{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10 - Three Phase Induction Motors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1 - pg 10_14" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load slip (percent) = 6.0\n" ] } ], "source": [ "#Chapter-10,Example10_1,pg10_14\n", "#calculate the full load slip\n", "#given\n", "P=4.\n", "f=50.\n", "N=1410.\n", "#calculations\n", "Ns=120*f/P\n", "s=(Ns-N)/Ns\n", "s=s*100#%s\n", "#results\n", "print\"full load slip (percent) = \",s\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2 - pg 10_14" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load speed of motor (rpm) = 1440.0\n" ] } ], "source": [ "#Chapter-10,Example10_2,pg10_14\n", "#calculate the full load speed of motor\n", "#given\n", "P=4.\n", "f=50.\n", "sfl=4/100.\n", "#calculations\n", "Ns=120*f/P\n", "Nfl=Ns-sfl*Ns\n", "#results\n", "print\"full load speed of motor (rpm) = \",Nfl\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3 - pg 10_16" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency of induced e.m.f (Hz) = 1.0\n" ] } ], "source": [ "#Chapter-10,Example10_3,pg10_16\n", "#calculate the frequency of induced emf\n", "#given\n", "P=4.\n", "f=50.\n", "N=1470.\n", "#calculations\n", "Ns=120*f/P\n", "s=(Ns-N)/Ns\n", "fr=s*f\n", "#results\n", "print\"frequency of induced e.m.f (Hz) = \",fr\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4 - pg 10_20" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load slip (percent)= 4.0\n", "speed of motor (rpm) = 720.0\n" ] } ], "source": [ "#Chapter-10,Example10_4,pg10_20\n", "#calculate the full load slip and speed of motor\n", "#given\n", "P=8.\n", "f=50.\n", "fr=2.\n", "#calculations\n", "s=fr/f\n", "s=s*100.\n", "#results\n", "print\"full load slip (percent)= \",s\n", "s=s/100\n", "Ns=120*f/P\n", "N=Ns*(1-s)\n", "print\"speed of motor (rpm) = \",N\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5 - pg 10_20" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency of rotor e.m.f (Hz) = 1.5\n", "magnitude of induced e.m.f standstill (V) = 119.8\n", "magnitude of induced e.m.f running (V) = 3.594\n" ] } ], "source": [ "#Chapter-10,Example10_5,pg10_20\n", "import math\n", "#calculate the frequency of rotor, magnitude of induced emf\n", "#given\n", "P=4.\n", "f=50.\n", "N=1455.\n", "E1line=415.\n", "#calculations\n", "Ns=120*f/P\n", "s=(Ns-N)/Ns\n", "fr=s*f\n", "E1ph=E1line/math.sqrt(3)\n", "E2ph=0.5*E1ph#K=2\n", "E2r=s*E2ph\n", "#results\n", "print\"frequency of rotor e.m.f (Hz) = \",fr\n", "print\"magnitude of induced e.m.f standstill (V) = \",round(E2ph,1)\n", "print\"magnitude of induced e.m.f running (V) = \",round(E2r,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6 - pg 10_21" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " at start\n", "pf (lagging) = 0.196\n", "I2 (A) = 67.94\n", " on full load\n", "pf (lagging) = 0.9806\n", "I2 (A) = 13.587\n" ] } ], "source": [ "#Chapter-10,Example10_6,pg10_21\n", "#calculate the rotor current and power factor\n", "import math\n", "from math import sqrt\n", "#given\n", "P=4\n", "f=50\n", "R2=0.2\n", "X2=1\n", "E2line=120\n", "#calculations and results\n", "E2ph=E2line/sqrt(3)\n", "Ns=120*f/P\n", "#at start\n", "pf=R2/sqrt((R2**2)+(X2**2))#power factor\n", "I2=E2ph/sqrt((R2**2)+(X2**2))\n", "print\" at start\"\n", "print\"pf (lagging) = \",round(pf,3)\n", "print\"I2 (A) = \",round(I2,2)\n", "#on full load\n", "N=1440.\n", "s=(Ns-N)/Ns\n", "pf=R2/sqrt((R2**2)+((s*X2)**2))\n", "I2=E2ph*s/sqrt((R2**2)+((s*X2)**2))\n", "print\" on full load\"\n", "print\"pf (lagging) = \",round(pf,4)\n", "print\"I2 (A) = \",round(I2,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7 - pg 10_24" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torque on full load (Nm) = 87.81\n" ] } ], "source": [ "#Chapter-10,Example10_7,pg10_24\n", "#calculate the torque on full load\n", "import math\n", "#given\n", "P=4.\n", "f=50.\n", "R2=0.1\n", "X2=1.\n", "N=1440.\n", "K=0.5\n", "#calculations\n", "Ns=120*f/P\n", "E1line=400.\n", "E1ph=E1line/math.sqrt(3)\n", "E2ph=0.5*E1ph\n", "s=(Ns-N)/Ns\n", "ns=Ns/60#synchronous speed (r.p.s)\n", "T=(3/(2*math.pi*ns))*(s*(E2ph**2)*R2/((R2**2)+((s*X2)**2)))\n", "#results\n", "print \"torque on full load (Nm) = \",round(T,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8 - pg 10_27" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "starting torque (Nm) = 63.032\n", "slip at which max torque occurs (percent) = 10.0\n", "speed at which max torque occurs (rpm) 1350.0\n", "max torque (Nm) = 318.31\n", "full load torque (Nm) = 219.52\n" ] } ], "source": [ "#Chapter-10,Example10_8,pg10_27\n", "#calculate the starting torque, max torque, speed\n", "import math\n", "from math import sqrt\n", "P=4.\n", "f=50.\n", "K=1/4.\n", "R2=0.01\n", "X2=0.1\n", "E1line=400.\n", "E1ph=E1line/sqrt(3)\n", "E2=E1ph/4\n", "Ns=120*f/P\n", "#at start\n", "s=1\n", "ns=Ns/60\n", "k=3/(2*math.pi*ns)\n", "Tst=k*(E2**2)*R2/((R2**2)+(X2**2))\n", "print\"starting torque (Nm) = \",round(Tst,3)\n", "\n", "#slip at max torque\n", "sm=R2/X2\n", "sm=sm*100\n", "print\"slip at which max torque occurs (percent) = \",round(sm,0)\n", "#speed at max torque\n", "sm=sm/100\n", "N=Ns*(1-sm)\n", "print\"speed at which max torque occurs (rpm) \",N\n", "\n", "#max. torque\n", "Tm=k*(E2**2)/(2*X2)\n", "sf=0.04\n", "Tfl=k*sf*(E2**2)*R2/((R2**2)+((sf*X2)**2))\n", "print\"max torque (Nm) = \",round(Tm,2)\n", "print\"full load torque (Nm) = \",round(Tfl,2)\t\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9 - pg 10_33" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load torque to max torque = 0.3824\n", "starting torque to max torque = 0.1203\n" ] } ], "source": [ "#Chapter-10,Example10_9,pg10_33\n", "#calculate the full load torque and starting torque\n", "#given\n", "P=24.\n", "f=50.\n", "R2=0.016\n", "X2=0.265\n", "N=247.\n", "#calculations\n", "Ns=120*f/P\n", "sf=(Ns-N)/Ns\n", "sm=R2/X2\n", "Tfm=2*sm*sf/((sm**2)+(sf**2))\n", "Tsm=2*sm/(1+(sm**2))\n", "#results\n", "print\"full load torque to max torque = \",round(Tfm,4)\n", "print\"starting torque to max torque = \",round(Tsm,4)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10 - pg 10_36" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "external resistance (ohm/phase) = 0.0136\n" ] } ], "source": [ "#Chapter-10,Example10_10,pg10_36\n", "#calculate the external resistance\n", "#given\n", "import math\n", "R2=0.04\n", "X2=0.2\n", "#for Tm=Tst, sm=1\n", "#calculations\n", "R21=X2\n", "Rex=R2-R21\n", "#for Tst=Tm/2........(1)\n", "#Tst=k*(E2**2)*R21/((R21**2)+(X2**2))......(2)with added resistance\n", "#from (1) and (2)\n", "#(R21**2)-0.8*R21+0.04=0\n", "a=1\n", "b=-0.8\n", "c=0.04\n", "R21=(-b-math.sqrt((b**2)-4*a*c))/(2*a)#neglecting higher value\n", "Rex=R21-R2\n", "#results\n", "print\"external resistance (ohm/phase) = \",round(Rex,4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11 - pg 10_42" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rotor copper loss (W) = 469.326\n" ] } ], "source": [ "#Chapter-10,Example10_11,pg10_42\n", "#calculate the rotor copper loss\n", "#given\n", "import math\n", "Tsh=190.\n", "P=8.\n", "f=50.\n", "fr=1.5\n", "ML=700.\n", "#calculations\n", "s=fr/f\n", "Ns=120*f/P\n", "N=Ns*(1-s)\n", "Po=Tsh*(2*math.pi*N/60.)\n", "Pm=Po+ML\n", "Pc=Pm*s/(1-s)\n", "#results\n", "print\"rotor copper loss (W) = \",round(Pc,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12 - pg 10_43" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load efficiency (percent) = 92.78\n" ] } ], "source": [ "#Chapter-10,Example10_12,pg10_43\n", "#calculate the full load efficiency\n", "#given\n", "P=4.\n", "f=50.\n", "Pi=50.*10**3\n", "N=1440.\n", "Sl=1000.\n", "Fl=650.\n", "#calculations\n", "Ns=120*f/P\n", "s=(Ns-N)/Ns\n", "P2=Pi-Sl\n", "Pc=s*P2\n", "Pm=P2-Pc\n", "Po=Pm-Fl\n", "n=Po*100/Pi\n", "#results\n", "print\"full load efficiency (percent) = \",n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13 - pg 10_44" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "slip (percent) = 4.0\n", "net output power (kW) = 45.2389\n", "rotor copper loss per phase (W) = 733.0383\n", "rotor efficiency (percent) = 96.0\n", "rotor resistance per phase (ohm/phase) = 0.2036\n" ] } ], "source": [ "#Chapter-10,Example10_13,pg10_44\n", "#calculate the net output power, rotor copper loss,efficiency and resistance per phase\n", "#given\n", "import math\n", "P=4.\n", "f=50.\n", "Tsh=300.\n", "Tlost=50.\n", "fr=120/60.#Hz\n", "#calculations\n", "s=fr/f\n", "s=s*100.\n", "print\"slip (percent) = \",s\n", "Ns=120.*f/P\n", "s=s/100.\n", "N=Ns*(1-s)\n", "Po=Tsh*2*math.pi*N/60\n", "Fl=Tlost*2*math.pi*N/60\n", "Pm=Po+Fl\n", "Pc=Pm*s/(1-s)\n", "Rcl=Pc/3#rotor copper loss per phase\n", "P2=Pc/s\n", "n=Pm*100./P2\n", "I2r=60\n", "R2=Rcl/(I2r**2)\n", "#results\n", "print\"net output power (kW) = \",round(Po/1000.,4)\n", "print\"rotor copper loss per phase (W) = \",round(Rcl,4)\n", "print\"rotor efficiency (percent) = \",n\n", "print\"rotor resistance per phase (ohm/phase) = \",round(R2,4)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14 - pg 10_45" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gross mechanical power (W) = 25850.0\n", "rotor copper losses (W) = 1650.0\n", "rotor resistance per phase (ohm/phase) = 0.13\n", "full load efficiency (percent) = 82.49\n" ] } ], "source": [ "#Chapter-10,Example10_14,pg10_45\n", "#calculate the gross mechanical power, rotor copper losses, resistance and full load efficiency\n", "#given\n", "Po=25.*10**3\n", "f=50.\n", "P=4.\n", "#calculations\n", "Ns=120*f/P\n", "N=1410\n", "s=(Ns-N)/Ns\n", "Ml=850\n", "Pm=Po+Ml\n", "Pc=Pm*s/(1-s)\n", "I2r=65\n", "R2=Pc/(3*(I2r**2))\n", "Sl=1.7*Pc\n", "P2=Pc/s\n", "Pin=P2+Sl\n", "n=Po*100/Pin\n", "#results\n", "print\"gross mechanical power (W) = \",Pm\n", "print\"rotor copper losses (W) = \",Pc\n", "print\"rotor resistance per phase (ohm/phase) = \",round(R2,2)\n", "print\"full load efficiency (percent) = \",round(n,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15 - pg 10_47" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shaft torque (N-m) = 318.31\n", "gross torque (N-m) = 331.573\n", "rotor copper losses (W) = 1041.67\n", "stator copper losses (W) = 974.7\n", "stator iron losses (W) = 1950.6\n", "overall efficiency (percent) = 82.85\n" ] } ], "source": [ "#Chapter-10,Example10_15,pg10_47\n", "#calculate the shaft torque, gross, rotor copper losses, stator copper and iron losses and overall efficiency \n", "#given\n", "import math\n", "Po=24.*10**3\n", "Il=57.\n", "Is=Il\n", "P=8.\n", "N=720.\n", "f=50.\n", "Vl=415.\n", "pf=0.707\n", "#calculations\n", "Ns=120*f/P\n", "s=(Ns-N)/Ns\n", "Ml=1000.\n", "Pm=Po+Ml\n", "Pc=Pm*s/(1-s)\n", "Tsh=Po*60/(2*math.pi*N)\n", "T=Pm*60/(2*math.pi*N)\n", "Rcl=1041.66#rotor copper loss\n", "P2=Pc/s\n", "Pi=math.sqrt(3)*Vl*Il*pf\n", "Rs=0.1\n", "Scl=3*(Is**2)*Rs#stator copper loss\n", "Sl=Pi-P2\n", "Sil=Sl-Scl#stator iron loss\n", "n=Po*100/Pi\n", "#results\n", "print\"shaft torque (N-m) = \",round(Tsh,3)\n", "print\"gross torque (N-m) = \",round(T,3)\n", "print\"rotor copper losses (W) = \",round(Pc,2)\n", "print\"stator copper losses (W) = \",Scl\n", "print\"stator iron losses (W) = \",round(Sil,2)\n", "print\"overall efficiency (percent) = \",round(n,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16 - pg 10_52" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "supply current (times Ifl) = 3.33\n" ] } ], "source": [ "#Chapter-10,Example10_16,pg10_52\n", "#calculate the supply current\n", "#given\n", "import math\n", "sf=0.05\n", "#Tst=Tfl\n", "Ifs=1/6.#Isc/Ifl=6\n", "#calculations\n", "x=math.sqrt((Ifs**2)/sf)#tapping on transformer\n", "t=x*100\n", "Ist=(x**2)*6\n", "#results\n", "print \"supply current (times Ifl) = \",round(Ist,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17 - pg 10_54" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of starting torque to full load torque = 0.165\n" ] } ], "source": [ "#Chapter-10,Example10_17,pg10_54\n", "#calculate the ratio of starting torque to full load torque\n", "#given\n", "R2=0.4\n", "X2=4.\n", "#Tm=k*(E2**2)/(2*X2)\n", "#Tfl=Tm/2.5\n", "#Tfl=k*(E2**2)/20\n", "#Tst=k*(E2**2)*R2/((R2**2)+(X2**2))\n", "#E2=E2/sqrt(3)\n", "T=20*R2/(3*(((R2**2)+(X2**2))))\n", "#results\n", "print \"ratio of starting torque to full load torque = \",round(T,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18 - pg 10_57" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rotor current at start (A) = 800.85\n", "rotor power factor lagging (answer in book is wrong)= 0.0499\n", "rotor current at slip 0.03 (A) = 412.55\n", "external resistance (ohm/ph) (answer in book is wrong) = 0.7665\n" ] } ], "source": [ "#Chapter-10,Example10_18,pg10_57\n", "#calculate the rotor power factor, external resistance and current\n", "#given\n", "import math\n", "from math import sqrt\n", "Vl=1000.\n", "f=50.\n", "K=3.6\n", "R2=0.01\n", "X2=0.2\n", "E1line=1000.\n", "#calculations and results\n", "E1=E1line/sqrt(3)\n", "E2=E1/K\n", "#at start,s=1\n", "I2=160.37/sqrt((R2**2)+(X2**2))\n", "pf=R2/sqrt((R2**2)+(X2**2))\n", "print\"rotor current at start (A) = \",round(I2,2)\n", "print\"rotor power factor lagging (answer in book is wrong)= \",round(pf,4)\n", "#at s=0.03\n", "s=0.03\n", "I2r=s*160.37/sqrt((R2**2)+((s*X2)**2))\n", "print\"rotor current at slip 0.03 (A) = \",round(I2r,2)\n", "I2=200.\n", "R21=sqrt(((E2/I2)**2)-(X2**2))\n", "Rex=R21-R2\n", "print\"external resistance (ohm/ph) (answer in book is wrong) = \",round(Rex,4)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19 - pg 10_58" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "starting torque (Nm) = 103.54\n", "full load torque (Nm) = 15.576\n", "maximum torque (Nm) = 117.342\n", "speed at max torque (rpm) = 200.0\n" ] } ], "source": [ "#Chapter-10,Example10_19,pg10_58\n", "#calculate the starting torque, full load torque, maximum torque and speed at max torque\n", "import math\n", "#given\n", "P=12.\n", "f=50.\n", "R2=0.15\n", "X2=0.25\n", "E2=32.\n", "#calculations\n", "Ns=120*f/P\n", "ns=Ns/60\n", "Tst=3*(E2**2)*R2/((2*math.pi*ns)*((R2**2)+(X2**2)))\n", "N=480.\n", "s=(Ns-N)/Ns\n", "Tfl=3*s*(E2**2)*R2/((2*math.pi*ns)*((R2**2)+((s*X2)**2)))\n", "Tm=3*(E2**2)/(2*math.pi*ns*2*X2)\n", "sm=R2/X2\n", "N=Ns*(1-sm)\n", "#results\n", "print\"starting torque (Nm) = \",round(Tst,2)\n", "print\"full load torque (Nm) = \",round(Tfl,3)\n", "print\"maximum torque (Nm) = \",round(Tm,3)\n", "print\"speed at max torque (rpm) = \",N\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 20 - pg 10_59" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "efficiency on full load (percent) = 85.78\n" ] } ], "source": [ "#Chapter-10,Example10_20,pg10_59\n", "#calculate the efficiency in full load\n", "#given\n", "Po=50.*735.5#(in W)\n", "s=0.04\n", "#calculations\n", "#Rcl=X...............rotor copper loss\n", "#Sil=1.25X...........stator iron loss\n", "#Ml=Y, Y=(Y+1.25X)/3, Y=0.625X\n", "#TL=Sil+Rcl+Scl+Ml, TL=3.875X.........(a)\n", "#Pm=Po+Y, 36775+625X..........(1)\n", "#Pc=Pm*s/(1-s).............(2)\n", "#Pc=X, from (1) and (2)\n", "X=(s*Po)/(1-s-s*0.625)\n", "TL=3.875*X#from (a)\n", "n=Po*100./(Po+TL)\n", "#results\n", "print\"efficiency on full load (percent) = \",round(n,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 21 - pg 10_61" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "new speed of motor (rpm) = 1392.0\n" ] } ], "source": [ "#Chapter-10,Example10_21,pg10_61\n", "#calculate the new speed of motor\n", "#given\n", "import math\n", "P=4.\n", "f=50.\n", "R2=0.25\n", "X2=0.55\n", "N1=1440\n", "#calculations\n", "Ns=120*f/P\n", "s1=(Ns-N1)/Ns\n", "Rex=0.2\n", "R21=R2+Rex\n", "#T1 at s1=T2 at s2\n", "#0.3025*s2^2-2.8342*s2+0.2025=0, s1=0.04\n", "a=0.3025\n", "b=-2.8342\n", "c=0.2025\n", "s2=(-b-math.sqrt((b**2)-4*a*c))/(2*a)#neglecting higher value\n", "N2=Ns*(1-s2)\n", "#results\n", "print\"new speed of motor (rpm) = \",round(N2,0)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22 - pg 10_62" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rotor current at start (A) = 9.4916\n", "rotor current for rheostat of 6 ohm (A) = 4.0324\n", "full load rotor current (A) = 2.2456\n", "full load power factor (lagging) = 0.9724\n", "rotor e.m.f on full load (V) = 1.1547\n" ] } ], "source": [ "#Chapter-10,Example10_22,pg10_62\n", "#calculate the rotor current, full load current , power factor and rotor emf\n", "#given\n", "import math\n", "from math import sqrt\n", "E2line=50.\n", "R2=0.5\n", "X2=3.\n", "E2=E2line/sqrt(3)\n", "#calculations and results\n", "#at start\n", "s=1\n", "I2r=s*E2/(sqrt((R2**2)+((s*X2)**2)))\n", "print\"rotor current at start (A) = \",round(I2r,4)\n", "Rx=6.\n", "I2r=s*E2/(sqrt(((R2+Rx)**2)+((s*X2)**2)))\n", "print\"rotor current for rheostat of 6 ohm (A) = \",round(I2r,4)\n", "#at full load\n", "s=0.04\n", "I2r=s*E2/(sqrt((R2**2)+((s*X2)**2)))\n", "pf=R2/(sqrt((R2**2)+((s*X2)**2)))\n", "print\"full load rotor current (A) = \",round(I2r,4)\n", "print\"full load power factor (lagging) = \",round(pf,4)\n", "E2r=s*E2\n", "print\"rotor e.m.f on full load (V) = \",round(E2r,4)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 23 - pg 10_63" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "starting torque (Nm) = 103.54\n", "full load torque (Nm) = 15.576\n", "maximum torque (Nm) = 117.342\n", "speed at max torque (rpm) = 200.0\n" ] } ], "source": [ "#Chapter-10,Example10_23,pg10_63\n", "#calculate the starting,full load, maximum torque and speed\n", "#given\n", "import math\n", "P=12.\n", "f=50.\n", "R2=0.15\n", "X2=0.25\n", "E2=32.\n", "#calculations\n", "Ns=120*f/P\n", "ns=Ns/60.\n", "k=3.\n", "Tst=k*(E2**2)*R2/((2*math.pi*ns)*((R2**2)+(X2**2)))\n", "N=480.\n", "s=(Ns-N)/Ns\n", "Tfl=k*s*(E2**2)*R2/((2*math.pi*ns)*((R2**2)+((s*X2)**2)))\n", "Tm=k*(E2**2)/(2*math.pi*ns*2*X2)\n", "sm=R2/X2\n", "N=Ns*(1-sm)\n", "#results\n", "print\"starting torque (Nm) = \",round(Tst,2)\n", "print\"full load torque (Nm) = \",round(Tfl,3)\n", "print\"maximum torque (Nm) = \",round(Tm,3)\n", "print\"speed at max torque (rpm) = \",N\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24 - pg 10_64" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load torque (Nm) = 202.52\n", "ratio of Tst to Tfl = 0.817\n", "ratio of Tm to Tfl = 2.043\n", "external resistance required (ohm/ph) = 1.6\n" ] } ], "source": [ "#Chapter-10,Example10_24,pg10_64\n", "#calculate the full load torque and external resistance required\n", "#given\n", "import math\n", "P=4.\n", "f=50.\n", "R2=0.4\n", "X2=2.\n", "E2b=520.#between slip rings\n", "#calculations\n", "E2ph=E2b/math.sqrt(3)\n", "Ns=120*f/P\n", "N=1425.\n", "sf=(Ns-N)/Ns\n", "ns=Ns/60.\n", "Tfl=3*sf*(E2ph**2)*R2/((2*math.pi*ns)*((R2**2)+((sf*X2)**2)))\n", "Tst=3*(E2ph**2)*R2/((2*math.pi*ns)*((R2**2)+((X2)**2)))\n", "T=Tst/Tfl\n", "Tm=3*(E2ph**2)/((2*math.pi*ns)*((R2**2)+((X2)*2)))\n", "T1=Tm/Tfl\n", "#at start\n", "sm=1\n", "R21=X2\n", "Rex=R21-R2\n", "#results\n", "print\"full load torque (Nm) = \",round(Tfl,2)\n", "print\"ratio of Tst to Tfl = \",round(T,3)\n", "print\"ratio of Tm to Tfl = \",round(T1,3)\n", "print\"external resistance required (ohm/ph) = \",Rex" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 25 - pg 10_65" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "slip at full load = 0.04\n", "rotor frequency (Hz) = 2.0\n", "rotor copper loss per phase (kW) = 486.53\n", "total copper loss (kW) = 1.4596\n", "efficiency at full load (percent) = 89.02\n", "line current drawn (A) = 68.361\n" ] } ], "source": [ "#Chapter-10,Example10_25,pg10_65\n", "#calculate the slip, rotor frequency, copper loss and efficiency\n", "#given\n", "import math\n", "Po=33.73*10**3\n", "P=4.\n", "Vl=400.\n", "f=50.\n", "Nfl=1440.\n", "pf=0.8\n", "Ml=1.3*10**3\n", "#calculations\n", "Ns=120*f/P\n", "s=(Ns-Nfl)/Ns\n", "fr=s*f\n", "Pm=Po+Ml\n", "Pc=Pm*s/(1-s)\n", "Pcp=Pc/3#copper loss per phase\n", "P2=Pc/s\n", "Sl=1.4*10**3\n", "Pi=P2+Sl\n", "n=Po*100/Pi\n", "Il=Pi/(math.sqrt(3)*Vl*pf)\n", "#results\n", "print\"slip at full load = \",s\n", "print\"rotor frequency (Hz) = \",round(fr,1)\n", "print\"rotor copper loss per phase (kW) = \",round(Pcp,2)\n", "print\"total copper loss (kW) = \",round(Pc/1000.,4)\n", "print\"efficiency at full load (percent) = \",round(n,2)\n", "print\"line current drawn (A) = \",round(Il,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26 - pg 10_66" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "power factor of rotor (lagging) = 0.989\n" ] } ], "source": [ "#Chapter-10,Example10_26,pg10_66\n", "#calculate the power factor of rotor\n", "#given\n", "import math\n", "R2=0.04\n", "X2=0.2\n", "sfl=0.03\n", "#at Tst, s=1\n", "#Tfl=Tst\n", "#(R21**2)-1.3633*R21+0.04=0\n", "a=1\n", "b=-1.3633\n", "c=0.04\n", "#calculations\n", "R21=(-b+math.sqrt((b**2)-4*a*c))/(2*a)\n", "Rex=R21-R2\n", "pf=R21/math.sqrt((R21**2)+(X2**2))\n", "#results\n", "print\"power factor of rotor (lagging) = \",round(pf,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 27 - pg 10_67" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "full load speed (rpm) = 1318.7\n", "speed at max. torque (rpm) = 823.0\n" ] } ], "source": [ "#Chapter-10,Example10_27,pg10_67\n", "#calculate the full load speed, speed at max torque\n", "#given\n", "import math\n", "P=4.\n", "f=50.\n", "Po=8.*10**3\n", "#Tst=1.5*Tfl and Tm=2*Tfl\n", "#(R2**2)+((sfl*X2)**2)=1.5*sfl*((R2**2)+(X2**2)).................(1)\n", "#(R2**2)+((sfl*X2)**2)=2*(sfl/sm)*((R2**2)+((sm*X2)**2))..........(2)\n", "#dividing (1) and (2) by (X2**2) on both sides and R2/X2=sm\n", "#(sm**2)+(sfl**2)=5*(1+(sm**2))*sfl.............(3)\n", "#(sm**2)+(sfl**2)=2*(2*(sm**2))*(sfl/sm)=4*sm*sfl...........(4)\n", "#dividing (3) by (4)\n", "#(sm**2)-2.667*sm+1=0\n", "a=1\n", "b=-2.667\n", "c=1\n", "#calculations\n", "sm=(-b-math.sqrt((b**2)-4*a*c))/(2*a)\n", "Ns=120*f/P\n", "#substituting sm in (4)\n", "#(sfl**2)-1.8052*sfl+0.2036=0\n", "a=1\n", "b=-1.8052\n", "c=0.2036\n", "sfl=(-b-math.sqrt((b**2)-4*a*c))/(2*a)\n", "N=Ns*(1-sfl)\n", "Nm=Ns*(1-sm)\n", "#results\n", "print\"full load speed (rpm) = \",round(N,1)\n", "print\"speed at max. torque (rpm) = \",round(Nm,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 28 - pg 10_68" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "starting torque (Nm) = 34.8\n" ] } ], "source": [ "#Chapter-10,Example10_28,pg10_68\n", "#calculate the starting torque\n", "import math\n", "#given\n", "Po=10*735.5#(in W)\n", "Nfl=1410.\n", "P=4.\n", "f=50.\n", "#calculations\n", "Ns=120.*f/P\n", "sfl=(Ns-Nfl)/Ns\n", "Nm=1200.\n", "sm=(Ns-Nm)/Ns\n", "T=2*sfl*sm/((sm**2)+(sfl**2))#Tfl/Tm\n", "T1=(1+(sm**2))/(2*sm)#Tm/Tst\n", "T2=T1*T#Tfl/Tst\n", "Tfl=Po*60./(2*math.pi*Nfl)\n", "Tst=Tfl/T2\n", "#results\n", "print\"starting torque (Nm) = \",round(Tst,1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29 - pg 10_70" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum torque (Nm) = 330.5\n", "speed (r.p.m) = 1250.0\n", "external resistance (ohm/ph) = 0.125\n" ] } ], "source": [ "#Chapter-10,Example10_29,pg10_70\n", "#calculate the maximum torque, speed and external resistance\n", "#given\n", "P=4.\n", "f=50.\n", "R2=0.025\n", "X2=0.15\n", "sfl=0.04\n", "Tfl=150.\n", "#calculations\n", "sm=R2/X2\n", "Tm=Tfl*((R2**2)+((sfl*X2)**2))*sm/(sfl*((R2**2)+((sm*X2)**2)))\n", "Ns=120*f/P\n", "N=Ns*(1-sm)\n", "#at start\n", "R21=X2\n", "Rex=R21-R2\n", "#results\n", "print\"maximum torque (Nm) = \",Tm\n", "print\"speed (r.p.m) = \",N\n", "print\"external resistance (ohm/ph) = \",Rex\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 30 - pg 10_70" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "motor output (kW) = 16.54099\n", "copper loss in rotor (W) = 575.54\n", "motor input (kW) = 20.0147\n", "efficiency of motor (percent) = 82.644\n" ] } ], "source": [ "#Chapter-10,Example10_30,pg10_70\n", "#calculate the motor output, copper loss and efficiency\n", "#given\n", "import math\n", "Tsh=162.84\n", "P=6.\n", "f=50.\n", "Tlost=20.36\n", "fr=1.5\n", "#calculations\n", "s=fr/f\n", "Ns=120*f/P\n", "N=Ns*(1-s)\n", "Po=Tsh*(2*math.pi*N)/60\n", "Fl=Tlost*(2*math.pi*N)/60\n", "Pm=Po+Fl\n", "Pc=Pm*s/(1-s)\n", "P2=Pc/s\n", "Sl=830\n", "Pi=P2+Sl\n", "n=Po*100/Pi\n", "#results\n", "print\"motor output (kW) = \",round(Po/1000.,5)\n", "print\"copper loss in rotor (W) = \",round(Pc,3)\n", "print\"motor input (kW) = \",round(Pi/1000.,4)\n", "print\"efficiency of motor (percent) = \",round(n,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31 - pg 10_71" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of max to full load torque = 1.45\n", "speed at max torque (rpm) = 675.0\n" ] } ], "source": [ "#Chapter-10,Example10_31,pg10_71\n", "#calculate the ratio of max to full load torque and speed at max torque\n", "#given\n", "f=50.\n", "P=8.\n", "R2=0.01\n", "X2=0.1\n", "sfl=0.04\n", "#calculations\n", "#for Tmax\n", "sm=R2/X2\n", "#for Tfl\n", "s=sfl\n", "T=sm*R2*((R2**2)+((sfl*X2)**2))/((sfl*R2)*((R2**2)+((sm*X2)**2)))#Tmax/Tfl\n", "Ns=120*f/P\n", "sm=0.1\n", "N=Ns*(1-sm)\n", "#results\n", "print\"ratio of max to full load torque = \",T\n", "print\"speed at max torque (rpm) = \",N\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }