*10**3 # in k\u03a9\n", "R2= 1.7*10**3 #in k\u03a9\n", "R_D= 3.2 # in k\u03a9\n", "R=1 # in k\u03a9\n", "V_G= V_DD*R1/(R1+R2) # in V\n", "#I_D= I_DSS*[1-V_GS/V_P]**2 (i)\n", "# V_G= V_GS+I_D*R or I_D= (V_G-V_GS)/R (ii)\n", "# From (i) and (ii)\n", "#V_GS*1/V_P**2+V_GS*[1/(R*I_DSS)-2/V_P]+[1-V_G/(R*I_DSS)]=0\n", "expr= V_GS**2*(R*I_DSS/V_P**2)+V_GS*(1-2*R*I_DSS/V_P)+(R*I_DSS-V_G)\n", "x1 , V_GS= solve(expr, V_GS)\n", "I_D= I_DSS*(1-V_GS/V_P)**2 # in mA\n", "print \"The value of I_D = %0.f mA\" %I_D\n", "V_S= I_D*R #in V\n", "V_D= V_DD-I_D*R_D # in V\n", "V_DS= V_D-V_S # in V\n", "gm= -2*I_DSS/V_P*(1-V_GS/V_P) # in mA/V\n", "print \"The value of V_DS = %0.1f volts\" %V_DS\n", "print \"The transconductance = %0.f mA/V\" %gm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of I_D = 4 mA\n", "The value of V_DS = 3.2 volts\n", "The transconductance = 4 mA/V\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.23\n", ": Page No 385" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "r_d = 25 # in k\u03a9\n", "R1 = r_d # in k\u03a9\n", "R2 = r_d # in k\u03a9\n", "g_m = 2 #mA/V\n", "g_m= g_m*10**-3 # in A/V\n", "R_L = (r_d*R1*R2)/(r_d*R1+R1*R2+R2*r_d) # in k\u03a9\n", "R_L= R_L*10**3 # in \u03a9\n", "A_v = -g_m*R_L \n", "print \"The voltage gain = %0.2f\" %A_v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage gain = -16.67\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.24\n", ": Page No 386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "V_GS = 15 # in V\n", "I_G = 1 # in nA\n", "I_G =I_G * 10**-9 # in A\n", "R_in = V_GS/I_G # in \u03a9\n", "print \"Input resistance = %0.f G\u03a9\" %(R_in*10**-9)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Input resistance = 15 G\u03a9\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.25\n", ": Page No 386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS = 20 # in mA\n", "V_P = 4 # in V\n", "I_D = I_DSS # in mA\n", "print \"The maximum drain current = %0.f mA\" %I_D\n", "V_GS = -V_P # in V\n", "print \"The gate source cut off voltage = %0.f volts\" %V_GS\n", "R_DS = V_P/I_DSS # in k\u03a9\n", "print \"The value of ohmic resistance = %0.f \u03a9\" %(R_DS*10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum drain current = 20 mA\n", "The gate source cut off voltage = -4 volts\n", "The value of ohmic resistance = 200 \u03a9\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.26\n", ": Page No 386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "I_DSS= 16*10**-3 # in A\n", "V_GSoff= -6 #in V\n", "V_GS= V_GSoff/2 # in V\n", "I_D= I_DSS*(1-V_GS/V_GSoff)**2 # in A\n", "print \"The drain current = %0.f mA\" %(I_D*10**3)\n", "V_GS= abs(V_GSoff)/2 # in V\n", "print \"The gate voltage = %0.f volts\" %V_GS" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 4 mA\n", "The gate voltage = 3 volts\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.27\n", ": Page No 387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "V_DD = 15 # in V\n", "R_D = 10 # in kohm\n", "R_D = R_D * 10**3 # in ohm\n", "I_D = V_DD/R_D # in A\n", "print \"The drain current = %0.1f mA\" %(I_D*10**3)\n", "V_D = V_DD - I_D*R_D # in V\n", "print \"The drain voltage = %0.f V\" %V_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 1.5 mA\n", "The drain voltage = 0 V\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.28\n", ": Page No 388" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "# Given data\n", "R2 = 1 # in M ohm\n", "R2 = R2 * 10**6 # in ohm\n", "R1 = 1.5 # in M ohm\n", "R1 = R1 * 10**6 # in ohm\n", "V_DD = 25 # in V\n", "V_G = (R2*V_DD)/(R1+R2) # in V\n", "R_S = 22 # in kohm\n", "R_S = R_S * 10**3 # in ohm\n", "I_D = V_G/R_S # in A\n", "print \"The drain current = %0.2f mA\" %(I_D*10**3)\n", "R_D = 10 # in kohm\n", "R_D = R_D * 10**3 # in ohm\n", "V_D = V_DD - (I_D*R_D) #in V\n", "V_S = 10 # in V\n", "V_DS = V_D - V_S # in V\n", "print \"The Drain source voltage = %0.1f V\" %V_DS\n", "print \"Thus the Q-point is : (\",round(V_DS,1),\"V,\",round(I_D*10**3,2),\"mA)\"\n", "I_Dsat = V_DD/R_D # in A\n", "V_DS = V_DD # in V\n", "V_D= np.arange(0,25,0.1) # in V\n", "I_D= (V_DD-V_D)/R_D*10**3 # in mA\n", "plt.plot(V_D,I_D) \n", "plt.xlabel(\"V_DS in volts\") \n", "plt.ylabel(\"I_D in mA\") \n", "plt.title(\"DC load line\") \n", "print \"DC load line shown in figure\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 0.45 mA\n", "The Drain source voltage = 10.5 V\n", "Thus the Q-point is : ( 10.5 V, 0.45 mA)\n", "DC load line shown in figure" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHzxJREFUeJzt3XtU1HXCx/HPELqKaIGtqKBBqAnK1Qt10oIuUhjmrqaw\nZa5imWXm1lp6Ttujpw5mpqXZcWWfUmv3IOqeNlPAbmKWsuzWWG7kep1EMDveVolcROf5g4cR5OIA\n85vr+3XOnAMzv5n58jvjfH3/LjMmq9VqFQAAkvxcPQAAgPtgUgAA2DApAABsmBQAADZMCgAAGyYF\nAIANkwLw/9asWaORI0ca8th+fn46dOhQk7clJyfrrbfekiT95S9/UWpqqiFjAOzBpACPFB4eroCA\nAHXr1k1BQUG69dZbtWrVKl152k1JSYnS0tIUFBSk7t27KykpSWvWrHHNoJthMplkMpkkSQ8++KC2\nbt3q4hHBlzEpwCOZTCZt3rxZZ8+e1ZEjRzR37lwtWrRIWVlZtmV27dqlO++8UykpKTp48KBOnjyp\nlStXqrCw0IUjB9wbkwI8XteuXZWenq68vDytXbtWpaWlkqQ5c+bot7/9rebMmaPg4GBJUmJiotat\nW2fX4+7cuVPDhg3Tddddp+HDh2vXrl2221avXq3o6Gh169ZNkZGRysnJaXDfxYsXq3fv3goLC9Pb\nb79t999y5SYsPz8/rVq1SgMGDFBQUJBmzpzZYPm3335b0dHRCg4O1j333KMjR47Y/VxAU5gU4DWG\nDRumsLAw7dixQ1VVVSouLtb48ePb9FinTp3S6NGjNXv2bJ06dUpPP/20Ro8erVOnTkmSQkJCtGXL\nFp09e1arV6/W7373O5nNZklSYWGhlixZoo8//lj79u3Txx9/3K6/a8uWLfrnP/+pb775RuvXr7dt\nXnr//fe1cOFCvffeezpx4oRGjhypzMzMdj0XwKQAr9K7d2+dOnVKp0+f1qVLl9SrV682Pc6WLVt0\n00036cEHH5Sfn58yMjI0cOBAffDBB5KktLQ0RURESJJuu+02jRo1Sjt27JAkrV+/XlOnTlV0dLQC\nAgK0YMGCdv1Nc+fOVbdu3dSnTx+lpKTo66+/liT98Y9/1Lx583TTTTfJz89P8+bN0+7du1VWVtau\n54NvY1KAVzl69KiCg4MVHBwsPz8/HTt2rE2PU1FRob59+za47oYbblBFRYUkqaCgQDfffLO6d++u\noKAg5efn6+TJk5KkY8eOqU+fPrb7Xfk4rdWzZ0/bzwEBAaqsrJQkff/993rqqacUFBRk25EuSeXl\n5e16Pvg2JgV4jX/84x+qqKjQiBEj1LlzZ91yyy3auHFjmx4rNDRU33//fYPrvv/+e4WGhuq///2v\nxo0bp2effVY//vijTp8+rbS0NNuRT7169Wqwbd+o7fx9+/ZVTk6OTp8+bbv89NNPuvnmmw15PvgG\nJgV4rLo34bNnz2rz5s3KzMzUpEmTNGjQIEnSK6+8ojVr1ujVV1+1/S/+66+/tmu7+7333qt9+/Yp\nNzdXNTU1ysvL0969e3Xfffepurpa1dXVuv766+Xn56eCggJ9+OGHtvtOmDBBa9as0Xfffaeqqqp2\nbz668m+u+7sfe+wxZWdn23as/+c//9GGDRsc9lzwTUwK8Fjp6enq1q2b+vbtq4ULF+qZZ57R6tWr\nbbffcsst+vTTT/Xpp58qMjJS3bt31/Tp0zV69OgmH6/++QLdu3fX5s2btWTJEl1//fV69dVXtXnz\nZgUHB6tr165avny5JkyYoODgYOXm5ur++++3Pc4999yj2bNn64477tCAAQN055132h73auqPoe73\n5m4fO3asnnvuOWVkZOjaa69VTEwM5zig3UxGfslOWVmZHn74Yf34448ymUx69NFHNWvWrAbLFBUV\n6f7779eNN94oSRo3bpyef/55o4YEAGiBv5EP3qFDB7322muKj49XZWWlhgwZorvvvltRUVENlrv9\n9tu1adMmI4cCALCDoZuPevbsqfj4eElSYGCgoqKibEdv1Mc3ggKAe3DaPgWLxSKz2aykpKQG15tM\nJu3cuVNxcXFKS0uz7TQDADifoZuP6lRWVmr8+PFatmyZAgMDG9yWmJiosrIyBQQEqKCgQGPHjtW+\nffucMSwAwJWsBquurraOGjXK+tprr9m1fHh4uPXkyZONru/YMdIqiQsXLly4tOISGRnZqvdsQzcf\nWa1WZWVlKTo6WrNnz25ymePHj9v2KZSUlMhqtdo+vKy+6uqDys626vrrrcrJserSJavtmG1fu/zP\n//yPy8fgLhfWBeuCddHy5eDBg6163zZ089EXX3yhP//5z4qNjVVCQoIkKTs723aG5/Tp07Vx40at\nXLlS/v7+CggIaPETLOfNk9LTpSlTpA0bpP/9X6mdnyAAAKjH0ElhxIgRunTpUovLPPHEE3riiSfs\nfszBg6Vdu6TFi6UhQ6TsbGnaNMnOc4MAAC3wyDOa/f1rq2HbNiknR0pNlXzpY+STk5NdPQS3wbq4\njHVxGeui7Qw9o9mRTCaTmhpqTU1tNSxdSjUAwJWae+9sdnlPnxTq/OtftfsagoLY1wAAdVo7KXjk\n5qOm1O1rSEmp3dfwpz9JnjHdAYD78JpSqI9qAIBaPlsK9VENANA2XlkK9VENAHwZpXAFqgEA7Of1\npVAf1QDA11AKLaAaAKBlPlUK9VENAHwBpWAnqgEAGvPZUqiPagDgrSiFNqAaAKAWpXAFqgGAN6EU\n2olqAODLKIUWUA0APB2l4EBUAwBfQynYiWoA4IkoBYNQDQB8AaXQBlQDAE9BKTgB1QDAW1EK7UQ1\nAHBnlIKTUQ0AvAml4EBUAwB3Qym4ENUAwNNRCgahGgC4A0rBTVANADwRpeAEVAMAV6EU3BDVAMBT\nUApORjUAcCZKwc1RDQDcGaXgQlQDAKNRCh6EagDgbigFN0E1ADACpeChqAYA7sDQSaGsrEwpKSka\nNGiQBg8erOXLlze53KxZs9S/f3/FxcXJbDYbOSS35u8vzZsnbdsm5eRIqanSkSOuHhUAX2LopNCh\nQwe99tpr+vbbb1VcXKw333xT3333XYNl8vPzdeDAAe3fv185OTmaMWOGkUPyCFQDAFcxdFLo2bOn\n4uPjJUmBgYGKiopSRUVFg2U2bdqkyZMnS5KSkpJ05swZHT9+3MhheQSqAYArOG2fgsVikdlsVlJS\nUoPry8vL1adPH9vvYWFhOnr0qLOG5faoBgDO5O+MJ6msrNT48eO1bNkyBQYGNrr9yj3jJpOpyceZ\nP3++7efk5GQlJyc7cphuq64a0tNrj1DasIEjlAA0raioSEVFRW2+v+GHpF64cEH33Xef7r33Xs2e\nPbvR7Y899piSk5OVkZEhSRo4cKC2b9+ukJCQhgP18kNS7VVTIy1eLC1dKmVnS9OmSc3MoQDgXoek\nWq1WZWVlKTo6uskJQZLGjBmjd955R5JUXFys6667rtGEgMvY1wDASIaWwueff67bbrtNsbGxtk1C\n2dnZOvL/72LTp0+XJM2cOVOFhYXq0qWLVq9ercTExMYDpRQaoRoAXE1r3zs5o9kLcDY0gOa41eYj\nOAdHKAFwFErBy1ANAOqjFHwc1QCgPSgFL0Y1AKAUYEM1AGgtSsFHUA2Ab6IU0CSqAYA9KAUfRDUA\nvoNSwFVRDQCaQyn4OKoB8G6UAlqFagBQH6UAG6oB8D6UAtqMagBAKaBJVAPgHSgFOATVAPgmSgFX\nRTUAnotSgMNRDYDvoBTQKlQD4FkoBRiKagC8G6WANqMaAPdHKcBpqAbA+1AKcAiqAXBPlAJcgmoA\nvAOlAIejGgD3QSnA5agGwHNRCjAU1QC4FqUAt0I1AJ6FUoDTUA2A81EKcFtUA+D+KAW4BNUAOAel\nAI9ANQDuiVKAy1ENgHEoBXgcqgFwH5QC3ArVADgWpQCPRjUArmX4pDB16lSFhIQoJiamyduLiop0\n7bXXKiEhQQkJCXrppZeMHhLcnL+/NG+etG2blJMjpaZKR464elSAbzB8UpgyZYoKCwtbXOb222+X\n2WyW2WzW888/b/SQ4CGoBsD5DJ8URo4cqaCgoBaXYV8BmkM1AM7l8n0KJpNJO3fuVFxcnNLS0lRa\nWurqIcENUQ2Ac7h8UkhMTFRZWZm+/vprPfnkkxo7dqyrhwQ3RTUAxvNvy51+/vlnbd68WQ888EC7\nB9C1a1fbz/fee68ef/xxnTp1SsHBwY2WnT9/vu3n5ORkJScnt/v54XnqqmHx4tpqyM6Wpk2TTCZX\njwxwvaKiIhUVFbX5/nafp3Dx4kUVFhYqNzdXH330kUaMGKG//vWvdj2JxWJRenq69uzZ0+i248eP\nq0ePHjKZTCopKdGECRNksVgaD5TzFNAEzmsAWtba984WS8FqtWr79u3Kzc1Vfn6+kpKStGPHDh0+\nfFgBAQF2PUFmZqa2b9+uEydOqE+fPlqwYIEuXLggSZo+fbo2btyolStXyt/fXwEBAVq3bp3dgweo\nBsCxWiyFsLAwRUdHa+rUqUpPT1eXLl0UERGhw4cPO3OMkigFXB3VADTm0DOax48frwMHDigvL08f\nfPCBfvrpp3YPEDAKRygB7XfVfQqXLl1SUVGRcnNzVVBQoDNnzuitt97S6NGjFRgY6KxxUgpoFaoB\nqNXa985WfSBedXW1tm7dqtzcXG3dulUnT55s0yDbgkkBrVVTU7uvYelS9jXAdxk6KdT3888/q3Pn\nzm25a5swKaCtqAb4MkM+JfWDDz5QQkKCgoKC1LVrV3Xt2lUhISFtHiTgTOxrAOxnVylERkbqvffe\n0+DBg+Xn55qToCkFOALVAF9jSCmEhYVp0KBBLpsQAEehGoCW2VUKxcXFeuGFF5SSkqKOHTvW3tFk\n0tNPP234AOtQCnA0qgG+wJBS+MMf/qDAwECdP39elZWVqqys1Llz59o8SMAdUA1AY3aVwuDBg/Wv\nf/3LGeNpFqUAI1EN8FaGlEJaWpq2bt3a5kEB7o5qAGrZVQqBgYGqqqpSx44d1aFDh9o7mkw6e/as\n4QOsQynAWagGeBNDSqGyslKXLl3S+fPnde7cOZ07d86pEwLgTFQDfFmbz2h2NkoBrkA1wNMZUgqA\nr6Ia4GsoBcBOVAM8kWGlcPHiRVVUVOjIkSO2C+BLqAb4ArtK4Y033tCCBQvUo0cPXXPNNbbrm/rO\nZaNQCnAnVAM8hSEfnR0ZGamSkhJ17969XYNrDyYFuBu+rwGewJDNR3379lW3bt3aPCjAG/n7S/Pm\nSdu2STk5UmqqxFZVeDp/exaKiIhQSkqKRo8e7bIPxAPcVd2+hsWLa/c1UA3wZHaXwl133aXq6mrb\nh+HxgXjAZVQDvAWHpAIOxr4GuBOH7mh+6qmntGzZMqWnpzf5RJs2bWrbKNuASQGehiOU4A5a+97Z\n4j6Fhx9+WJL0zDPPNPlEAJrHvgZ4IjYfAU5ANcBV+OwjwA1xNjQ8BaUAOBnVAGeiFAA3RzXAnV11\nUlizZo0SExMVEBCggIAADR06VGvXrnXG2ACvxXkNcFctTgpr167VsmXLtGTJElVUVKi8vFyvvPKK\nli9frnfeecdZYwS8FtUAd9PiPoWkpCStW7dOERERDa63WCyaOHGi/v73vxs+wDrsU4C3Y18DjODQ\nfQrnzp1rNCFIUnh4OB9zATgY1QB30OKk0KlTpzbdBqBt2NcAV2tx81Hnzp3Vr1+/Jm87ePCgqqqq\nDBvYldh8BF/DZyjBERz62UcWi6XFO4eHh9v9RO3FpABfxb4GtIdD9ymEh4e3eKlzyy23NPsYU6dO\nVUhIiGJiYppdZtasWerfv7/i4uJkNpvtHjzgC9jXAGdyyMlr58+fb/a2KVOmqLCwsNnb8/PzdeDA\nAe3fv185OTmaMWOGI4YEeBX2NcBZDD+jeeTIkQoKCmr29k2bNmny5MmSag+BPXPmjI4fP270sACP\nRDXAaC7/mIvy8nL16dPH9ntYWJiOHj3qwhEB7o1qgJFcPilIarQThO9qAK6OaoARWvySHXu15yMv\nQkNDVVZWZvv96NGjCg0NbXLZ+fPn235OTk5WcnJym58X8AZ11ZCeXnuE0oYNHKHk64qKilRUVNTm\n+7d4SGpgYGCz/2s3mUw6e/asXU9isViUnp6uPXv2NLotPz9fK1asUH5+voqLizV79mwVFxc3+Xwc\nkgo0j/Ma0BSHnqfgCJmZmdq+fbtOnDihkJAQLViwQBcuXJAkTZ8+XZI0c+ZMFRYWqkuXLlq9erUS\nExMbD5RJAbAL5zWgPrebFByFSQGwH9WAOkwKAGyoBvDNawBsOEIJrUUpAD6CavBNlAKAJlENsAel\nAPggqsF3UAoAropqQHMoBcDHUQ3ejVIA0CpUA+qjFADYUA3eh1IA0GZUAygFAE2iGrwDpQDAIagG\n30QpALgqqsFzUQoAHI5q8B2UAoBWoRo8C6UAwFBUg3ejFAC0GdXg/igFAE5DNXgfSgGAQ1AN7olS\nAOASVIN3oBQAOBzV4D4oBQAuRzV4LkoBgKGoBteiFAC4FarBs1AKAJyGanA+SgGA26Ia3B+lAMAl\nqAbnoBQAeASqwT1RCgBcjmowDqUAwONQDe6DUgDgVqgGx6IUAHg0qsG1KAUAbotqaD9KAYDXoBqc\nj1IA4BGohrahFAB4JarBOQyfFAoLCzVw4ED1799fixYtanR7UVGRrr32WiUkJCghIUEvvfSS0UMC\n4KH8/aV586Rt26ScHCk1VTpyxNWj8i7+Rj74xYsXNXPmTH388ccKDQ3VsGHDNGbMGEVFRTVY7vbb\nb9emTZuMHAoAL1JXDYsX11ZDdrY0bZpkMrl6ZJ7P0FIoKSlRv379FB4erg4dOigjI0Pvv/9+o+XY\nVwCgtagGYxg6KZSXl6tPnz6238PCwlReXt5gGZPJpJ07dyouLk5paWkqLS01ckgAvAz7GhzL0M1H\nJjtaLjExUWVlZQoICFBBQYHGjh2rffv2Nbns/PnzbT8nJycrOTnZQSMF4MnqqiE9vfYIpQ0bfPcI\npaKiIhUVFbX5/oYeklpcXKz58+ersLBQkrRw4UL5+fnpueeea/Y+ERER+vLLLxUcHNxwoBySCsAO\nNTW1+xqWLmVfg+Rmh6QOHTpU+/fvl8ViUXV1tfLy8jRmzJgGyxw/ftw24JKSElmt1kYTAgDYi30N\n7WPopODv768VK1YoNTVV0dHRmjhxoqKiorRq1SqtWrVKkrRx40bFxMQoPj5es2fP1rp164wcEgAf\nwb6GtuGMZgBez5fPhnarzUcA4A6oBvtRCgB8iq9VA6UAAC2gGlpGKQDwWb5QDZQCANiJamiMUgAA\neW81UAoA0AZUQy1KAQCu4E3VQCkAQDv5cjVQCgDQAk+vBkoBABzI16qBUgAAO3liNVAKAGAQX6gG\nSgEA2sBTqoFSAAAn8NZqoBQAoJ3cuRooBQBwMm+qBkoBABzI3aqBUgAAF/L0aqAUAMAg7lANlAIA\nuAlPrAZKAQCcwFXVQCkAgBvylGqgFADAyZxZDZQCALg5d64GSgEAXMjoaqAUAMCDuFs1UAoA4CaM\nqAZKAQA8lDtUA6UAAG7IUdVAKQCAF3BVNVAKAODm2lMNlAIAeBlnVgOlAAAepLXVQCkAgBczuhoM\nnxQKCws1cOBA9e/fX4sWLWpymVmzZql///6Ki4uT2Ww2ekgA4NH8/aV586Rt26ScHCk1VTpyxDGP\nbeikcPHiRc2cOVOFhYUqLS1Vbm6uvvvuuwbL5Ofn68CBA9q/f79ycnI0Y8YMI4fkFYqKilw9BLfB\nuriMdXGZr6wLI6rB0EmhpKRE/fr1U3h4uDp06KCMjAy9//77DZbZtGmTJk+eLElKSkrSmTNndPz4\ncSOH5fF85QVvD9bFZayLy3xpXTi6GgydFMrLy9WnTx/b72FhYSovL7/qMkePHjVyWADgda6shtWr\n2/Y4hk4KJpPJruWu3DNu7/0AAJfVr4aOHdv4GI4dUkOhoaEqKyuz/V5WVqawsLAWlzl69KhCQ0Mb\nPVZkZCSTRT0LFixw9RDcBuviMtbFZawL6aGHat87W8PQSWHo0KHav3+/LBaLevfurby8POXm5jZY\nZsyYMVqxYoUyMjJUXFys6667TiEhIY0e68CBA0YOFQAggycFf39/rVixQqmpqbp48aKysrIUFRWl\nVatWSZKmT5+utLQ05efnq1+/furSpYtWt3VDGACg3TzmjGYAgPHc/oxme05+8xXh4eGKjY1VQkKC\nhg8f7urhONXUqVMVEhKimJgY23WnTp3S3XffrQEDBmjUqFE6c+aMC0foPE2ti/nz5yssLEwJCQlK\nSEhQYWGhC0foPGVlZUpJSdGgQYM0ePBgLV++XJJvvjaaWxetfm1Y3VhNTY01MjLSevjwYWt1dbU1\nLi7OWlpa6uphuUx4eLj15MmTrh6GS3z22WfWr776yjp48GDbdXPmzLEuWrTIarVarS+//LL1ueee\nc9XwnKqpdTF//nzrkiVLXDgq1zh27JjVbDZbrVar9dy5c9YBAwZYS0tLffK10dy6aO1rw61LwZ6T\n33yN1Ue39o0cOVJBQUENrqt/4uPkyZP1t7/9zRVDc7qm1oXkm6+Nnj17Kj4+XpIUGBioqKgolZeX\n++Rro7l1IbXuteHWk4I9J7/5EpPJpLvuuktDhw7Vn/70J1cPx+WOHz9uO1ItJCTE58+Ef+ONNxQX\nF6esrCyf2FxyJYvFIrPZrKSkJJ9/bdSti5tvvllS614bbj0pcF5CQ1988YXMZrMKCgr05ptvaseO\nHa4ektswmUw+/XqZMWOGDh8+rN27d6tXr1565plnXD0kp6qsrNS4ceO0bNkyde3atcFtvvbaqKys\n1Pjx47Vs2TIFBga2+rXh1pOCPSe/+ZJevXpJkn75y1/qV7/6lUpKSlw8ItcKCQnRDz/8IEk6duyY\nevTo4eIRuU6PHj1sb37Tpk3zqdfGhQsXNG7cOE2aNEljx46V5Luvjbp18dBDD9nWRWtfG249KdQ/\n+a26ulp5eXkaM2aMq4flElVVVTp37pwk6aefftKHH37Y4OgTXzRmzBitXbtWkrR27VrbPwJfdOzY\nMdvP7733ns+8NqxWq7KyshQdHa3Zs2fbrvfF10Zz66LVrw0DdoI7VH5+vnXAgAHWyMhIa3Z2tquH\n4zKHDh2yxsXFWePi4qyDBg3yuXWRkZFh7dWrl7VDhw7WsLAw69tvv209efKk9c4777T279/fevfd\nd1tPnz7t6mE6xZXr4q233rJOmjTJGhMTY42NjbXef//91h9++MHVw3SKHTt2WE0mkzUuLs4aHx9v\njY+PtxYUFPjka6OpdZGfn9/q1wYnrwEAbNx68xEAwLmYFAAANkwKAAAbJgUAgA2TAgDAhkkBAGDD\npAAAsGFSgMe744479OGHHza47vXXX9fjjz/e5PIWi0WdO3dWYmKioqOjlZSUZDv7Var9oL377rtP\n8fHxGjRokEaPHt3k49x6662O+yOakJycrK+++kqSlJ2dbehzAXWYFODxMjMztW7dugbX5eXl6Te/\n+U2z9+nXr5+++uorlZaWat26dXr99de1Zs0aSdILL7yg1NRU7d69W99++22zX+70xRdfOOxvaEr9\nD3FbuHChoc8F1GFSgMcbN26ctmzZopqaGkm1JVBRUaERI0bYdf+IiAgtXbrU9k1VP/zwg0JDQ223\nDx48uMn7BQYGSpKKioqUnJysBx54QFFRUXrooYcaLbt3714lJSXZfrdYLIqNjZUkffLJJ0pMTFRs\nbKyysrJUXV1tW85qtWru3Ln6+eeflZCQoEmTJqmqqkqjR49WfHy8YmJitH79erv+TsAeTArweMHB\nwRo+fLjy8/MlSevWrdPEiRNb9RgJCQnau3evJOmJJ55QVlaW7rjjDmVnZzf4QLH66v9Pfvfu3Vq2\nbJlKS0t16NChRhUxcOBAVVdXy2KxSKotmYyMDJ0/f15TpkzR+vXr9c0336impkYrV65s8Bwvv/yy\nOnfuLLPZrHfffVcFBQUKDQ3V7t27tWfPHt1zzz2t+luBljApwCvU34SUl5enzMzMVt2//keAjRo1\nSocOHdIjjzyivXv3KiEhQSdOnGjx/sOHD1fv3r1lMpkUHx9ve/Ovb8KECcrLy5MkrV+/XhMnTtS/\n//1vRUREqF+/fpJqvyXss88+a/G5YmNj9dFHH2nu3Ln6/PPP1a1bt1b9rUBLmBTgFcaMGaNPPvlE\nZrNZVVVVSkhIaNX9zWazoqOjbb8HBQUpMzNT77zzjoYNG3bVN+pf/OIXtp+vueYa26as+iZOnKj1\n69dr//79MplMioyMbLSMPZ9P2b9/f5nNZsXExOj555/Xiy++eNX7APZiUoBXCAwMVEpKiqZMmdLi\nDuamWCwWzZkzR08++aQkadu2baqqqpIknTt3TgcPHtQNN9zQ7jHeeOONuuaaa/Tiiy8qIyNDknTT\nTTfJYrHo4MGDkqR3331XycnJje7boUMH20Rz7NgxderUSQ8++KB+//vf245QAhzB39UDABwlMzNT\nv/71r+3a8Xrw4EElJibq/Pnz6tq1q5566ik9/PDDkqQvv/xSM2fOlL+/vy5duqRHHnlEQ4YMafQY\n9fcpXPl1j819/ePEiRP17LPP6qWXXpIkderUSatXr9YDDzygmpoaDR8+XI899lij+z366KOKjY3V\nkCFDNGnSJM2ZM0d+fn7q2LFjg30QQHvxfQoAABs2HwEAbNh8BK+1Z88e2yahOp06ddKuXbtcNCLA\n/bH5CABgw+YjAIANkwIAwIZJAQBgw6QAALBhUgAA2PwfBqo7/RCYTvUAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f358d277c50>" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.29\n", ": Page No 389" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "V_SS = 25 # in V\n", "V_GS = 0 # in V\n", "R_S = 18 # in kohm\n", "R_S = R_S * 10**3 # in ohm\n", "I_D = (V_SS-V_GS)/R_S # in A\n", "print \"The drain current = %0.2f mA\" %(I_D*10**3)\n", "V_DD = 25 # in V\n", "R_D = 7.5 # in kohm\n", "R_D = R_D * 10**3 # in ohm\n", "V_D = V_DD - (I_D*R_D) # in V\n", "print \"The drain voltage = %0.2f V\" %V_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drain current = 1.39 mA\n", "The drain voltage = 14.58 V\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.30\n", ": Page No 390 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "R_D = 1 # in kohm\n", "R_D = R_D * 10**3 # in ohm\n", "V_in = 2 # in mV\n", "V_in = V_in * 10**-3 # in V\n", "R_L = 10 # in kohm\n", "R_L = R_L * 10**3 # in ohm\n", "r_d = (R_D*R_L)/(R_D+R_L) # in ohm\n", "g_m = 3000 #in \u00b5S\n", "g_m = g_m * 10**-6 # in S\n", "A_v = g_m*r_d \n", "V_out = A_v*V_in # in V\n", "V_out = V_out * 10**3 # in mV\n", "print \"The output Voltage = %0.2f mV\" %V_out" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output Voltage = 5.45 mV\n" ] } ], "prompt_number": 37 } ], "metadata": {} } ] }