{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "CHAPTER 22 NONLINEAR OP-AMP CIRCUITS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-4, Page 854" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.4.py\n", "#Input voltage is a sine wave with a peak value of 10V. what is the trip point & cutoff frequency of bypass circuit?\n", "import math\n", "\n", "#Variable declaration\n", "Vin=10 #ac input(V)\n", "Vs=15 #non-inverting input voltage(V)\n", "R1=200.0*10**3 #non-inverting input resistance R1(Ohm)\n", "R2=100.0*10**3 #non-inverting input resistance R2(Ohm)\n", "C=10*10**-6 #capacitance at non-inverting input(F)\n", "\n", "#Calculation\n", "Vref=Vs/3 #reference voltage at trip point(V)\n", "fc=(2*math.pi*((R1**-1+R2**-1)**-1)*C)**-1 #cutoff frequency(Hz)\n", "\n", "#Result\n", "print 'trip point voltage Vref = ',Vref,'V'\n", "print 'cutoff frequency of bypass circuit fc = ',round(fc,2),'Hz'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "trip point voltage Vref = 5 V\n", "cutoff frequency of bypass circuit fc = 0.24 Hz\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-5, Page 855" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.5.py\n", "#what is the duty cycle of output waveform in figure 22-15b?\n", "\n", "import math\n", "\n", "#Variable declaration\n", "Vp=10.0 #sine peak(V)\n", "Vin=5.0 #input voltage(V) \n", "\n", "#Calculation\n", "#1st solution\n", "theta=math.ceil((math.asin(Vin/Vp))*180/math.pi) #angle theta (deg)\n", "#2nd solution\n", "D=(150-theta)/360.0 #duty cycle\n", "\n", "#Result\n", "print 'theta = ',theta,'degrees'\n", "print 'duty cycle D = ',round((D*100),2),'%'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "theta = 31.0 degrees\n", "duty cycle D = 33.06 %\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-6, Page 860" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.6.py\n", "#If Vsat=13.5V, what are the trip points & hysteresis in figure 22-21?\n", "\n", "#Variable declaration\n", "R1=1.0 #non-inverting input resistance R1(KOhm)\n", "R2=47.0 #feedback path resistance R2(KOhm)\n", "Vsat=13.5 #saturation voltage(V)\n", "\n", "#Calculation\n", "B=R1/(R1+R2) #feedback fraction\n", "UTP=B*Vsat #upper trip point\n", "LTP=-B*Vsat #lower trip point\n", "H=UTP-LTP #hysteresis\n", "\n", "#Result\n", "print 'lower trip point LTP = ',round(LTP,2),'V'\n", "print 'upper trip point LTP = ',round(UTP,2),'V'\n", "print 'hysteresis is ',round(H,2),'V'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lower trip point LTP = -0.28 V\n", "upper trip point LTP = 0.28 V\n", "hysteresis is 0.56 V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-7, Page 865" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.7.py\n", "#what is the output voltage at end of input pulse & closed loop time constant of integrator? \n", "#open loop voltage gain of 100,000.\n", "\n", "#Variable declaration\n", "R=2 #inverting input resistance R1(KOhm)\n", "C=1*10**-6 #feedback path capacitance (F)\n", "T=1*10**-3 #time period(s)\n", "Vin=8 #input pulse voltage(V)\n", "AVOL=100000 #open loop voltage gain\n", "\n", "#Calculation\n", "V=Vin*T/(R*C)/1000 #output voltage(V)\n", "t=R*C*(AVOL+1)*1000 #time constant(s)\n", "\n", "#Result\n", "print 'Magnitude of negative output voltage at end of the pulse = ',V,'V'\n", "print 'closed loop time constant = ',t,'s'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of negative output voltage at end of the pulse = 4.0 V\n", "closed loop time constant = 200.002 s\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-8, Page 868" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.5.py\n", "#what is the output voltage in figure 22-30 if the input frequency is 1 KHz?\n", "\n", "#Variable declaration\n", "R1=1*10**3 #inverting input resistance R1(Ohm)\n", "R2=10*10**3 #feedback path resistance R2(Ohm)\n", "C=10*10**-6 #feedback path capacitance (F)\n", "Vin=5 #input pulse voltage(V)\n", "f=1*10**3 #input frequency(Hz)\n", "\n", "#Calculation\n", "Vout=Vin/(2*f*R1*C) #output voltage(V)\n", "\n", "#Result\n", "print 'peak to peak output voltage = ',Vout,'Vpp'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "peak to peak output voltage = 0.25 Vpp\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-9, Page 868" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.9.py\n", "#The variable resistance has a maximum value of 10 KOhm. \n", "#what is duty cyale when wiper is at middle of its range for traingular input frequency = 1KHz.\n", "\n", "#Variable declaration\n", "Vs=15.0 #non-inverting input voltage(V)\n", "Rw=5.0*10**3 #inverting input wiper resistance(Ohm)\n", "R1=10.0*10**3 #inverting input resistance R1(Ohm)\n", "f=1.0 #input frequency(KHz) \n", "\n", "#Calculation\n", "Vref=Vs*(Rw/(Rw+R1)) #reference voltage(V)\n", "T=1/f #period of signal(s)\n", "#As per geometry in 22-31b\n", "W=2*(T/2)*((Vs/2)-Vref)/Vs #output pulse width\n", "D=W/T #duty cycle\n", "\n", "#Result\n", "print 'duty cycle D = ',round((D*100),2),'%'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "duty cycle D = 16.67 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-10, Page 871" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.10.py\n", "#In figure 22-34, what is the frequency of output signal?\n", "\n", "import math\n", "\n", "#Variable declaration\n", "R1=18.0 #non-inverting input resistance R1(KOhm)\n", "R2=2.0 #feedback path resistance R2(KOhm)\n", "R=1.0 #feedback path resistance R(KOhm)\n", "C=0.1*10**-6 #feedback path capacitance (F)\n", "\n", "#Calculation\n", "B=R1/(R1+R2) #feedback fraction\n", "T=10**9*2*R*C*math.log((1+B)/(1-B)) #period of output(us)\n", "f=1000*1/T #frequency(KHz)\n", "\n", "#Result\n", "print 'period T = ',round(T,2),'us'\n", "print 'frequency f = ',round(f,2),'KHz'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "period T = 588.89 us\n", "frequency f = 1.7 KHz\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-11, Page 871" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.11.py\n", "#In figure 22-33 peak outout voltage is 13.5V. R4=10KOhm,C2=10uF,\n", "#what is the peak to peak value of triangular output wave?\n", "\n", "#Variable declaration\n", "Vsat=13.5 #saturation voltage given(V)\n", "R4=10*10**3 #given resistance R4(Ohm)\n", "C2=10*10**-6 #given capacitance C2(F)\n", "T=589*10**-6 #period from preceding example(s)\n", "\n", "#Calculation\n", "Vout=Vsat*T/(2*R4*C2) #output voltage (V) \n", "\n", "#Result\n", "print 'Output voltage = ',round((Vout*1000),2),'mVpp'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage = 39.76 mVpp\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22-12, Page 873" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 22.12.py\n", "#In figure 22-35a R1=1KOhm, R2=100KOhm, R3=10KOhm, R4=100KOhm and C=10uF.\n", "#what is peak to peak output if Vsat =13V? what is frequency of triangular wave?\n", "\n", "#Variable declaration\n", "R1=1*10**3 #resistance R1(Ohm)\n", "R2=100*10**3 #resistance R2(Ohm)\n", "R3=10*10**3 #resistance R3(Ohm)\n", "C=10*10**-6 #capacitance (F)\n", "\n", "#Calculation\n", "UTP=Vsat*R1/R2 #UTP value (V)\n", "Vout=2*UTP #output voltage/hysteresis (V)\n", "f=R2/(4*R1*R3*C) #frequency(Hz)\n", "\n", "#Result\n", "print 'Vout = H = ',Vout,'V'\n", "print 'frequency f = ',f,'Hz'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vout = H = 0.27 V\n", "frequency f = 250.0 Hz\n" ] } ], "prompt_number": 37 } ], "metadata": {} } ] }