{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "CHAPTER 5 SPECIAL-PURPOSE DIODES" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-1, Page 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Vsmin=20 #Source voltage minimum(V)\n", "Vsmax=40 #Source voltage maximum(V)\n", "Vbd=10 #Breakdown voltage(V)\n", "R=0.82 #Resistance(KOhm)\n", "\n", "Vr1=Vsmin-Vbd #voltage across resistor(V)\n", "Is1=Vr1/R #Minimum current(mA)\n", "Vr2=Vsmax-Vbd #voltage across resistor(V)\n", "Is2=Vr2/R #Maximum current(mA)\n", "\n", "print 'Ideally, zener diode acts as a battery(of breakdown voltage = 10V) shown in figure 5-4b'\n", "print 'Minimum current Is1=',round(Is1,2),'mA'\n", "print 'Maximum current Is1=',round(Is2,2),'mA'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ideally, zener diode acts as a battery(of breakdown voltage = 10V) shown in figure 5-4b\n", "Minimum current Is1= 12.2 mA\n", "Maximum current Is1= 36.59 mA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-2, Page 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Vs=18 #supply voltage(V)\n", "Rs=0.27 #source resistance(KOhm)\n", "RL=1 #Load resistance(KOhm)\n", "Vz=10 #Zener voltage(V)\n", "\n", "VTH=(RL/(Rs+RL))*Vs #Thevenin voltage(V)\n", "\n", "print 'Thevenin voltage VTH = ',round(VTH,2),'V'\n", "print 'Thevenin voltage is greater than zener voltage, zener diode is operating in breakdown region.'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thevenin voltage VTH = 14.17 V\n", "Thevenin voltage is greater than zener voltage, zener diode is operating in breakdown region.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-3, Page 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Vs=18 #supply voltage(V)\n", "Rs=0.27 #source resistance(KOhm)\n", "RL=1 #Load resistance(KOhm)\n", "Vbd=10 #Zener voltage(V)\n", "\n", "Vr=Vs-Vbd #voltage across resistor(V)\n", "Is=Vr/Rs #Current(mA)\n", "IL=Vbd/RL #Current(mA)\n", "Iz=Is-IL #Zener current(mA)\n", "\n", "print 'Load current IL = ',IL,'mA'\n", "print 'Zener current Iz = ',round(Iz,2),'mA'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Load current IL = 10 mA\n", "Zener current Iz = 19.63 mA\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-7, Page 153" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Iz=20 #zener current(mA)\n", "Rz=8.5 #zener resistance(Ohm)\n", "Vbd=10 #Zener voltage(V)\n", "\n", "DVL=Iz*Rz/1000 #change in load voltage(V)\n", "VL=Vbd+DVL #Load voltage(V)\n", "\n", "print 'Change in load voltage DVL =',DVL,'V'\n", "print 'Load voltage with second approx., VL =',VL,'V'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in load voltage DVL = 0.17 V\n", "Load voltage with second approx., VL = 10.17 V\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-8, Page 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Rs=270 #Source resistance (Ohm)\n", "Rz=8.5 #zener resistance(Ohm)\n", "VRin=2 #Zener voltage(V)\n", "\n", "VRout=(Rz/Rs)*VRin*1000 #Load ripple voltage(V)\n", "\n", "print 'Load ripple voltage VRout=',round(VRout,2),'mV'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Load ripple voltage VRout= 62.96 mV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-10, Page 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Vil=22 #input voltage range low(V)\n", "Vih=30 #input voltage range high(V)\n", "Vz=12 #regulated output voltage(V)\n", "Rl=140 #Load resistance low(KOhm)\n", "Rh=10 #Load resistance high(KOhm)\n", "\n", "RSmax=Rl*(float(Vil)/float(Vz)-1) #Maximum series resistance\n", "\n", "print 'Maximum series resistance RSmax =',round(RSmax,2),'V'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum series resistance RSmax = 116.67 V\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-11, Page 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "Vil=15 #input voltage range low(V)\n", "Vih=20 #input voltage range high(V)\n", "Vz=6.8 #regulated output voltage(V)\n", "Il=5 #Load current low(mA)\n", "Ih=20 #Load current high(mA)\n", "\n", "RSmax=(Vil-float(Vz))/Ih*1000 #Maximum series resistance\n", "\n", "print 'Maximum series resistance RSmax =',RSmax,'V'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum series resistance RSmax = 410.0 V\n" ] } ], "prompt_number": 69 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-12, Page 168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Vi=50 #voatage supply(V)\n", "Rs=2.2 #series resistance(KOhm)\n", "Vf=2 #forward approx. voltage\n", " \n", "Is=(Vi-Vf)/Rs\n", "\n", "print 'LED current Is =',round(Is,2),'mA'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "LED current Is = 21.82 mA\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-13, Page 168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Vs=9 #voatage supply(V)\n", "Rs=470.0 #series resistance(Ohm)\n", "Vf=2 #forward approx. voltage\n", " \n", "Is=(Vs-Vf)/Rs\n", "\n", "print 'LED current Is =',round((Is*1000),2),'mA'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "LED current Is = 14.89 mA\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-14, Page 169" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "Vac=20 #AC voatage supply(V)\n", "Rs=680.0 #series resistance(KOhm)\n", " \n", "Vacp=1.414*Vac #peak source voltage(V)\n", "Is1=(Vacp/Rs)*1000 #approx. peak current(mA)\n", "Is2=Is1/math.pi #average of half-wave current through LED(mA)\n", "P=(Vac)**2/Rs #Power dissipation(W)\n", "\n", "print 'approx. peak LED current Is1 =',round(Is1,2),'mA'\n", "print 'average of half-wave current through LED Is2 =',round(Is2,2),'mA'\n", "print 'Power dissipation P =',round(P,2),'W'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "approx. peak LED current Is1 = 41.59 mA\n", "average of half-wave current through LED Is2 = 13.24 mA\n", "Power dissipation P = 0.59 W\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5-15, Page 170" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "Vs=120 #AC voatage supply(V)\n", "f=60 #frequency(Hz)\n", "C=0.68 #series resistance(KOhm)\n", " \n", "Xc=1/(2*math.pi*f*C)*1000 #capacitive reactance(KOhm)\n", "Vacp=Vs*1.414\n", "Is1=(Vacp/Xc) #approx. peak current(mA)\n", "Is2=Is1/math.pi #average current through LED(mA)\n", "\n", "print 'Capacitance reactance Xc = ',round(Xc,2),'KOhm'\n", "print 'approx. peak LED current Is1 =',round(Is1,2),'mA'\n", "print 'average current through LED Is2 =',round(Is2,2),'mA'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance reactance Xc = 3.9 KOhm\n", "approx. peak LED current Is1 = 43.5 mA\n", "average current through LED Is2 = 13.85 mA\n" ] } ], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }