{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2:Electronics Instruments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1,Page no:158" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "currentt through the PMMC meter is 2.5 mA\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "gm = 0.005; #transconductance in siemens\n", "RQ1 = 100*10**3; #FET resistance in KΩ\n", "RQ2 = 100*10**3; #FET resistance in KΩ\n", "RQ = 100*10**3; #FET resistance in KΩ\n", "Rm = 50; #meter's resistance in Ω\n", "RD = 10*10**3; #drain resistance in KΩ\n", "v1 = 1; \n", "\n", "#calculations\n", "x = (RQ*RD)/float(RQ+RD);\n", "i = (gm*x*v1)/float((2*x)+Rm); #print'currentt through the PMMC meter(mA)\n", "\n", "\n", "#result\n", "print'currentt through the PMMC meter is %3.1f'%(i*10**3),'mA';\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2,Page no:164" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage error -3.9 %\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration \n", "e = 150; #in V\n", "t = 3; #time in s\n", "Kfsin = 1.11; #form factor\n", "\n", "#calculations\n", "#the sawtooth waveform can be expressed as e = mt\n", "m = e/float(t);\n", "\n", "#e = 50*t;\n", "#now integration of (50*t)**2 will be 2500*((t**3)/3) with limits ranging 0 to 3 ,solving we get\n", "\n", "Erms = math.sqrt((1/float(9))*((2500)*(t**3)-(0))); #Erms in V\n", "#now integration of (50*t) will be (50/2)*((t**2)/2) with limits ranging 0 to 3 ,solving we get\n", "Eav = (1/float(6))*((50)*((t**2)-0)); #Eav in V\n", "Kfsaw = Erms/float(Eav); #form factor \n", "x = (Kfsin)/float(Kfsaw); #ratio of two form factors\n", "e = ((x-1)/float(1))*100; #percentage error \n", "\n", "#result\n", "print'percentage error %3.1f'%e,'%'\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3,Page no:165" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage error 11.00 %\n" ] } ], "source": [ "import math\n", "\n", "#vaariable declaration\n", "Kfsin = 1.11; #form factor of sine wave\n", "\n", "#calculation\n", "#Erms = math.sqrt((1/T)*(integration(e**2)dt)) with limits from 0 to T is math.sqrt((1/T)*(Emax**2(T-0)))=Emax\n", "#Erms = Emax;\n", "#Erms = math.sqrt((1/T)*(integration(e*dt)) with limits from 0 to T is math.sqrt((2/T)*(Emax(T/2-0)))=Emax\n", "#Eav = Emax;\n", "#Kfsquare = Erms/float(Emax); #form factor of squarewave\n", "Kfsquare = 1;\n", "x = Kfsin/float(Kfsquare); #ratio of form factors\n", "e = ((x-1)/float(1))*100; #percentage error in %\n", "\n", "#result\n", "print'percentage error %3.2f'%e,'%';\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4,Page no:186" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input voltage 1 V\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Va = 2000; #anode voltage in V\n", "Id = 0.02; #length of parallel plates in m\n", "d = 0.005; #distance between plates in m\n", "L = 0.3; #distance between screen and plates in m\n", "D = 0.03; #deflect of beam in m\n", "g = 100; #overall gain\n", "\n", "#calculations\n", "Vd = (2*d*Va*D)/float(L*Id); #voltage in V\n", "Vi = Vd/float(g); #input voltage in V\n", "\n", "#result\n", "print'input voltage %d'%Vi,'V';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5,Page no:186" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deflection sensitivity 0.2 mm/V\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Va = 2500; #potential difference in V\n", "Id = 0.025; #length of parallel plates in m\n", "d = 0.005; #distance between plates in m\n", "L = 0.2; #distance between screen and plates in m\n", "D = 0.03; #deflect of beam in m\n", "\n", "\n", "#calculations\n", "Vd = (2*d*Va*D)/float(L*Id); #voltage in V\n", "Vi = D/float(Vd); #deflection sensitivity in mm/V\n", "\n", "#result\n", "print'deflection sensitivity %2.1f'%(Vi*10**3),'mm/V';\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6,Page no:186" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deflection sensitivity 0.16 mm/V\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Id = 0.02; #length of horizontal plates in m\n", "d = 0.005; #distance between plates in m\n", "L = 0.2; #distance between screen and plates in m\n", "Va = 2500; #accelerating voltage in V\n", "\n", "#calculations\n", "S = (L*Id)/float(2*d*Va); #deflection sensitivityin mm/V\n", "\n", "\n", "#result\n", "print'deflection sensitivity %3.2f'%(S*10**3),'mm/V';\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7,Page no:187" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "beam speed 29.65 m/s\n", "deflection sensitivity 0.3 mm/V\n" ] } ], "source": [ "import math\n", "\n", "#variabledeclaration\n", "va = 2500; #anode to cathode voltage in V\n", "Id = 0.015; #length of parallel plates in m\n", "d = 0.005; #distance between plates in m\n", "L = 0.5; #distance between plates and screen in m\n", "m = 9.109*10**-31; #mass of electron in kg\n", "e = 1.602*10**-19; #charrge of electron in C\n", "\n", "#calculations\n", "v = math.sqrt((2*e*va)/float(m)); #beam speed in m/s\n", "S = (L*Id)/float(2*d*va); #deflection sensitivity in mm/V\n", "\n", "#calculatons\n", "print'beam speed %3.2f'%(v*10**-6),'m/s';\n", "print'deflection sensitivity %3.1f'%(S*10**3),'mm/V';\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.8,Page no:187" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density of magnetic field 1.584 m Wb/m**2\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "L = 0.22; #distance between screen and plates in m\n", "l = 0.033; #width of uniform magnetuc field in m\n", "Va = 6000; #anode potential in V\n", "D = 0.044; #deflection on the screen in m\n", "m = 9.107*10**-31; #mass of electron in kg\n", "e = 1.6*10**-19; #charge of electron in m\n", "\n", "#calculations\n", "X = math.sqrt(e/float(2*m*Va)); #density of magnetic field in Wb/m**2\n", "B = D/float(L*l*X);\n", "\n", "#result\n", "print'density of magnetic field %3.3f'%(B*10**3),'m Wb/m**2';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.9,Page no:187" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage applied to Y deflection 30.179 V\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "B = 1.8*10**-4; #flux density in Wb/m**2\n", "Va = 800; #final anode voltage in V\n", "d = 0.01; #distance ebetween plates in m\n", "m = 9.107*10**-31; #mass of electron in kg\n", "e = 1.6*10**-19; #charge of electron in C\n", "\n", "#calculations\n", "#we have D = B*L*I*(math.sqrt((e/float(2*m*Va)))\n", "#let us assume x = B*(math.sqrt((e/float(2*m*Va)))\n", "#thus D = x*L*I\n", "#we also have D = L*Vd*l/float(2*d*Va)\n", "#let us assume y = 1/float(2*d*Va) \n", "#thus D = L*Vd*l*y\n", "#comparing both D equations we get\n", "x = B*(math.sqrt((e)/float(2*m*Va)));\n", "y = 1/float(2*d*Va) ;\n", "Vd = x/float(y); #voltage applied to Y deflection in V\n", " \n", "#result\n", "print'voltage applied to Y deflection %3.3f'%Vd,'V';\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.10,Page no:207" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Peak-to-peak value 15.6 mV\n", "Amplitude 7.8 mV\n", "R.m.s value 5.515 mV\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "a = 3; #vertical attenuation in mV/div\n", "x = 5; #one part is sub divided in units\n", "\n", "#callculations\n", "s = 1/float(x); #1 subdivision in units\n", "pp = 2+(a*s); #positive peak in units\n", "Vpp = pp+pp; #peak to peak voltage in divisions\n", "Vpp1 = a*Vpp; #peak to peak voltage in mV\n", "Vmax = Vpp1/float(2); #amplitude in mV\n", "Vrms =Vmax/float(math.sqrt(2)); #R.m.s value in mV\n", "\n", "#result\n", "print'Peak-to-peak value %3.1f'%Vpp1,'mV';\n", "print'Amplitude %3.1f'%Vmax,'mV';\n", "print'R.m.s value %3.3f'%Vrms,'mV';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.11,Page no:210" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "possible phases are 30.00 ° or 330.00 °\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "#from figure we note this values\n", "y1 = 1.25; #vertical axis in divisions\n", "y2 = 2.5; #maximum vertical value in divisions\n", "\n", "#calculations\n", "x = y1/float(y2); \n", "phi = math.asin(x); #sinphi value \n", "phi1 = 360-((phi*180)/float(math.pi)); #possible phases\n", "\n", "#result\n", "print'possible phases are %3.2f'%((phi*180)/float(math.pi)),'°','or %3.2f'%phi1,'°';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.12,Page no:219" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "unknown resistance 120 kΩ\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R1 = 20; #resistance in kΩ\n", "R2 = 30; #resistance in kΩ\n", "R3 = 80; #resistance in kΩ\n", "\n", "#calculations\n", "Rx = (R2*R3)/float(R1); #unknown resistance in kΩ\n", "\n", "#result\n", "print'unknown resistance %d'%Rx,'kΩ';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.13,Page no:222" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "unknown resistance 49.977 uΩ\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R3 = 100.03*10**-6; #standard resistance in uΩ\n", "l = 100.31; # inner ratio arm resistance in Ω\n", "m = 200; # inner ratio arm resistance in Ω\n", "R1 = 100.24; #outer ratio arm resistance in Ω\n", "R2 = 200; #outer ratio arm resistance in Ω\n", "Ry = 680*10**-6; #unknown resistor in uΩ\n", "\n", "#calculation\n", "x = (R1*R3)/float(R2); #resistance in Ω\n", "y = (m*Ry)/float(l+m+Ry); #resistance in Ω\n", "z = ((R1/float(R2))-(l/float(m))); #unknown resistanc in Ω\n", "Rx = x+(y*z);\n", "\n", "#rresult\n", "print'unknown resistance %3.3f'%(Rx*10**6),'uΩ';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.14,Page no:224" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "unknown resistance 500\n", "unknowm angle -50 °\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Z1 = 50; #inductive resistance in Ω\n", "Z2 = 125; #pure rresistance in Ω\n", "Z3 = 200; #inductive resistance in Ω\n", "theta1 = 80;\n", "theta2 = 0;\n", "theta3 = 30;\n", "\n", "#calculations\n", "Z4 = (Z2*Z3)/float(Z1); #unknown resistance in Ω\n", "theta4 = theta2+theta3-theta1; #unknowm angle in °\n", " \n", "#result\n", "print'unknown resistance %d'%Z4;\n", "print 'unknowm angle %d'%theta4,'°';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.15,Page no:28" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " R4 = 133.333333\n", "capacitance 1.59 uF\n" ] } ], "source": [ "import cmath\n", "\n", "#variable declaration\n", "R1 = 225; #resistance in Ω \n", "R2 = 150; #resistance in Ω \n", "C2 = 0.53*10**-6; #capacitance in F\n", "R3 = 100; #resistance in Ω \n", "L = 7.95*10**-3; #inductance in H \n", "f = 1000; #frequency in Hz\n", "\n", "#calculations\n", "Z1 = R1;\n", "w = 2*cmath.pi*f;\n", "x = (1/float(w*C2));\n", "Z2 = complex(R2,-x);\n", "y = w*L;\n", "Z3 = complex(R3,y);\n", "Z4 = (Z2*Z3)/float(Z1); #unknown arm \n", "Z41 = complex(Z4)\n", "C4 = (1/float(2*cmath.pi*f*100)); #imaginary value is 100 from Z4\n", "c = (Z4);\n", "\n", "#result\n", "print' R4 = %05f'%(Z4.real);\n", "print'capacitance %3.2f'%(C4*10**6),'uF'\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.16,Page no:226" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shuntless resistance 140 Ω\n", "capacitor of imperfect condenser 0.0115 uF\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "w = 7500; #frequency in radians/sec \n", "R2 = 140; #resistance in Ω\n", "R3 = 1000; #non-reactive resistance of Ω\n", "R4 = 1000; #non-reactive resistance of Ω\n", "C2 = 0.0115; #capacitance in uF\n", "\n", "\n", "#calculations\n", "R1 = (R2*R3)/float(R4); #shuntless resistance in Ω\n", "C1 = (C2*R4)/float(R3); #capacitor of imperfect condenser in F \n", "\n", "#result\n", "print'shuntless resistance %d'%R1,'Ω';\n", "print'capacitor of imperfect condenser %3.4f'%C1,'uF';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.17,Page no:228" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "unknown resistance 0.53 kΩ\n", "unknown inductance 1.5 H\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R1 = 235; #resistance in kΩ\n", "R2 = 2.5; #resistance in kΩ\n", "R3 = 50; #resistance in kΩ\n", "C1 = 0.012; #capacitance in uF\n", "\n", "#calculations\n", "Rx = (R2*R3)/float(R1); #unknown resistance in Ω\n", "Lx = C1*R2*R3; #unknown inductance in H\n", "\n", "#result\n", "print'unknown resistance %3.2f'%Rx,'kΩ';\n", "print'unknown inductance %3.1f'%Lx,'H';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.18,Page no:230" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "equivalent resistance 4.32 KΩ\n", "equivalent inductance 0.296 H\n", "Note:calculation mistake in textbook\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "w = 3000; #frequency in radians/sec \n", "R2 = 9000; #resistance in Ω\n", "R1 = 1800; # resistance of Ω\n", "R3 = 900; # resistance of Ω\n", "C1 = 0.9*10**-6; #capacitance in F\n", "\n", "#calculations\n", "a = ((w**2)*(R1**2)*(C1**2));\n", "Rx = ((w**2)*(C1**2)*R1*R2*R3)/float(1+a); #equivalent resistance in KΩ\n", "Lx = (R2*R3*C1)/float(1+((w**2)*(R1**2)*(C1**2))); #equivalent inductance in H\n", "\n", "#result\n", "print'equivalent resistance %3.2f'%(Rx*10**-3),'KΩ';\n", "print'equivalent inductance %3.3f'%Lx,'H';\n", "print'Note:calculation mistake in textbook';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.19,Page no:232" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistance 3000 kΩ\n", "capacitance 0.20 uF\n", "dissipation factor 3.77\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R1 = 1.5*10**3; #resistance in Ω\n", "R2 = 3000; #resistance in Ω\n", "C1 = 0.4*10**-6; #capacitance in F\n", "C3 = 0.4*10**-6; #capacitance in F\n", "f = 1000; #frequency in Hz\n", "\n", "#calculations\n", "w = 2*math.pi*f;\n", "Rx = (R2*C1)/float(C3); #resistance in kΩ\n", "Cx = (R1*C3)/float(R2); #capacitance in F\n", "D = w*Cx*Rx; #dissipation factor\n", "\n", "#result\n", "print'resistance %d'%Rx,'kΩ';\n", "print'capacitance %3.2f'%(Cx*10**6),'uF';\n", "print'dissipation factor %3.2f'%D;\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.20,Page no:234" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistance 500 Ω\n", "inductance 0.3 H\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Q = 1000; #resistance in Ω\n", "S = 1000; #resistance in Ω\n", "P = 500; #resistance in Ω\n", "C = 0.5*10**-6; #capacitance in uF\n", "r = 100; #resistance in Ω\n", "\n", "#calculations\n", "R = (P*Q)/float(S); #resistance in Ω\n", "L = ((C*P)*((r*(Q+S))+(Q*S)))/float(S); #inductance in H\n", "\n", "#result\n", "print'resistance %d'%R,'Ω';\n", "print'inductance %3.1f'%L,'H';\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.21,Page no:235" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistance 500 Ω\n", "inductance 1.95 H\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R2 = 1000; #resistance in Ω\n", "R4 = 1000; #resistance in Ω\n", "R3 = 500; #resistance in Ω\n", "C = 3*10**-6; #capacitance in uF\n", "r = 100; #resistance in Ω\n", "\n", "#calculations\n", "R = (R2*R3)/float(R4); #resistance in Ω\n", "L = ((C*R2)*((r*(R3+R4))+(R3*R4)))/float(R4); #inductance in H\n", "\n", "#result\n", "print'resistance %d'%R,'Ω';\n", "print'inductance %3.2f'%L,'H';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.22,Page no:237" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inductance of specimen 8.34 Ω\n", "resistance of specimen 80.65 Ω\n", "impedance of specimen 132.240 Ω\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R2 = 100; #resistance in Ω\n", "R3 = 834; #resistance in Ω\n", "C4 = 0.1*10**-6; #capacitance in F\n", "C3 = 0.124*10**-6; #capacitance in F\n", "f = 1000;\n", "\n", "#calculations\n", "L1 = R2*R3*C4; #inductance in H\n", "R1 = (R2*C4)/float(C3); #resistance in Ω\n", "X1 = 2*math.pi*2*f*L1; #reactance of specimen in Ω\n", "Z1 = math.sqrt((R1**2)+(X1**2)); #impedance of specimen in Ω\n", "\n", "\n", "#result\n", "print'inductance of specimen %3.2f'%(L1*10**3),'Ω';\n", "print'resistance of specimen %3.2f'%R1,'Ω';\n", "print'impedance of specimen %3.3f'%Z1,'Ω';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.23,Page no:243" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "capacitance 0.9175 uF\n", "series resistance of capacitor 1.75 Ω\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "M = 18.35*10**-3; #mutual inductance in H\n", "R1 = 200; #non-reactive resistance in Ω\n", "L1 = 40.6*10**-3; #inductance in mH\n", "R2 = 119.5; #non-reactive resistance in Ω\n", "R4 = 100; # resistance in Ω\n", "\n", "#calculations\n", "C2 = M/float(R1*R4); #capacitance in F \n", "R3 = (R4*(L1-M))/float(M); #resistance in Ω\n", "R = R3-R2; #series resistance of capacitor in Ω \n", "\n", "#result\n", "print'capacitance %3.4f'%(C2*10**6),'uF';\n", "print'series resistance of capacitor %3.2f'%R,'Ω';\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.24,Page no:245" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "equivalent resistance 11.20 KΩ\n", "equivalent capacitance 42.04 pF\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R1 = 2.8*10**3; #resistance in Ω\n", "C1 = 4.8*10**-6; #capacitance in uF\n", "R2 = 20*10**3; #resistance in Ω\n", "R4 = 80*10**3; #resistance in Ω\n", "f = 2000; #frequency in Hz\n", "w = 12.57*10**3;\n", "R3 = 11.2*10**3;\n", "\n", "#calculations\n", "x = 1/float((w**2)*(C1**2)*(R1));\n", "y = R1+x;\n", "z = R4/float(R2);\n", "R3 = z*(x+y); #equivalent resistance in KΩ\n", "a = (w**2)*C1*R1*R3;\n", "C3 = 1/float(a); #equivalent capacitance in F\n", "\n", "#result\n", "print'equivalent resistance %3.2f'%(R3*10**-3),'KΩ';\n", "print'equivalent capacitance %3.2f'%(C3*10**12),'pF';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.25,Page no:246" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistance 26.82\n", "inductance 52.60 mH\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "L1 = 52.6; #inductance in mH\n", "R2 = 1.68; #resistance in MHz\n", "r1 = 28.5; #resistance in MHz\n", "\n", "#calculations\n", "#at balance of bridge (r1+jwL1)=((R2+r2)+jwL2)\n", "#comparing both real and imaginary terms we get \n", "\n", "r2 = r1-R2; #resistance in Ω\n", "L2 = L1; #inductance in H\n", "\n", "#result\n", "print'resistance %3.2f'%r2;\n", "print'inductance %3.2f'%L1,'mH';\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.26,Page no:246" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R4 = 34.311470 Ω\n", "inductance 29 mH\n" ] } ], "source": [ "import cmath\n", "\n", "#variable declaration\n", "R3 = 300; #resistance in Ω \n", "R2 = 500; #resistance in Ω \n", "C1 = 0.2*10**-6; #capacitance in F\n", "C3 = 0.1*10**-6; #capacitance in F\n", "f = 1000; #frequency in Hz\n", "\n", "#calculations\n", "w = 2*(cmath.pi)*f; #angular frequency \n", "z = (1/float(w*C1));\n", "Z1 = complex(0,-z);\n", "Z2 = R2;\n", "x = 1/float(R3);\n", "y = w*C3;\n", "Y3 = complex(x,y);\n", "Z4 = (Z2)/complex(Z1*Y3);\n", "L = ((182.19)/float(2*cmath.pi*f)); #imaginary value is 182.12 from Z4\n", "\n", "#result\n", "print'R4 = %03f'%(Z4.real),'Ω';\n", "print'inductance %3.0f'%(L*10**3),'mH';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 2.27,Page no:247" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R4 = 373.348520 Ω\n", "capacitance 0.18 uF\n" ] } ], "source": [ "import cmath\n", "\n", "#variable declaration\n", "R1 = 200; #resistance in Ω \n", "R2 = 200; #resistance in Ω \n", "C2 = 5*10**-6; #capacitance in F\n", "C3 = 0.2*10**-6; #capacitance in F\n", "R3 = 500; #resistance in Ω \n", "f = 1000; #frequency in Hz\n", "\n", "#calculations\n", "Z1 = R1;\n", "w = 2*cmath.pi*f; #angular frequency\n", "x = (1/float(w*C2));\n", "Z2 = complex(R2,-x);\n", "y = 1/float(w*C3);\n", "Z3 = complex(R3,-y);\n", "Z4 = (Z2*Z3)/float(Z1); #unknown arm \n", "C4 = (1/float(2*cmath.pi*f*875.3)); #imaginary value is 100 from Z4\n", "\n", "#result\n", "print'R4 = %05f'%(Z4.real),'Ω';\n", "print'capacitance %3.2f'%(C4*10**6),'uF';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 2.28,Page no:248" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R4 = 166.666667 Ω\n", "inductance 0.10 H\n" ] } ], "source": [ "import cmath\n", "\n", "#variable declaration\n", "R1 = 600; #resistance in Ω \n", "R2 = 100; #resistance in Ω \n", "C1 = 1*10**-6; #capacitance in F\n", "R3 = 1000; #resistance in Ω \n", "f = 1000; #frequency in Hz\n", "\n", "\n", "#calculations\n", "w = 2*cmath.pi*f; #angular frequency \n", "x = 1/float(R1);\n", "y = w*C1;\n", "Y1 = complex(x,y);\n", "Z2 = R2;\n", "Z3 = R3;\n", "Z4 = Z2*Z3*Y1; #unknown arm\n", "L = (628.3/float(2*cmath.pi*f)); #inductance in H\n", "\n", "#result\n", "print'R4 = %05f'%(Z4.real),'Ω';\n", "print'inductance %3.2f'%L,'H';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 2.29,Page no:249" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "capacitance = 124.97 pF\n", "power factor = 0.055\n", "relative permittivity = 6.24\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "C2 = 106*10**-12; #capacitance in F\n", "R4 = 1000/float(math.pi); #resistance in\n", "C4 = 0.55*10**-6; #capacitance in F\n", "R3 = 270; #resistance in\n", "e0 = 8.854*10**-12; #absolute permittivity \n", "t = 0.005; #thickness of bakelite in m\n", "d = 12*10**-2; #diameter in m\n", "f = 50; #frequency in Hz\n", "\n", "#calculations\n", "R4 = 1000/float(math.pi); #resistance in\n", "A = (math.pi/float(4))*((d)**2); #area of electrodes in m**2\n", "w = 2*math.pi*f; #angular frequency\n", "R1 = (R3*C4)/float(C2); #resistance in \n", "C1 = (R4*C2)/float(R3); #apacitance in pF\n", "P = w*R1*C1; #power factor \n", "er = (C1*t)/float(e0*A); #relative permittivity\n", "\n", "#result\n", "print'capacitance = %3.2f'%(C1*10**12),'pF';\n", "print'power factor = %3.3f'%P;\n", "print'relative permittivity = %3.2f'%er;\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.30,Page no:260" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "distributed capacitance 20 pF\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "f1 = 2*10**6; #frequency in Hz\n", "C1 = 420*10**-12; #capacitance in F\n", "C2 = 90*10**-12; #capacitance in F\n", "f2 = 4*10**6; #frequency in Hz\n", "\n", "#calculations\n", "Cd = (C1-(4*C2))/float(3); #distributed capacitance in pF\n", "\n", "#result\n", "print'distributed capacitance %d'%(Cd*10**12),'pF';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.31,Page no:260" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "distributed capacitance 18.571 pF\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "f1 = 2*10**6; #frequencyin Hz\n", "f2 = 5*10**6; #frequencyin Hz \n", "C1 = 410*10**-12; #capacitance in F\n", "C2 = 50*10**-12; #capacitance in F\n", "\n", "#calculations\n", "x = f2/float(f1);\n", "Cd = (C1-((x**2)*(C2)))/float((x**2)-1); #distributed capacitance\n", "\n", "#result\n", "print'distributed capacitance %3.3f'%(Cd*10**12),'pF';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.32,Page no:261" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistive 48.18 Ω\n", "reactive components 492.74 Ω\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "C1 = 190*10**-12; #capacitance in F\n", "Q1 = 75; #quality factor \n", "C2 = 170*10**-12; #capacitance in F\n", "Q2 = 45; #quality factor \n", "f = 200*10**3; #frequency in Hz\n", "\n", "#calculations\n", "Rx = ((C1*Q1)-(C2*Q2))/float(2*math.pi*f*C1*C2*Q1*Q2); #resistive in Ω\n", "Xx = (C1-C2)/float(2*math.pi*f*C1*C2); #reactive components in Ω\n", "\n", "#result\n", "print'resistive %3.2f'%Rx,'Ω';\n", "print'reactive components %3.2f'%Xx,'Ω';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.33,Page no:261" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage error 0.5 %\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R = 4; #resistance in Ω\n", "f = 500*10**3; #frequency in Hz\n", "C = 110*10**-12; #capacitance in F\n", "x = 0.02; #resistance across oscillatory circuit in Ω\n", "\n", "#calculations\n", "Qtrue = 1/float(2*math.pi*f*C*R);\n", "Qindicated = 1/float(2*math.pi*f*C*(R+x));\n", "e = ((Qtrue-Qindicated)/float(Qtrue))*100; #percentage error in %\n", "\n", "\n", "#result\n", "print'percentage error %3.1f'%e,'%';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.34,Page no:262" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "self-capacitance 9.89 pF\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "f1 = 600*10**3; #frequency in Hz\n", "f2 = 2*10**6; #frequency in Hz\n", "C1 = 100*10**-12; #capacitance in F\n", "\n", "#calculations\n", "Cd = ((f1**2)*C1)/float((f2**2)-(f1**2)); #self-capacitance in F\n", "\n", "#calculations\n", "print'self-capacitance %3.2f'%(Cd*10**12),'pF';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.35,Page no:263" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inductance 719.61 uH\n", "resistance 15.641626 Ω\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "f = 400*10**3; #frequency in kHz\n", "C = 220*10**-12; #capacitance in F\n", "Rsh = 0.8; #resistance in Ω\n", "Q = 110; #quality factor\n", "\n", "#calculations\n", "Lcoil = 1/float(((2*math.pi*f)**2)*C); #inductance in H\n", "x = (2*math.pi*f*Lcoil)/float(Q);\n", "Rcoil = x-Rsh; #resistance in Ω\n", "\n", "\n", "#calculations\n", "print'inductance %3.2f'%(Lcoil*10**6),'uH';\n", "print'resistance %f'%Rcoil,'Ω';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.36,Page no:271" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inductance L = 7.33 uH\n", "capacitance C = 858.000 pF\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Cs = 210*10**-12; #capacitance in F\n", "Cv = 6*10**-12; #capacitance in F\n", "f1 = 2*10**6; #frequency in Hz\n", "f2 = 4*10**6; #frequency in Hz\n", "\n", "#calculations\n", "#we have Cs+Cv = 1/(4*(math.pi**2)*(f2**2)*L\n", "#we have C+Cv = 1/(4*(math.pi**2)*(f2**2)*L \n", "L = 1/float(4*(math.pi**2)*(f2**2)*(Cs+Cv)); #inductance in uH\n", "C = (1/float((4*(math.pi**2)*(f1**2)*L)))-Cv; #capacitance in pF\n", " \n", "#result\n", "print'inductance L = %3.2f'%(L*10**6),'uH';\n", "print'capacitance C = %3.3f'%(C*10**12),'pF';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.37,Page no:271" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inductance L = 3.598e-05 uH\n", "resistance R = 17.3 Ω\n", "ccalculation mistake in textbook assuming approximate values\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "C1 = 40*10**-12; #capacitance in pF\n", "C2 = 48*10**-12; #capacitance in pF\n", "f = 4*10**6; #frequency in Hz\n", "R1 = 60; #resistance in Ω\n", "\n", "#calculations\n", "Co = (C1+C2)/float(2);\n", "L = 1/float(4*(math.pi**2)*(f**2)*Co); #inductance in H\n", "#we have I = E/math.sqrt((R**2)+((w*l)-((1/w*C1))**2))\n", "#we also have I = E/(R+R1)\n", "#comparing we get and solving we get R**2 + 2*R1*R +R1**2 = R**2 + ((w*l)-((1/w*C1))**2)\n", "w = 2*math.pi*f; #angular frequency \n", "x = w*L;\n", "y = 1/float(w*C2);\n", "Y = ((x-y)**2);\n", "R = (Y-(R1**2))/float(2*R1); #resistance in Ω\n", "\n", "#result\n", "print'inductance L = %3.3e'%(L),'uH';\n", "print'resistance R = %3.1f'%(R),'Ω';\n", "print'calculation mistake in textbook assuming approximate values'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.38,Page no:272" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Q factor 100\n", "effective resistance 8.29 Ω\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "C = 160*10**-12; #capacitancein pF\n", "f0 = 1.2*10**6; #frequency in Hz\n", "f01 = 6*10**3; #frequency in Hz\n", "\n", "\n", "#calculations\n", "f1 = f0+f01; #frequency in Hz\n", "f2 = f0-f01; #frequency in Hz\n", "f = f1-f2; #frequency in Hz\n", "Q = f0/float(f); #Q factor\n", "R = f/float(2*math.pi*f0*f0*C); #effective resistance in Ω\n", "\n", "\n", "#result\n", "print'Q factor %d'%Q;\n", "print'effective resistance %3.2f'%R,'Ω';" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "##Example 2.39,Page no:274" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "self-capacitance of the coil = 13.33 pF\n", "inductance = 292.97 uH\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "C1 = 200*10**-12; #capacitance in F\n", "C2 = 40*10**-12; #capacitance in F\n", "\n", "#calculations\n", "f1 = (2/float(math.pi))*10**6; #frequency in Hz\n", "f2 = 2*f1; #frequency in Hz\n", "x1 = 4*(math.pi**2)*(f1**2);\n", "x2 = 4*(math.pi**2)*(f2**2);\n", "#L = 1/(x1*(C+Cd));\n", "# L = 1/(x2*(C+Cd));\n", "#comparing we get following equation for Cd\n", "Cd = ((x1*C1)-(x2*C2))/float(x2-x1); #capacitance in pF\n", "c = C1+Cd;\n", "L = 1/float(x1*(c)); #inductance in H\n", "\n", "#result\n", "print'self-capacitance of the coil = %3.2f'%(Cd*10**12),'pF';\n", "print'inductance = %3.2f'%(L*10**6),'uH';\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }