{ "metadata": { "name": "", "signature": "sha256:012ab8557afdcfdae2cdc3da17271647415fc17ab95dd187f4df0903472edf45" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter - 8 : Cathode Ray Oscilloscopes" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.1 - Page No : 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "from __future__ import division\n", "#Given data\n", "l=25 # in mm\n", "l=l*10**-3 # in meter\n", "d=5 # in mm\n", "d=d*10**-3 # in meter\n", "S= 20 # in cm\n", "S= S*10**-2 # in meter\n", "Va= 3000 # in volts\n", "TraceLength= 10 # in cm\n", "TraceLength=TraceLength*10**-2 # in meter\n", "y=TraceLength/2 \n", "Vd= 2*d*Va*y/(l*S) # in volts\n", "Vrms= Vd/sqrt(2) # in volts\n", "Vrms= int(Vrms) \n", "print \"RMS value of the sinusoidal voltage applied to the X-deflecting plates = %0.f volts\" %Vrms \n", "DeflectionSensitivity= l*S/(2*d*Va) # in m/V\n", "print \"Deflection Sensitivity = %0.3f mm/V\" %(DeflectionSensitivity*10**3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "RMS value of the sinusoidal voltage applied to the X-deflecting plates = 212 volts\n", "Deflection Sensitivity = 0.167 mm/V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.2 - Page No : 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#Given data\n", "Va= 1000 # in volts\n", "e= 1.6*10**-19 # in C\n", "m= 9.1*10**-31 # in kg\n", "MaxVel= sqrt(2*Va*e/m) # maximum velocity of electrons in m/s\n", "print \"Maximum velocity of electrons = %0.3e m/s\" %MaxVel" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum velocity of electrons = 1.875e+07 m/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.3 - Page No : 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "l=20 # in mm\n", "l=l*10**-3 # in meter\n", "d=5 # in mm\n", "d=d*10**-3 # in meter\n", "S= 0.20 # in meter\n", "Va= 2500 # in volts\n", "DeflectionSensitivity= l*S/(2*d*Va) # in m/V\n", "print \"Deflection Sensitivity = %0.2f mm/V\" %(DeflectionSensitivity*10**3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Deflection Sensitivity = 0.16 mm/V\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.4 - Page No : 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import tan, pi\n", "#Given data\n", "l=2.5 # in cm\n", "l=l*10**-2 # in meter\n", "d=1 # in cm\n", "d=d*10**-2 # in meter\n", "Va= 1000 # in volts\n", "theta= 1 # in degree\n", "# Formula tand(theta) = l*Vd/(2*d*Va)\n", "Vd= 2*d*Va/l*tan(theta*pi/180) # in volts\n", "print \"Voltage required across the deflection plates = %0.2f volts\" %Vd" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage required across the deflection plates = 13.96 volts\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.5 - Page No : 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "l=2.5 # in cm\n", "l=l*10**-2 # in meter\n", "d=.5 # in cm\n", "d=d*10**-2 # in meter\n", "S= 20 # in cm\n", "S= S*10**-2 # in meter\n", "Va= 2500 # in volts\n", "# Formula y = OC*AB/OB = (S*d/2)/(l/2)\n", "y = (S*d/2)/(l/2) # in meter\n", "print \"The value of deflection = %0.f cm\" %(y*10**2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of deflection = 4 cm\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.6 - Page No : 244" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "R_E1= 5.6 # in kohm\n", "C1= 0.2 # in micro F\n", "V_B1= 6.3 # in volt\n", "V_BE= 0.7 # in volt\n", "TL= 2.5 # trigger level for the Schmitt trigger (UTP,LTP) in volt\n", "del_V1= 2*TL # in volt\n", "I_C1= (V_B1-V_BE)/R_E1 # in mA\n", "print \"Charging current = %0.f mA\" %I_C1 \n", "toh= del_V1*C1/I_C1 # in ms\n", "print \"Time period = %0.f ms\" %toh" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Charging current = 1 mA\n", "Time period = 1 ms\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.7 - Page No : 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "L=10 # trace length in cm\n", "DS= 5 # deflection sensitivity in V/cm\n", "V_peakTOpeak= L*DS # in volt\n", "V_peak= V_peakTOpeak/2 # in volt\n", "RMS= V_peak/sqrt(2) # RMS value of unknown as voltage in volt\n", "print \"The value of AC voltage = %0.3f volts\" %RMS " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of AC voltage = 17.678 volts\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.8 - Page No : 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from fractions import Fraction \n", "#Given data\n", "Y= 3 # Positive Y-peaks in pattern\n", "X= 2 # Positive X-peaks in pattern\n", "# Ratio of frequencies of vertical and horizontal signals\n", "# f_y/f_x= omega_y/omega_x = Y/X\n", "R= Y/X #Ratio of frequencies \n", "print \"Ratio of frequencies of vertical and horizontal signals = \",Fraction(R).limit_denominator(10) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of frequencies of vertical and horizontal signals = 3/2\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.9 - Page No : 255" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "Y= 2+1/2 # Positive Y-peaks in pattern\n", "X= 1/2+1/2 # Positive X-peaks in pattern\n", "f_h= 3# frequency of horizontal voltage signal in kHz\n", "f_yBYf_x= Y/X \n", "# frequency of vertical voltage signal= f_yBYf_x * f_h\n", "f_v= f_yBYf_x * f_h # frequency of vertical voltage signal in kHz\n", "print \"frequency of vertical voltage signal = %0.1f kHz\" %f_v " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of vertical voltage signal = 7.5 kHz\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.10 - Page No : 256" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "f_x= 1000 # in Hz\n", "Y= 2 # points of tangency to vertical line\n", "X= 5 # points of tangency to horizontal line\n", "f_y= f_x*X/Y # in Hz\n", "print \"Frequency of vertical input = %0.f Hz\" %f_y" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of vertical input = 2500 Hz\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.11 - Page No : 256" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from fractions import Fraction \n", "#Given data\n", "# Taking 1div= 1 cm for CRO wave displays\n", "Mark= 0.4 # cm\n", "Space= 1.6 # cm\n", "SAC= 0.2 # signal amplitude control in V/div\n", "TBS= 10 # time base control in micro/div\n", "Amplitude= 2.15 # in cm\n", "M_S_ratio= Mark/Space # Mark to Space raio \n", "print \"Mark to Space ratio = \",Fraction(M_S_ratio).limit_denominator(20) \n", "T= (Mark+Space)*TBS # in micro sec\n", "T=T*10**-6 # in sec\n", "f=1/T # in Hz\n", "print \"Pulse frequency = %0.f kHz\" %(f*10**-3)\n", "Mag= Amplitude*SAC # Magnitude of pulse voltage in volt\n", "print \"Magnitude of pulse voltage = %0.2f volts\" %Mag" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mark to Space ratio = 1/4\n", "Pulse frequency = 50 kHz\n", "Magnitude of pulse voltage = 0.43 volts\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.12 - Page No : 256" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import asin\n", "from __future__ import division\n", "#Given data\n", "# Part (a)\n", "d_v0= 0 \n", "Dv=6 \n", "fie= asin(d_v0/Dv) \n", "print \"Phase angle of first figure = %0.f degree\" %fie\n", "# Part (b)\n", "d_v0= 3 \n", "Dv=6 \n", "fie= asin(d_v0/Dv)*180/pi \n", "print \"Phase angle of second figure = %0.f degree\" %fie,\"or %0.f\" %(180-fie)\n", "# Part (c)\n", "d_v0= 5 \n", "Dv=5 \n", "fie= asin(d_v0/Dv)*180/pi\n", "print \"Phase angle of third figure = %0.f degree\" %fie\n", "# Part (d)\n", "d_v0= 3 \n", "Dv=5 \n", "fie= asin(d_v0/Dv)*180/pi\n", "# since ellipse is in 2nd and fourth quartes so the valid value of phase angle \n", "fie= 180-fie\n", "print \"Phase angle of fourth figure = %0.1f degree\" %fie,\"or %0.1f\" %(180-fie)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Phase angle of first figure = 0 degree\n", "Phase angle of second figure = 30 degree or 150\n", "Phase angle of third figure = 90 degree\n", "Phase angle of fourth figure = 143.1 degree or 36.9\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.13 - Page No : 257" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "f=2000 # in Hz\n", "T=1/f # in sec\n", "D=0.2 \n", "PulseDuration= D*T # in sec\n", "print \"The value of pulse duration = %0.1f ms\" %(PulseDuration*10**3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of pulse duration = 0.1 ms\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.14 - Page No : 258" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "vertical_attenuation= 0.5 # in V/Div\n", "TPD= 2 # time/Div control in micro sec\n", "P= 4*vertical_attenuation # peak-to-peak amplitude of the signal in V \n", "print \"Peak-to-Peak amplitude of the signal = %0.f V\" %P\n", "T= 4*TPD # in micro sec\n", "T=T*10**-6 # in sec\n", "f=1/T # in Hz\n", "print \"The value of frequency = %0.f kHz\" %(f*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Peak-to-Peak amplitude of the signal = 2 V\n", "The value of frequency = 125 kHz\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.15 - Page No : 261" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "C_1N= 36 # in pF\n", "C_2= 150 # in pF\n", "R_1N= 1 # in M ohm\n", "R_1= 10 # in M ohm\n", "# R_1/(omega*(C_2+C_1N)) = R_1N/(omega*C_1)\n", "C_1= R_1N*(C_2+C_1N)/R_1 # in pF\n", "print \"Value of C_1 = %0.1f pF\" %C_1\n", "C_T= 1/(1/C_1+1/(C_2+C_1N)) # in pF\n", "print \"Value of C_T = %0.2f pF\" %C_T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of C_1 = 18.6 pF\n", "Value of C_T = 16.91 pF\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.16 - Page No : 261" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "C_1N= 36 # in pF\n", "C_2= 150 # in pF\n", "R_1N= 1 # in M ohm\n", "R_1= 10 # in M ohm\n", "R_source= 500 # in ohm\n", "# R_1/(omega*(C_2+C_1N)) = R_1N/(omega*C_1)\n", "C_1= R_1N*(C_2+C_1N)/R_1 # in pF\n", "C_T= 1/(1/C_1+1/(C_2+C_1N)) # in pF\n", "C_T= C_T*10**-12 # in F\n", "f= 1/(2*pi*C_T*R_source) \n", "print \"Signal Frequency = %0.2f MHz\" %(f*10**-6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Signal Frequency = 18.82 MHz\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 8.17 - Page No : 263" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Given data\n", "f= 20 # in MHz\n", "f=f*10**6 # in Hz\n", "toh= 1/f # in sec\n", "toh=toh*10**9 # in ns\n", "# For one cycle occupying 4 horizontal divisions,\n", "MTD= toh/4 # Minimum time/division in ns/division\n", "# Using the 10 times magnifier to provide MTD\n", "MTD_setting= 10*MTD # minimum time/division setting in ns/division\n", "print \"Minimum time/division setting = %0.f ns/division\" %MTD_setting" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum time/division setting = 125 ns/division\n" ] } ], "prompt_number": 35 } ], "metadata": {} } ] }