{ "metadata": { "name": "", "signature": "sha256:9c34cda4904ac6fe0f4810cba9f641b26f332071fb989df77b245e43b46b8b6c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 : Circuit Theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1,Page number 477" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "i1=4. #current through r1(A) \n", "v3=3 #voltage(V)\n", "v4=8 #voltage(V)\n", "r3=3 #resistance(ohms)\n", "r2=2 #resistance(ohms)\n", "r4=4 #resistance(ohms)\n", "\n", "#Calculations\n", "i3=v3/r3 #current through r3(A)\n", "i4=v4/r4 #current through r4(A)\n", "i2=-(i3+i4-i1)/2 #current through r2(A)\n", "v2=i2*r2 #voltage through r2(V)\n", "\n", "#Result\n", "print\"v2 is\",v2,\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "v2 is 1.0 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2,Page number 478" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "v1=6 #current through r1(A) \n", "i2=2 #voltage through r3(V)\n", "i3=4 #voltage through r4(V)\n", "r3=2 #resistance(ohms)\n", "v3=3 #voltage through r3(ohms)\n", "r2=2 #resistance(ohms)\n", "r4=3 #resistance(ohms)\n", "\n", "#Calculations\n", "v2=i2*r2 #voltage through r2(ohms)\n", "v3=i3*r3 #voltage through r3(ohms)\n", "v4=4*i2+v3-v2-v1 #voltage through r4(ohms)\n", "i4=v4/r4 #current through r4(A)\n", "\n", "#Result\n", "print\"i4 is\",i4,\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i4 is 2 A\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3,Page number 481" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "\n", "#Calculations\n", "a=np.array([[7,-3,-4],[-3,6,-2],[-4,-2,11]]) #solving three linear mesh equations\n", "b=np.array([-11,3,25])\n", "x=np.linalg.solve(a,b)\n", "x\n", "v=x[2]-x[1] #voltage across 2mho conductance(V)\n", "\n", "#Results\n", "print\"v is\",v,\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "v is 1.0" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4,Page number 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "\n", "#Variable declaration\n", "R=20 #resistance across which voltage is to be calculated(ohms)\n", "\n", "#Calculations\n", "a=np.array([[35,-20],[-20,50]]) #solving two linear mesh equations\n", "b=np.array([50,-100])\n", "x=np.linalg.solve(a,b)\n", "x\n", "i=x[0]-x[1] #current through 20 ohms resistor(ohms)\n", "V=20*i #voltage across 20 ohms(V)\n", "\n", "#Results\n", "print\"i is\",round(i,2)\n", "print\"voltage across 20 ohms is\",round(V,1),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i is 2.22\n", "voltage across 20 ohms is 44.4 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5,Page number 484" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Vs=16. #source voltage(V)\n", "\n", "#Calculations\n", "#Part b\n", "I=0 #current through 10 V\n", "Is=-4*(I-(Vs/32)) #current of current source(A)\n", "\n", "#Part c\n", "Is1=16 #current of current source(A)\n", "I=0 #current through 10 V\n", "Vs1=(I+(Is1/4))*32 #source voltage(V)\n", "\n", "#Results\n", "print\"Is is\",Is,\"A\"\n", "print\"Vs1 is\",Vs1,\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Is is 2.0 A\n", "Vs1 is 128 V\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6,Page number 485" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V=9 #voltmeter of voltage(V)\n", "i=9 #ammeter current of 9V\n", "r1=1 #resistance(ohms)\n", "r2=3 #resistance(ohms)\n", "r=5 #resistance parallel to ammeter(ohms)\n", "\n", "#Calculations\n", "Isc=((i*r)-V)/(r1+r) #short circuiting a and b and converting current source to a voltage source(A)\n", "Ro=((r+r1)*r2)/((r+r1)+r2) #output resistance(ohms)\n", "\n", "#Results\n", "print\"Isc is\",Isc,\"A\"\n", "print\"Ro is\",Ro,\"ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Isc is 6 A\n", "Ro is 2 ohms\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7,Page number 495" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import cmath\n", "import math\n", "from sympy import *\n", "import sympy\n", "\n", "#Variable declaration\n", "t = symbols('t') #symbol defined\n", "et1 = complex(50,86.6) #defining complex number\n", "\n", "#calculations\n", "et = (et1.real*sympy.sqrt(2)*sympy.cos(314*t))+et1.imag*sympy.sqrt(2)*sympy.cos(314*t+90) #expression\n", "\n", "#Result\n", "print et" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "50.0*sqrt(2)*cos(314*t) + 86.6*sqrt(2)*cos(314*t + 90)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.9,Page number 506" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import cmath\n", "import math\n", "from sympy import *\n", "import sympy\n", "\n", "#Variable declarations\n", "V1, V2=symbols('V1 V2')\n", "\n", "#Calculations\n", "V = 0.3*V1 #voltage(V)\n", "I1 = 0.007*V1 #current \n", "y11 = I1/V1 #y parameter\n", "\n", "I2 = -V/40 #current \n", "y21 = I2/V1 #y parameter\n", "\n", "I2 = V2/(((40+100)*200.)/((40+100)+200.)) #y parameter\n", "y22 = I2/V2 #incorrect answer in textbook #y parameter\n", "\n", "I1 = (-I2*200)/300 #current \n", "y12 = I1/V2 #incorrect answer in textbook #y parameter\n", "\n", "#Results\n", "print \"y11+y12 is\",round(y11+y12,5),\"mho\"\n", "print \"y22+y12 is\",round(y22+y12,5),\"mho\"\n", "print \"y21-y12 is\",round(y21-y12,5),\"mho\"\n", "print \"\\n(The difference in answers is due to the y12 and y21 values calculated wrongly in the textbook)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "y11+y12 is -0.0011 mho\n", "y22+y12 is 0.00405 mho\n", "y21-y12 is 0.0006 mho\n", "\n", "(The difference in answers is due to the y12 and y21 values calculated wrongly in the textbook)\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.10,Page number 508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\n", "#port 2 open circuited,port 1 excited\n", "z11=1075+1075j #as z11=V1/I1=(1.52<45)/(10**-3<0)=1075+1075j\n", "z21=2022-1075j #as z21=V2/I1=(2.29<-28)/(10**-3<0)=2022+1075j\n", "\n", "#port 1 open circuited and port 2 excited\n", "z12=-1075j #as z12=V1/I2=(1.075<-90)/(10**3<0)=-1075j\n", "z22=751-1073j #as z22=V2/I2=(1.31<-55)/(10**-3<0)=751-j1073\n", "\n", "#Calculations\n", "z=z11-z12 #parameters with reference to circuit\n", "z1=z22-z12\n", "z2=z21-z12\n", "\n", "#Results\n", "print\"z11-z12(z) is\",z\n", "print\"z22-z12(z1) is\",z1\n", "print\"z21-z12(z2) is\",z2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "z11-z12(z) is (1075+2150j)\n", "z22-z12(z1) is (751+2j)\n", "z21-z12(z2) is (2022+0j)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.11,Page number 510" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V2=6/7. #voltage source(V)\n", "\n", "#Calculations \n", "Rth=V2 #thevinin resistance(ohms)\n", "Zl=Rth #load resistance(ohms)\n", "\n", "#Result\n", "print\"load resistance is\",round(Zl,3),\"ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "load resistance is 0.857 ohms\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }