{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "CHAPTER 12 POWER AMPLIFIERS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-1, Page 384" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math # This will import math module\n", "\n", "VCC=30 #collector voltage(V)\n", "RE=20 #Emitter resistance(Ohm)\n", "R1=490.0 #Base resistance1 (Ohm)\n", "R2=68.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=180 #Load Resistance(Ohm)\n", "RC=120 #Collector resistance(Ohm)\n", "\n", "VB=VCC*(R2/(R1+R2)) #Base voltage(V)\n", "VE=math.ceil(VB-VBE) #Emitter voltage(V)\n", "IE=VE/RE #Emitter current(A)\n", "ICQ=IE #collector current (A)\n", "VC=VCC-(ICQ*RC) #collector voltage(V)\n", "VCEQ=VC-VE #collector-emitter voltage (V) \n", "rc=RC*RL/(RC+RL) #ac collector resistance(Ohm)\n", "\n", "print 'Collector current ICQ = ',ICQ*1000,'mA'\n", "print 'collector-emitter voltage VCEQ = ',VCEQ,'V'\n", "print 'ac collector resistance rc = ',rc,'Ohm'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Collector current ICQ = 150.0 mA\n", "collector-emitter voltage VCEQ = 9.0 V\n", "ac collector resistance rc = 72 Ohm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-2, Page 385" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "VCC=30 #collector voltage(V)\n", "RE=20 #Emitter resistance(Ohm)\n", "R1=490.0 #Base resistance1 (Ohm)\n", "R2=68.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=180 #Load Resistance(Ohm)\n", "RC=120 #Collector resistance(Ohm)\n", "\n", "ICQ=150 #collector current (mA)\n", "VCEQ=9 #collector-emitter voltage (V) \n", "rc=72.0 #ac collector resistance(Ohm)\n", "\n", "ic_sat=ICQ+(VCEQ/rc)*1000 #ic(sarturation) (mA)\n", "VCE_cut=VCEQ+((ICQ*rc)/1000) #VCE(cut-off) (V)\n", "MP1=ICQ*RC\n", "MP2=VCEQ\n", "MPP=2*(min(MP1,MP2)) #maximum peak-to-peak voltage (V)\n", "\n", "print 'ic(sarturation) = ',ic_sat,'mA'\n", "print 'VCE(cut-off) = ',VCE_cut,'V'\n", "print 'maximum peak-to-peak voltage MPP = ',MPP,'V'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ic(sarturation) = 275.0 mA\n", "VCE(cut-off) = 19.8 V\n", "maximum peak-to-peak voltage MPP = 18 V\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-3, Page 387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math # This will import math module\n", "\n", "VCC=30 #collector voltage(V)\n", "RE=20 #Emitter resistance(Ohm)\n", "R1=490.0 #Base resistance1 (Ohm)\n", "R2=68.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=180.0 #Load Resistance(Ohm)\n", "RC=120 #Collector resistance(Ohm)\n", "vin=200 #input voltage(mV)\n", "zin=100 #input impedance of base(Ohm)\n", "MPP=18 #peak-to-peak voltage (V)\n", "\n", "Zin_stage=((zin**-1)+(R1**-1)+(R2**-1))**-1 #input impedance of stage(KOhm)\n", "Pin=vin**2/(Zin_stage*8)/1000 #ac input power (mW)\n", "Pout=1000*MPP**2/(RL*8) #ac output power (mW)\n", "Ap=Pout/Pin #power gain\n", "\n", "print 'Power gain Ap = ',math.ceil(Ap)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power gain Ap = 1683.0\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-4, Page 388" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math # This will import math module\n", "\n", "VCC=30 #collector voltage(V)\n", "RE=20 #Emitter resistance(Ohm)\n", "R1=490.0 #Base resistance1 (Ohm)\n", "R2=68.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=180 #Load Resistance(Ohm)\n", "RC=120 #Collector resistance(Ohm)\n", "\n", "VB=VCC*(R2/(R1+R2)) #Base voltage(V)\n", "VE=math.ceil(VB-VBE) #Emitter voltage(V)\n", "IE=VE/RE #Emitter current(A)\n", "ICQ=IE #collector current (A)\n", "VC=VCC-(ICQ*RC) #collector voltage(V)\n", "VCEQ=VC-VE #collector-emitter voltage (V) \n", "PDQ=VCEQ*ICQ #power dissipation(W)\n", "I_bias=VCC/(R1+R2) #bias current(mA)\n", "Idc=I_bias+ICQ #dc current(mA)\n", "Pdc=VCC*Idc #dc input power to stage(W)\n", "Pout=0.225 #Output power as per example 12-3 (W)\n", "n=(Pout/Pdc)*100 #efficiency of stage\n", "\n", "print 'Power dissipation PDQ = ',PDQ,'W'\n", "print 'efficiency of stage n = ',round(n,2),'%'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power dissipation PDQ = 1.35 W\n", "efficiency of stage n = 3.68 %\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-6, Page 391" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VCC=12 #collector voltage(V)\n", "RE=16 #Emitter resistance(Ohm)\n", "R1=50.0 #Base resistance1 (Ohm)\n", "R2=100.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=16 #Load Resistance(Ohm)\n", "\n", "VB=VCC*(R2/(R1+R2)) #Base voltage(V)\n", "VE=(VB-VBE) #Emitter voltage(V)\n", "IE=VE/RE #Emitter current(A)\n", "ICQ=IE #collector current (A)\n", "VCEQ=VCC-VE #collector-emitter voltage (V) \n", "re=RE*RL/(RE+RL) #ac emitter resistance(Ohm)\n", "\n", "print 'Collector current ICQ = ',ICQ*1000,'mA'\n", "print 'collector-emitter voltage VCEQ = ',VCEQ,'V'\n", "print 'ac collector resistance re = ',re,'Ohm'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Collector current ICQ = 456.25 mA\n", "collector-emitter voltage VCEQ = 4.7 V\n", "ac collector resistance re = 8 Ohm\n" ] } ], "prompt_number": 89 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-7, Page 393" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VCC=12 #collector voltage(V)\n", "RE=16 #Emitter resistance(Ohm)\n", "R1=50.0 #Base resistance1 (Ohm)\n", "R2=100.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=16 #Load Resistance(Ohm)\n", "\n", "ICQ=456 #collector current (mA)\n", "VCEQ=4.7 #collector-emitter voltage (V) \n", "re=8.0 #ac emitter resistance(Ohm)\n", "\n", "ic_sat=(1000*(VCEQ/re))+ICQ #ic(sarturation) (mA)\n", "VCE_cut=VCEQ+(ICQ*re)/1000 #VCE(cut-off) (V)\n", "MP1=ICQ*re/1000\n", "MP2=VCEQ\n", "MPP=2*(min(MP1,MP2)) #maximum peak-to-peak voltage (V)\n", "\n", "print 'ic(sarturation) = ',ic_sat/1000,'A'\n", "print 'VCE(cut-off) = ',VCE_cut,'V'\n", "print 'maximum peak-to-peak voltage MPP = ',MPP,'V'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ic(sarturation) = 1.0435 A\n", "VCE(cut-off) = 8.348 V\n", "maximum peak-to-peak voltage MPP = 7.296 V\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-8, Page 397" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VCC=20 #collector voltage(V)\n", "R1=100.0 #Base resistance1 (Ohm)\n", "R2=100.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=8.0 #Load Resistance(Ohm)\n", "\n", "MPP=VCC #maximum peak-to-peak voltage (V)\n", "PD_max=MPP**2/(40*RL) #Maximum power dissipation(W)\n", "Pout_max=MPP**2/(8*RL) #Maximum output power(W)\n", "\n", "print 'Maximum power dissipation PD_max = ',PD_max,'W'\n", "print 'Maximum output power Pout_max = ',Pout_max,'W'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum power dissipation PD_max = 1.25 W\n", "Maximum output power Pout_max = 6.25 W\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-9, Page 398" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "VCC=20 #collector voltage(V)\n", "R1=100.0 #Base resistance1 (Ohm)\n", "R2=100.0 #Base resistance2 (Ohm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=8.0 #Load Resistance(Ohm)\n", "Ra=15 #adjustable resistor(Ohm)\n", "\n", "VCEQ=VCC/2 #collector-emitter voltage (V) \n", "I_bias=VCC/(R1+R2+Ra) #bias current(mA)\n", "Ic_sat=VCEQ/RL #ic(sarturation) (mA)\n", "Iav=Ic_sat/math.pi #average current (A)\n", "Idc=I_bias+Iav #dc current(mA)\n", "Pdc=VCC*Idc #dc input power to stage(W)\n", "Pout=6.25 #Output power as per example 12-8 (W)\n", "n=(Pout/Pdc)*100 #efficiency of stage\n", "\n", "\n", "print 'efficiency of stage n = ',round(n,2),'%'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "efficiency of stage n = 63.66 %\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-10, Page 400" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VCC=20 #collector voltage(V)\n", "R1=3.9 #Base resistance1 (KOhm)\n", "R2=3.9 #Base resistance2 (KOhm)\n", "VBE=0.7 #Base-emitter voltage drop(V)\n", "RL=10.0 #Load Resistance(Ohm)\n", "\n", "VCEQ=VCC/2 #collector-emitter voltage (V) \n", "I_bias=(VCC-(2*VBE))/(R1+R2) #bias current(mA)\n", "Ic_sat=VCEQ/RL #ic(sarturation) (mA)\n", "Iav=Ic_sat/math.pi #average current (A)\n", "Idc=(I_bias/1000)+Iav #dc current(mA)\n", "Pdc=VCC*Idc #dc input power to stage(W)\n", "Pout=VCC**2/(8*RL) #Output power (W)\n", "n=(Pout/Pdc)*100 #efficiency of stage\n", "\n", "print 'efficiency of stage n = ',round(n,2),'%'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "efficiency of stage n = 77.96 %\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-11, Page 405" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "L=2*10**-6 #inductance (H)\n", "C=470*10**-12 #capacitance(F)\n", "\n", "fr=((2*math.pi)*((L*C)**0.5))**-1\n", "\n", "print 'Resonant frequency fr = ',round((fr*10**-6),2),'MHz'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resonant frequency fr = 5.19 MHz\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-12, Page 410" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "fr=5.19*10**6 #frequency as per previous example(Hz)\n", "L=2*10**-6 #inductance (H)\n", "C=470*10**-12 #capacitance(F)\n", "QL=100 #quality factor of coil\n", "RL=1 #Load resistance(KOhm)\n", "\n", "XL=2*math.pi*fr*L #inductive impedance(Ohm)\n", "Rp=QL*XL/1000 #Eq. parallel resistance of coil(KOhm)\n", "rc=1000*Rp*RL/(Rp+RL) #ac collector resistance(Ohm)\n", "Q=rc/XL #Q of overall circuit\n", "BW=(fr/Q/1000) #band width of amplifier(KHz)\n", "\n", "print 'band width of amplifier BW = ',round(BW,2),'KHz'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "band width of amplifier BW = 390.39 KHz\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-13, Page 411" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math # This will import math module\n", "\n", "VCC=15 #collector voltage(V)\n", "rc=867.0 #ac collector resistance as per preceding example (Ohm)\n", "\n", "MPP=2*VCC #Maximum peak-to-peak voltage(V)\n", "PD=1000*MPP**2/(40*rc) #worst-case power dissipation(mW)\n", "\n", "print 'Worst-case power dissipation PD = ',math.ceil(PD),'mW'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Worst-case power dissipation PD = 26.0 mW\n" ] } ], "prompt_number": 91 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12-14, Page 414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "PD=625 #maximum power rating at 25 deg C(mW)\n", "D=5 #Derating factor(mW/deg C)\n", "TA=50 #ambient temperature(deg C)\n", "\n", "DP=D*(TA-25) #difference in power(mW) \n", "PD_max=PD-DP #maximum power rating(mW)\n", "\n", "print 'Maximum power rating PD_max = ',PD_max,'mW'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum power rating PD_max = 500 mW\n" ] } ], "prompt_number": 94 } ], "metadata": {} } ] }