{ "metadata": { "name": "", "signature": "sha256:9ece3b9f8730ff4f15d623a124d9415b373cdc935ed6cb089360bef5516a2604" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ " Chapter 11: Cathode Ray Oscilloscope" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2,Page number 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "E=120 #electric field(V/m) \n", "B=5*10**-5 #magnetic field(T) \n", "q=1.6*10**-19 #charge on electron(C)\n", "u=10**6 #velocity of electron(m/s)\n", "m=9.1*10**-31 #mass of electron(Kg) \n", "a=9.81 #acceleration of gravitation(m/s^2)\n", "\n", "#Calculations\n", "#Part a\n", "fe=q*E #force on electron due to electric field(N)\n", "\n", "#Part\n", "fm=B*q*u #force on electron due to magnetic field(N)\n", "\n", "#Part c\n", "fg=m*a #force on electron due to gravitational field(N)\n", "\n", "#Results\n", "print\"force on electron due to electric field is\",fe,\"N\"\n", "print\"force on electron due to magnetic field is\",fm,\"N\"\n", "print\"force on electron due to gravitational field is\",fg,\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "force on electron due to electric field is 1.92e-17 N\n", "force on electron due to magnetic field is 8e-18 N\n", "force on electron due to gravitational field is 8.9271e-30 N\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3,Page number 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "T1=1200. #temperature(k)\n", "T2=1000. #temperature(k)\n", "Ww=1.2*10**5 #work function(eV)\n", "k=8.62\n", "Ie1=200 #emission current density\n", "T3=1500. #temperature(k)\n", "\n", "#Calculations\n", "Ie2=Ie1*(T2/T1)**2*math.exp(-(Ww/k)*((1/T2)-(1/T1))) #current density(mA/cm^2) at 1000k\n", "Ie3=Ie1*(T3/T1)**2*math.exp(-(Ww/k)*((1/T3)-(1/T1))) #current density(mA/cm^2) at 1000k\n", "\n", "#Results\n", "print\"current density at 1000 k is\",round(Ie2,2),\"mA/cm^2\"\n", "print\"current density at 1500 k is\",round(Ie3,2),\"mA/cm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current density at 1000 k is 13.65 mA/cm^2\n", "current density at 1500 k is 3180.49 mA/cm^2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4,Page number 533" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Ls=40 #distance from screen(m)\n", "d=1.5 #distance between plates(cm)\n", "Va=1200 #accelerating potential(V) \n", "L=3 #length of CRT(m)\n", "e=1.6*10**-19 #charge on electron(C)\n", "m=9.1*10**-31 #mass of electron(Kg) \n", "Y=4*10**-2 #vertical deflection(V)\n", "\n", "#Calculations\n", "#Part a\n", "U=math.sqrt((2*e*Va)/m) #velocity of electron upon striking screen(m/s)\n", "\n", "#Part\n", "Vd=(2*d*Va*Y)/(L*Ls) #deflecting voltage(V)\n", "\n", "#Part c\n", "Vdmax=(m*d**2*U**2)/(e*L**2) #maximum allowable deflection(V)\n", "\n", "#Results\n", "print\"velocity of electron upon stricking the screen is\",round((U/1E+7),3),\"*10^7 m/s\"\n", "print\"deflecting voltage is\",round(Vd/1E-2),\"V\"\n", "print\"maximum allowable deflection is\",Vdmax,\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity of electron upon stricking the screen is 2.054 *10^7 m/s\n", "deflecting voltage is 120.0 V\n", "maximum allowable deflection is 600.0 V\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }