{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6 - BJT at High Frequency" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 337 example 1" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transconductance g = 0.38 ampere/volt\n", "input conductance gbe = 3.85e-03 ampere/volt\n", "feedback conductance gbc = 3.85e-07 ampere/volt\n", "base spread resistance rbb = 240.00 ohm\n", "output conductance = 1.15e-06 ampere/volt\n", "transition capacitance cbe = 1.22e-09 farad\n", "rbc = 2.60e+06 ohm\n", "rce = 8.67e+05 ohm\n" ] } ], "source": [ "colcur=10*10**-3##ampere\n", "vce=10##volt\n", "hie=500##ohm\n", "hoe=4*10**-5\n", "hfe=100\n", "hre=1*10**-4\n", "fqu=50*10**6##hertz\n", "q=3*10**12##farad\n", "voltag=26*10**-3##volt\n", "g=colcur/voltag\n", "gbe=g/hfe\n", "gbc=gbe*hre\n", "rbb=hie-260\n", "oucond=hoe-(1+hfe)*gbc\n", "cbe=g/(2*3.14*fqu)\n", "rbc=1/gbc\n", "rce=1/oucond\n", "print \"transconductance g = %0.2f\"%((g)),\"ampere/volt\"\n", "print \"input conductance gbe = %0.2e\"%((gbe)),\"ampere/volt\"\n", "print \"feedback conductance gbc = %0.2e\"%((gbc)),\"ampere/volt\"\n", "print \"base spread resistance rbb = %0.2f\"%((rbb)),\"ohm\"\n", "print \"output conductance = %0.2e\"%((oucond)),\"ampere/volt\"\n", "print \"transition capacitance cbe = %0.2e\"%((cbe)),\"farad\"\n", "print \"rbc = %0.2e\"%((rbc)),\"ohm\"##correction as 2.6mega ohm\n", "print \"rce = %0.2e\"%((rce)),\"ohm\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 337 example 2" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fbeta = 1.00 hertz\n", "f = 100.00 hertz\n", "cbe = 3.06e-04 farad\n", "rbe = 520.00 ohm\n", "rbb = 80.00 ohm\n" ] } ], "source": [ "colcur=5*10**-3##ampere\n", "vce=10##volt\n", "hfe=100\n", "hie=600##ohm\n", "cugain=10\n", "fqu=10*10**6##hertz\n", "\n", "tracat=3*10**-12##farad\n", "voltag=26*10**-3##volt\n", "fbeta1=((((hfe**2)/(cugain**2))-1)/fqu**2)**(1/2)\n", "fbeta1=1/fbeta1\n", "fq1=hfe*fbeta1\n", "cbe=colcur/(2*3.14*fq1*voltag)\n", "rbe=hfe/(colcur/voltag)\n", "rbb=hie-rbe\n", "print \"fbeta = %0.2f\"%((fbeta1)),\"hertz\"\n", "print \"f = %0.2f\"%((fq1)),\"hertz\"\n", "print \"cbe = %0.2e\"%((cbe)),\"farad\"\n", "print \"rbe = %0.2f\"%((rbe)),\"ohm\"\n", "print \"rbb = %0.2f\"%((rbb)),\"ohm\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 338 example 3" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cde = 8.18e-12 farad\n", "frequency = 1.50e+09 hertz\n" ] } ], "source": [ "w=1*10**-4##centimetre\n", "em1cur=2*10**-3##ampere\n", "q=47\n", "voltag=26*10**-3##volt\n", "cde=(em1cur*w**2)/(voltag*2*q)\n", "fq1=(em1cur)/(2*3.14*cde*voltag)\n", "print \"cde = %0.2e\"%((cde)),\"farad\"\n", "print \"frequency = %0.2e\"%((fq1)),\"hertz\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 339 example 6" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "re = 13.00 ohm\n", "falpha = 5.99e+07 hertz\n", "cde = 2.05e-10 farad\n", "w = 2.66e-09 second\n" ] } ], "source": [ "w=5*10**-4##centimetre\n", "em1cur=2*10**-3##ampere\n", "q=47\n", "voltag=26*10**-3##volt\n", "re=voltag/em1cur\n", "fq1=2*q/(w**2*2*3.14)\n", "cde=(em1cur*w**2)/(voltag*2*q)\n", "w=(w**2)/(2*q)\n", "print \"re = %0.2f\"%((re)),\"ohm\"\n", "print \"falpha = %0.2e\"%((fq1)),\"hertz\"\n", "print \"cde = %0.2e\"%((cde)),\"farad\"\n", "print \"w = %0.2e\"%((w)),\"second\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber example 8" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f = 1.50e+13 hertz\n", "cde = 1.64e-15 farad\n" ] } ], "source": [ "w=10**-6##centimetre\n", "em1cur=4*10**-3##ampere\n", "voltag=26*10**-3##volt\n", "q=47\n", "cde=(em1cur*w**2)/(voltag*2*q)\n", "fq1=(em1cur)/(2*3.14*cde*voltag)\n", "print \"f = %0.2e\"%((fq1)),\"hertz\"\n", "print \"cde = %0.2e\"%((cde)),\"farad\"##correction required in the book." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }