{ "metadata": { "name": "", "signature": "sha256:212ce889d9f64f00c714723a9e3110b735cade9ea1d505fecd98a7e24257c63b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter3 - Electromechanical Instruments" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2.1 - page : 3-5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Torque\n", "#given data :\n", "N=10 # turns\n", "L=1.5*10**-2 # in m\n", "I=1 # in mA\n", "I*=10**-3 #A\n", "B=0.5 # T\n", "d=1*10**-2 # in m\n", "Td=B*I*L*d*N # Nm\n", "print \"Torque, Td = \", Td,\"Nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Torque, Td = 7.5e-07 Nm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2. - page : 3-5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# number of turns\n", "#given data :\n", "import math\n", "theta=math.pi/2\n", "I=5*10**-3 # in A\n", "B=1.8*10**-3 # in Wb/m2\n", "C=0.14*10**-6 # in Nm/rad\n", "L=15*10**-3 # in m\n", "d=12*10**-3 # in m\n", "N=(C*theta)/(B*I*L*d)\n", "print \"Number of turns, N = \", round(N),\"turns\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of turns, N = 136.0 turns\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2.3 - page : 3-6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistance\n", "#given data :\n", "Tc=240*10**-6 #in Nm\n", "N=100 # Turns\n", "L=40*10**-3 # in m\n", "d=30*10**-3 # in m\n", "B=1 #in Wb/m2\n", "TdBYI=N*B*L*d\n", "I=Tc/TdBYI\n", "#voltage per division=I*(R/100)\n", "R=100/I # ohm\n", "R*=10**-3 # kohm\n", "print \"Resistance, R = \", R,\"kohm\"\n", "#UNIT IS GIVEN WRONG FOR THE ANSWER IN THE BOOK." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance, R = 50.0 kohm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2.4 - page : 3-7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# flux density and diameter\n", "import math\n", "#given data :\n", "p=1.7*10**-8 #in ohm-m\n", "V=100*10**-3 #in V\n", "R=50 # in ohm\n", "theta=120 #in degree\n", "L=30 # in mm\n", "d=25 # in mm\n", "N=100\n", "C=0.375*10**-6 # in Nm/degree\n", "I=V/R # A\n", "Td_By_B=I*L*10**-3*d*10**-3*N\n", "Tc=C*theta # N-m\n", "B=Tc/Td_By_B # in Wb/m2\n", "print \"The flux density, B = \", B,\"Wb/m2\"\n", "Rc=0.3*R\n", "Lmt=2*(L+d)\n", "a=(N*p*Lmt*10**-3*10**6)/Rc\n", "D=(4/(math.pi*a))**(1.0/2)\n", "print \"Diameter, D = \", round(D,1),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The flux density, B = 0.3 Wb/m2\n", "Diameter, D = 10.1 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4.1 - page : 3-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# shunt resistor\n", "#given data :\n", "Im=3*10**-3 # in A\n", "Rm=100 # in ohm\n", "I=150*10**-3 #in A\n", "Rsh=(Im*Rm)/(I-Im)\n", "print \"Shunt resistor, Rsh = \", round(Rsh,2),\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shunt resistor, Rsh = 2.04 ohm\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4.2 - page : 3-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# shunt resistormultiplying factor and resistance\n", "#given data :\n", "Rsh=300 #in ohm\n", "Rm=1500 #in ohm\n", "m=1+(Rm/Rsh)\n", "print \"Multiplying factor, m = \",m\n", "m1=40.0\n", "Rsh1=Rm/(m1-1)\n", "print \"The shunt resistor, Rsh1 = \", round(Rsh1,2),\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Multiplying factor, m = 6\n", "The shunt resistor, Rsh1 = 38.46 ohm\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5.1 - page : 3-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data :\n", "Rm=100.0 # in ohm\n", "Im=1.0\n", "#for range 0-20 mA\n", "I1=20.0\n", "m=I1/Im\n", "Rsh1=Rm/(m-1)\n", "print \"The shunt resistor, Rsh1 = \", round(Rsh1,2),\"ohm\"\n", "#for the range of 0-100 mA\n", "I2=100.0\n", "m=I2/Im\n", "Rsh2=Rm/(m-1)\n", "print \"The shunt resistor, Rsh2 = \", round(Rsh2,2),\"ohm\"\n", "#for the range 0-200 mA\n", "I3=200.0\n", "m=I3/Im\n", "Rsh3=Rm/(m-1)\n", "print \"The shunt resistor, Rsh3 = \", round(Rsh3,2),\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The shunt resistor, Rsh1 = 5.26 ohm\n", "The shunt resistor, Rsh2 = 1.01 ohm\n", "The shunt resistor, Rsh3 = 0.5 ohm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6.1 - page : 3-15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy\n", "from numpy.linalg import inv\n", "#design\n", "Rm=50.0 #in ohm\n", "Im=2.0 #in mA\n", "Im*=10**-3 # A\n", "I1=2.0 #in A\n", "I2=10.0 #in A\n", "I3=15.0 #in A\n", "#Let Rs=R1+R2+R3\n", "A=numpy.array([[I1,I1,I1],[-Im,I2,I2],[Im,Im,-I3]])\n", "B=numpy.array([[Im*Rm],[Im*Rm],[-Im*Rm]])\n", "Ainv=inv(A)\n", "X=numpy.dot(Ainv,B)\n", "R1=X[0]\n", "R2=X[1]\n", "R3=X[2]\n", "print \"Value of shunt resistors are : \"\n", "print \"R1 is %f ohm, R2 is %.1e ohm & R3 is %.2e ohm\" %(round(R1,5), R2, R3)\n", "# Answer is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Value of shunt resistors are : \n", "R1 is 0.039990 ohm, R2 is 3.3e-03 ohm & R3 is 6.67e-03 ohm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9.1 - page : 3-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Multiplier\n", "#Given data :\n", "Vin=20.0 #in volts\n", "I_fsd=50.0*10 **-6 # in Farad\n", "Rm=200.0 # in ohm\n", "Rs=(Vin/I_fsd)-Rm # in ohm\n", "Rs=Rs/10**3 # kohm\n", "print \"The multiplier, Rs = \", Rs, \" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The multiplier, Rs = 399.8 kohm\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9.2 - page : 3-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Full scale deflection current\n", "#given data :\n", "Vin=10.0 # in V\n", "Rs=200.0 #in kohm\n", "Rm=400.0 # in ohm\n", "I_fsd=Vin/((Rs*10 **3)+Rm) # A\n", "I_fsd*=10**6 # micro A\n", "print \"Full scale deflection current, I_fsd = \", round(I_fsd,1), \" micro A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Full scale deflection current, I_fsd = 49.9 micro A\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.10.1 - page : 3-22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Multiplier\n", "#given data :\n", "V1=200.0 #in V\n", "V2=100.0 #in V\n", "V3=10.0 # in V\n", "Rm=100.0 #in ohm\n", "I_fsd=50*10 **-3 \n", "#for the range 0-10V \n", "Rt3=V3/I_fsd \n", "Rs3=Rt3-Rm # ohm\n", "print \"The multiplier, Rs3 = \", Rs3, \" ohm.\"\n", "#for the range 0-100V\n", "Rt2=V2/I_fsd \n", "Rs2=Rt2-(Rm+Rs3) # ohm \n", "print \"The multiplier, Rs2 = \", Rs2, \" ohm.\"\n", "Rt1=V1/I_fsd \n", "Rs1=Rt1-(Rm+Rs3+Rs2) \n", "print \"The multiplier, Rs1 = \", Rs1, \" ohm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The multiplier, Rs3 = 100.0 ohm.\n", "The multiplier, Rs2 = 1800.0 ohm.\n", "The multiplier, Rs1 = 2000.0 ohm.\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11.1 - page : 3-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Multiplier\n", "#given data :\n", "Rm=200.0 #in ohm\n", "I_fsd=150.0*10 **-6 # in A\n", "S=1/I_fsd \n", "V=50 #in V\n", "Rs=(S*V)-Rm # ohm \n", "Rs*=10**-3 # kohm\n", "print \"Multiplier, Rs = \", round(Rs,2), \" kohm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Multiplier, Rs = 333.13 kohm.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11.2 - page : 3-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Accurate voltmeter reading\n", "r1=50.0 # in kohms\n", "r2=50.0 #in kohms\n", "v=100.0 #in V\n", "vr2=(r1/(r1+r2))*v # voltage in V\n", "#case 1\n", "s1=12000.0 #sensivity in ohm/V\n", "rm1=r1*s1*10**-3 # in kohm\n", "req=((rm1*r1)/(rm1+r1)) #equivalent resistance in ohm\n", "v1=((req/(r1+req)))*v # voltmeter reading when sensivity is 12000 ohm/V\n", "#case 2\n", "s2=15000 #sensivity in ohm/V V\n", "rm2=r1*s2*10**-3 # in kohm\n", "req1=((rm2*r1)/(rm2+r1)) #equivalent resistance in ohm\n", "v2=((req1/(r1+req1)))*v # voltmeter reading when sensivity is 15000 ohm/V\n", "print \"Voltmeter reading when sensivity is 12000 ohm/V is \", round(v1,2), \" V\"\n", "print \"Voltmeter reading when sensivity is 15000 ohm/V is \", round(v2,2), \" V. This voltmeter will measure the correct value.\"\n", "# Answer in the textbook is not accurate" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltmeter reading when sensivity is 12000 ohm/V is 48.0 V\n", "Voltmeter reading when sensivity is 15000 ohm/V is 48.39 V. This voltmeter will measure the correct value.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15.1 - page : 3-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#voltage\n", "r1=25.0 # kohms\n", "r2=5.0 #in kohms\n", "v=30.0 #in V\n", "# part(i)\n", "vr2=(r2/(r1+r2))*v # voltage in V across 5 kohms resistance\n", "Vactual=vr2 # V\n", "print \"Voltage across 5 kohm Resistance is \", vr2, \" V.\"\n", "#part (ii)\n", "vr2=(r1/(r1+r2))*v # voltage in V across 5 kohm resistance\n", "#case 1\n", "s1=1.0 #sensivity in kohm/V\n", "v1=10.0 # in V\n", "rm1=v1*s1 #in kohm\n", "req=((rm1*r2)/(rm1+r2)) # equivalent resistance in ohm\n", "vrb1=((req/(r1+req)))*v # voltmeter reading when sensivity is 1 kohm/V\n", "print \"Voltmeter reading when sensivity is 1 kohm/V is \",round(vrb1,2), \" V.\"\n", "# part(iii)\n", "#case 2\n", "s2=20 #sensivity in kohm/V\n", "v1=10 # in V\n", "rm2=v1*s2 #in kohm\n", "req1=((rm2*r2)/(rm2+r2)) #equivalent resistance in ohm\n", "vrb2=((req1/(r1+req1)))*v # voltmeter reading when sensivity is 1 kohm/V\n", "print \"Voltmeter reading when sensivity is 1 kohm/V is \",round(vrb2,2), \" V.\"\n", "#part(iii) #error\n", "er1=(Vactual-vrb1)/Vactual*100 #voltmeter 1 error in %\n", "er2=(Vactual-vrb2)/Vactual*100 #voltmeter 2 error in %\n", "print \"Voltmeter 1 error is \",round(er1,2),\" %\"\n", "print \"Voltmeter 2 error is \",round(er2,1),\" %\"\n", "#Answer is wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage across 5 kohm Resistance is 5.0 V.\n", "Voltmeter reading when sensivity is 1 kohm/V is 3.53 V.\n", "Voltmeter reading when sensivity is 1 kohm/V is 4.9 V.\n", "Voltmeter 1 error is 29.41 %\n", "Voltmeter 2 error is 2.0 %\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15.2 - page : 3-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Shunt resistance\n", "#Given data :\n", "Im=1.0 # in mA\n", "Rm=100.0 # in ohm\n", "I=100.0 # in mA\n", "Rsh=(Im*10**-3*Rm)/((I-Im)*10**-3) \n", "print \"Shunt resistance, Rsh = \",round(Rsh,3),\" ohm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shunt resistance, Rsh = 1.01 ohm.\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15.3 - page : 3-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Shunt resistance\n", "#Given data :\n", "Im=1.0 # in mA\n", "P=100.0 # in kW\n", "I=100.0 # in mA\n", "Rm=(P)/(Im)**2 # ohm\n", "Rsh=((Im*10**-3*Rm*10**3)/((I-Im)*10**-3))*10**-3 # ohm\n", "print \"Shunt resistance, Rsh = \",round(Rsh,3), \" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shunt resistance, Rsh = 1.01 kohm\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15.4 - page : 3-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Shunt resistance\n", "#given data :\n", "Rsh=200.0 # in ohm\n", "Rm=100.0 # in ohm\n", "m=50.0 \n", "Rsh=Rm/(m-1) # ohm\n", "print \"The shunt resistance, Rsh = \", round(Rsh,2), \" ohm.\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The shunt resistance, Rsh = 2.04 ohm.\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15.5 - page : 3-30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# shunt resistance\n", "#Given data :\n", "Im=1.0 # in mA\n", "Rm=100.0 # in ohm\n", "I=100.0 # in mA\n", "Rsh=(Im*10**-3*Rm)/((I-Im)*10**-3) # ohm\n", "print \"Shunt resistance, Rsh = \", round(Rsh,3), \" kohm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shunt resistance, Rsh = 1.01 kohm.\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }