{ "metadata": { "name": "", "signature": "sha256:24516babfb49304af52e8c58a067e6fa8878e66215919fc53473493b16a99fdf" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1: SEMICONDUCTORS,DIODE AND DIODE CIRCUITS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1, Page number 5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "A=6.022*10**23 #avagadro's number(/m^3)\n", "d=2.7*10**6 #density of aluminium conductor(g/m^3)\n", "a=26.98 # atomic weight aluminium conductor(g/g-atom)\n", "D=10**4. #current density(A/m^2)\n", "e=1.6*10**-19 #electronic charge(C)\n", "\n", "#Calculations\n", "#Part a\n", "n=A*d/a #number of atoms(n/m^3)\n", "\n", "#Part b\n", "u=D/(n*e) #drift velocity (m/s)\n", "\n", "#Results\n", "print \"number of atoms per cubic meter is \",round(n/1e+28,3),\"*10^28 /m^3\"\n", "print \"drift velocity is\",round(u/1e-6,2),\"*10^-6 m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of atoms per cubic meter is 6.026 *10^28 /m^3\n", "drift velocity is 1.04 *10^-6 m/s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2, Page number 6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n=10**23 #number of electrons(n/m^3)\n", "e=1.6*10**-19 #electronic charge(C) \n", "u=0.4 #mobility(m^2/Vs) \n", "a=10**-7 #cross sectional area(m^2) \n", "l=15*10**-2 #conductor length(m)\n", "\n", "#Calculations\n", "#Part a\n", "G=n*e*u #conductivity(S/m)\n", "\n", "#Part b\n", "R=l/(a*G) #resistance(ohm)\n", "\n", "#Results\n", "print\"conductivity of the conductor is\",round((G/1E+3),1),\"*10**3 S/m\"\n", "print\"resistance of the conductor is\",round(R,1),\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductivity of the conductor is 6.4 *10**3 S/m\n", "resistance of the conductor is 234.4 ohm\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3, Page number 9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "A=6.022*10**23 #avagadro's number\n", "d=5.32*10**6 #density of Ge at 300k(g/m^3)\n", "a=72.60 #atomic weight of Ge(g/g-atom)\n", "e=1.6*10**-19 #electronic charge(C)\n", "ni=2.4*10**19 #intrinsic concentration(electron-hole pairs/m^3)\n", "un=0.39 #electron mobility(m^2/V.s)\n", "up=0.19 #hole mobility(m^2/V.s)\n", "\n", "#Calculations\n", "#Part a\n", "nA=A*d/a #number of atoms(nA/m^3)using avagadro's law\n", "x=nA/ni #Germanium atoms/electron hole pair\n", "\n", "#Part b\n", "g=(un+up)*e*ni #intrinsic conductivity(S/m)\n", "r=1/g #intrinsic resistivity(ohm.m)\n", "\n", "#Results\n", "print\"the relative concentration of Ge and electron hole pairs is\",round((x/1E9),2),\"*10^9 atoms/electron-hole pair\"\n", "print\"the intrinsic resistivity of Ge is\",round(r,3),\"ohm.m\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the relative concentration of Ge and electron hole pairs is 1.84 *10^9 atoms/electron-hole pair\n", "the intrinsic resistivity of Ge is 0.449 ohm.m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4,Page number 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "ni=1.5*10**16 #intrinsic concentration(electron-hole pairs/m^3)\n", "n=4.99*10**28 #number of Si atoms(atoms/m^3)\n", "un=0.13 #electron mobility(m^2/V.s)\n", "up=0.05 #hole mobility(m^2/V.s)\n", "e=1.6*10**-19 #electronic charge(c)\n", "\n", "#Calculation\n", "#Part a\n", "g=e*ni*(un+up) #intrinsic conductivity(S/m)\n", "r=1/g #interinsic resistivity(ohm.m)\n", "Nd=n/10**8 #doped silicon(atoms/m^3)=nn,majority carriers\n", "pn=ni**2/Nd #minority carrier density(holes/m^3)\n", "\n", "#Part b\n", "k=e*un*Nd #conductivity(S/m)\n", " #using Nd in place of nn as Nd=nn\n", "rho=1/k #resistivity(ohm.m)\n", "\n", "#Results\n", "print\"the minority carrier density of Si is\",round(pn/1e+11,2),\"*10^11 holes/m^3\"\n", "print\"the resistivity of Si is\",round((rho/1E-2),2),\"*10**-2 ohm.m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the minority carrier density of Si is 4.51 *10^11 holes/m^3\n", "the resistivity of Si is 9.63 *10**-2 ohm.m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5,Page number 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Vo=0.7 #contact potential(V)\n", "Vf=0.4 #forward biasing voltage(V) \n", "\n", "#Calculation\n", "x=math.exp(-20*(Vo-Vf))/math.exp(-20*Vo) #increase in probability of majority carriers\n", "\n", "#Result\n", "print\"increase in probability of majority carriers is\",round(x),\"times\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "increase in probability of majority carriers is 2981.0 times\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6,Page number 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "I=10 #Ge diode carries current(mA)\n", "V=0.2 #forward bias voltage(V)\n", "\n", "#Calculation\n", "#Part a\n", "Is=I/(math.expm1(40*V)-1) #reverse current(mA)\n", "\n", "#part b\n", "I1=1*10**-3 #current(mA) \n", "V1=(math.log((I1/Is)+1))/40 #voltage(V)\n", "I2=100*10**-3 #current(mA) \n", "V2=(math.log((I2/Is)+1))/40 #voltage(V) \n", "\n", "#Part c\n", "Is1=4*Is #reverse saturation current doubles for every 10 degree celcius temp rise,so for 20 degree rise it will be 4 timese/ \n", "x=37.44 #let x=e/kT\n", "I3=Is1*(math.expm1(x*V)) #current when temp doubles(mA)\n", "\n", "#Results\n", "print\"the reverse current is\",round(Is/1e-3,3),\"mA\" #incorrect units given in the textbook\n", "print\"bias voltages are\",round(V1,3),\"V and\", round(V2,3),\"V resp\"\n", "print\"Is at 20 degree is\",round(Is1/1e-3,2),\"uA and diode current at 0.2 V is\",round(I3,2),\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the reverse current is 3.357 mA\n", "bias voltages are 0.007 V and 0.086 V resp\n", "Is at 20 degree is 13.43 uA and diode current at 0.2 V is 23.97 mA\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7,Page number 21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V=3. #Voltage(V)\n", "Req=300. #total resistance as per circuit(ohm)\n", "Rfa=20 #forward resistance(ohm) \n", "Vt=0.7 #Thevinine's voltage(V)\n", "Rfb=0 #forward resistance(ohm)\n", "\n", "#Calculations\n", "#Part a\n", "I=V/Req #current(A)\n", "\n", "#Part b\n", "Id=(V-Vt)/Req #diode current(mA)\n", "\n", "#Part c\n", "Rf=20 #forward resistance(ohms) \n", "Id1=(V-Vt)/(Req+Rfa) #diode current(mA)\n", "\n", "#Results\n", "print\"current in this case is\",round(I,2),\"A\"\n", "print\"diode current is\",round((Id/1E-3),2),\"mA\"\n", "print\"diode current is\",round((Id1/1E-3),2),\"mA\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current in this case is 0.01 A\n", "diode current is 7.67 mA\n", "diode current is 7.19 mA\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9,Page number 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Vx=1.4 #voltage at point X(V) \n", "Vt=0.7 #diode voltage(V)\n", "Vcc=5 #cathode voltage(V) \n", "R=1 #circuit resistance(ohm) \n", "Vs=Vx-Vt #supply voltage(V)\n", "\n", "#Calculations\n", "I1=(Vcc-Vt-Vs)/R #current throgh D1(mA) for 00.7 as D2 and D3 conducts\n", "\n", "#Results\n", "print\"I1 for 00.7 is\",I1,\"mA\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "I1 for 00.7 is 3.6 mA\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11,Page number 23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Vz=100 #zener voltage(V)\n", "Rz=25 #diode resistance(ohm)\n", "Il=0.05 #load current(A)\n", "Iz=0.01 #zener diode current(A)\n", "Rs=250 #supply resistance(ohm)\n", "\n", "#Calculations\n", "Vl=Vz+(Iz*Rz) #load voltage(V)\n", "Vs=Vl+(Il+Iz)*Rs #supply voltage(V)\n", "VL=Vl*1.01 #increase in Vl(V)\n", "IZ=(VL-Vz)/Rz #increase in zener current\n", "VS=Vl+(Il+IZ)*Rs #increase in supply voltage(V)\n", "Vss=(VS-Vs)/Vs #%increase in supply voltage(V)\n", "P=Il*VL #power consumed(W) \n", "\n", "#Results\n", "print\"load voltage is\",Vl,\"V\"\n", "print\"supply voltage is\",Vs,\"V\"\n", "print\"increase in supply voltage is\",VS,\"V\"\n", "print\"power consumed is\",round(P,2),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " load voltage is 100.25 V\n", "supply voltage is 115.25 V\n", "increase in supply voltage is 125.275 V\n", "power consumed is 5.06 W\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.12,Page number 25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Vbb=5 #bias voltage(V)\n", "Rl=1 #resistance(ohm)\n", "Id=4.4 #from the figure(mA)\n", "\n", "#Part a\n", "i=Vbb/Rl #load line intercepts the Id axis at i(mA)\n", "Vl=Id*Rl #load voltage(V)\n", "\n", "#Part b\n", "Vd=Vbb-Vl #diode voltage(V)\n", "P=Vd*Id #power absorbed in diode(mW)\n", "\n", "#Part c \n", "Ida=1.42 #diode current(mA)for 2V\n", "Idb=7.35 #diode current(mA)for 8V\n", "\n", "#Part d\n", "Idc=8.7 #diode current(mA)for Rl=0.5k ohm \n", "Idd=2.2 #diode current(mA)for Rl=2k ohm\n", "\n", "#Results\n", "print\"diode current is\",Id,\"mA and voltage across the load is\",Vl,\"V\"\n", "print\"power absorbed in diode is\",P,\"mW\"\n", "print\"diode current for Vbb=2V is\",Ida,\"mA\",\"and for Vbb=8V is\",Idb,\"mA\"\n", "print\"diode current for Rl=0.5kohm is\",Idc,\"mA\",\"and for Rl=2kohm is\",Idd,\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diode current is 4.4 mA and voltage across the load is 4.4 V\n", "power absorbed in diode is 2.64 mW\n", "diode current for Vbb=2V is 1.42 mA and for Vbb=8V is 7.35 mA\n", "diode current for Rl=0.5kohm is 8.7 mA and for Rl=2kohm is 2.2 mA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.13,Page number 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T=300 #temperature(k)\n", "Ig=100*10**-3 #current(mA)\n", "Is=1*10**-9 #current(nA)\n", "x=0.0259 #x=kT/e\n", "\n", "#Calculations\n", "Voc=x*math.log(Ig/Is+1) #as Voc=kT/e*ln((Ig/Is)+1) where ln((Ig/Is)+1)=18.42 after solving \n", "Isc=Ig\n", "\n", "#Result\n", "print\"for a solar cell Voc is\",round(Voc,3),\"V and Isc is\",round(Isc/1E-3),\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for a solar cell Voc is 0.477 V and Isc is 100.0 mA\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.14,Page number 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Idc=0.1 #dc current(A)\n", "Rf=0.5 #forward resistance(ohms)\n", "Rl=20 #load resistance(ohm)\n", "Rs=1 #secondary resistance of transformer(ohm)\n", "\n", "#Calculations\n", "#Part a\n", "Vdc=Idc*Rl #dc voltage(V)\n", "Vm=(math.pi/2)*(Vdc+Idc*(Rs+Rf)) #mean voltage(V)\n", "Vrms=Vm/math.sqrt(2) #rms value of voltage(V) \n", "\n", "#Part b\n", "Pdc=Idc**2*Rl #dc power supplied to the load\n", "\n", "#Part c\n", "PIV=2*Vm #PIV rating for each diode(V)\n", "\n", "#Part d\n", "Im=(math.pi/2)*Idc #peak value of current(mA)\n", "Irms=Im/math.sqrt(2) #rms calue of current(A)\n", "Pac=Irms**2*(Rs+Rf+Rl) #ac power input(W)\n", "\n", "#Part e\n", "eta=(Pdc/Pac)*100 #conversion efficiency\n", "\n", "#Part f\n", "Vr=((Rs+Rf)/Rl)*100 #voltage regulation(V)\n", "\n", "#results\n", "print\"rms value of voltage is\",round(Vrms,2),\"V\"\n", "print\"dc power supplied to load is\",Pdc,\"W\"\n", "print\"PIV rating for each diode\",round(PIV,2),\"V\"\n", "print\"ac input power is\",round(Pac,3),\"W\"\n", "print\"conversion efficiency\",round(eta,1),\"%\"\n", "print\"voltage regulation\",Vr,\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms value of voltage is 2.39 V\n", "dc power supplied to load is 0.2 W\n", "PIV rating for each diode 6.75 V\n", "ac input power is 0.265 W\n", "conversion efficiency 75.4 %\n", "voltage regulation 7.5 %\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.15,Page number 46" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from scipy import integrate\n", "\n", "#Variable declaration\n", "Vt=1 \n", "Vl=12\n", "Vm=63.63 #peak voltage(V) as Vm=sqr root of 2*45\n", "Idc=8. #charging current(A)\n", "\n", "#Calculations\n", "#Part a\n", "theta1=math.degrees(math.asin((Vt+Vl)/Vm))\n", "theta2=180-theta1\n", "Rl=((2*Vm*math.cos(theta1))-(2*(math.pi-2*theta1)*(Vt+Vl)))/(Idc*math.pi)\n", "\n", "#Part b\n", "wt = lambda wt: (((((math.sqrt(2)*45*math.sin(wt))-(Vt+Vl))/Rl)*wt)**2)\n", "integ,err = integrate.quad(wt, theta1 , theta2)\n", "print integ\n", "Irms = (integ/math.pi)**0.5\n", "Pl=Irms**2*Rl #power loss in resistance(W)\n", "\n", "#Part c\n", "P=Vl*Idc #power supplied to battery(W)\n", "\n", "#results\n", "print\"Resistance to be added is\",round(Rl,2),\"Ohms\"\n", "print\"\",Pl\n", "print\"power supplied to battery is\",P,\"W\"\n", "print\"\",Irms " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "5703935.44277\n", "Resistance to be added is 24.75 Ohms\n", " 44936628.7032\n", "power supplied to battery is 96.0 W\n", " 1347.44908683\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.16,Page number 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Rf=5 #forward resistance(ohms)\n", "Vo=20 #output voltage(V)\n", "Rs=10 #secondary resistance of transformer(ohm)\n", "\n", "#Calculations\n", "#Part a\n", "Idc=0.1 #dc current(A) \n", "Vm=Vo*(math.sqrt(2)) #mean voltage(V)\n", "Vdc=(2*Vm/(math.pi))-Idc*(Rs+2*Rf) #dc voltage(V)\n", "\n", "#Part b\n", "Idc1=0.2 #full load dc current(A)\n", "Vdc2=((2*(math.sqrt(2))*Vo)/(math.pi))-Idc1*(Rs+2*Rf) #full load dc voltage(V)\n", "Rl=Vdc2/Idc1 #load resistance(ohm)\n", "x=((2*Rf+Rs)/Rl)*100 #% regulation \n", "\n", "#Part c\n", "Idc=0.2 #dc current(A)\n", "Im=(math.pi)*Idc/2 #peak current(mA)\n", "Ilrms=Im/math.sqrt(2) #rms current(mA)\n", "Vlrms=Ilrms*Rl #load rms voltage(V) \n", "\n", "#Part d\n", "Vldc=14 #load dc voltage(V)\n", "Vlacrms=math.sqrt(Vlrms**2-Vldc**2) #rms value of ac component(V)\n", "\n", "#Results\n", "print\"dc voltage\",round(Vdc),\"V\"\n", "print\"regulation is\",round(x,2),\"%\"\n", "print\"rms value of output voltage at dc load current is\",round(Vlrms,2),\"V\"\n", "print\"rms value of ac component of voltage\",round(Vlacrms,2),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dc voltage 16.0 V\n", "regulation is 28.56 %\n", "rms value of output voltage at dc load current is 15.56 V\n", "rms value of ac component of voltage 6.78 V\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.17,Page number 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Vh=60. #higher output voltage(V)\n", "Vl=45. #lower output voltage(V) \n", "fz=50. #frequency(Hz)\n", "Vr=15. #peak to peak ripple voltage(V)\n", "Rl=600. #resistance(ohms)\n", " \n", "#Calculations\n", "Vldc=(Vh+Vl)/2 #avg load dc voltage(V) as voltage drops from 60 to 45\n", "Idc=Vldc/Rl #dc current(A)\n", "T=1/fz #discharging time(ms)\n", "C=(Idc*T)/Vr #linear discharge rate(uF)\n", "C1=C*2 #new capacitance(uF)\n", "'''\n", " CVr(p-p) 234Vr(p-p)*10^3\n", "Idc = -------------- = --------------- ----(1)\n", " T 20\n", " \n", " 60+[60-Vr(p-p) 120-Vr(p-p)\n", "Idc = --------------- = ------------*1000 ----(2)\n", " 2Rl 2*600\n", " \n", "Equating equations 1 & 2, we get, \n", "'''\n", "\n", "Vr1 = (20*120*1000)/(1200*254)\n", "Idc1=(Vh-(Vr1/2))/Rl #dc load current(mA)\n", "\n", "#Results\n", "print\"value of capacitance is\",round(C/1E-6),\"uF\" \n", "print\"Vr1 is\",Vr1,\"V\" \n", "print\"dc load current Idc is\",round(Idc1/1E-3),\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of capacitance is 117.0 uF\n", "Vr1 is 7 V\n", "dc load current Idc is 95.0 mA\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.18,Page number 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Vdc=30 #dc voltage(V)\n", "V1=220 #source voltage(V)\n", "f=50 #frequency(Hz)\n", "Rl=1000 #load resistance(k ohms)\n", "\n", "#Calculations\n", "C=100/f*Rl #as Vdc/Vr=100\n", "Vm=Vdc+(Vr/2) #peak voltage(V)\n", "V2=Vm/(math.sqrt(2)) #secondary voltage(V)\n", "r=V1/V2 #transformer turn ratio\n", "\n", "#Results\n", "print\"capacitor filtor is\",C,\"uF\"\n", "print\"transformer turn ratio is\",round(r,2),\"\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "capacitor filtor is 2000 uF\n", "transformer turn ratio is 10.37 \n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.19,Page number 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Idc=60*10**-3 #dc current(A)\n", "Vm=60 #peak volage(V)\n", "f=50 #frequency(Hz)\n", "C=120*10**-6 #capacitance(F)\n", "\n", "#Calculations\n", "#Part a\n", "Vrms=Idc/(4*(math.sqrt(3))*f*C*Vm) #rms voltage(V)\n", "Vr=2*(math.sqrt(3))*Vrms #ripple factor(V)\n", "\n", "#Part b\n", "Vdc=Vm-(Vr/2) #by simplifying\n", "\n", "#Part c\n", "r=(Vrms/Vdc)*100 #ripple factor\n", "\n", "#Results\n", "print\"ripple factor is\",round(Vr,3),\"Vdc\"\n", "print\"dc voltage is\",round(Vdc),\"V\"\n", "print\"ripple factor\",round(r,4),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ripple factor is 0.083 Vdc\n", "dc voltage is 60.0 V\n", "ripple factor 0.0401 %\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.20,Page number 54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Calculations\n", "#Part a\n", "''' 200*1.141 4\n", "v1(t)=-------------(1- - cos628t) \n", " 3.14 3\n", " 200*1.141 800*1.141 \n", "v2(t)=----------- - ------------ cos(628t+<(V2/V1))\n", " 3.14 3*3.14\n", "\n", "V2/V1|w=0 =0.8;V2/V1|w=628 =6.43*10^-4