{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11 - Sinusoidal Oscillators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 514 example 2" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "min frequency = 1769.29hertz\n", "max frequency = 17692.85hertz\n", "resistance r3 = 20000.00ohm\n" ] } ], "source": [ "macapa=900*10**-12##farad\n", "micapa=90*10**-12##farad\n", "r=100*10**3##ohm\n", "#(a) frequency range\n", "fremin=1/(2*3.14*r*macapa)\n", "print \"min frequency = %0.2f\"%((fremin))+\"hertz\"\n", "fremax=1/(2*3.14*r*micapa)\n", "print \"max frequency = %0.2f\"%((fremax))+\"hertz\"\n", "#(b) r3\n", "r=10*10**3##ohm\n", "r3=2*r\n", "print \"resistance r3 = %0.2f\"%((r3))+\"ohm\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 516 example 3" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "min voltage >= 7.50volt\n", "frequency = 42379.83hertz\n" ] } ], "source": [ "from math import sqrt\n", "c1=0.004*10**-6##farad\n", "c2=0.03*10**-6##farad\n", "induct=4*10**-3##henry\n", "#min voltage\n", "mivolt=c2/c1\n", "print \"min voltage >= %0.2f\"%((mivolt))+\"volt\"\n", "#frequency\n", "freque=(((1/(2*3.14)))*sqrt((c1+c2)/(induct*c1*c2)))\n", "print \"frequency = %0.2f\"%((freque))+\"hertz\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 517 example 5" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency = 166467.63hertz\n", "ratio1 greater than 1 so oscillations possible\n" ] } ], "source": [ "induct=500*10**-6##henry\n", "induc1=5000*10**-6##henry\n", "mutuin=300*10**-6##henry\n", "c1=150*10**-12##farad\n", "#(a) frequency\n", "indcto=induct+induc1+2*mutuin\n", "freque=1/((2)*3.14*sqrt(indcto*c1))\n", "#(b) condition\n", "r=10*10**3##ohm\n", "conduc=8*10**-3##ampere per volt\n", "r1=50*10**3##ohm\n", "r_=r*r1/(r+r1)\n", "volgai=conduc*r_\n", "print \"frequency = %0.2f\"%((freque))+\"hertz\"\n", "ratio1=(induc1+mutuin)/(induct+mutuin)\n", "ratio1=ratio1*volgai\n", "print \"ratio1 greater than 1 so oscillations possible\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 518 example 6" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resonanting capacitance = 5.00e-14farad\n", "resonant frequency = 1.42e+06hertz\n", "parallel resonant frequency = 1.03e+06hertz\n", "series resonant frequency = 1.01e+06hertz\n", "quality factor = 3162.28\n", "loop gain = 100.00\n", "bias = 6.00e-05second\n" ] } ], "source": [ "cgs=5*10**-12##farad\n", "cds=1*10**-12##farad\n", "conduct=10*10**-3##ampere per volt\n", "rd=50*10**3##ohm\n", "r=10*10**6##ohm\n", "induct=0.5##henry\n", "c1=0.05*10**-12##farad\n", "rse=1*10**3##ohm\n", "c=1*10**-12##farad\n", "#(1) c11\n", "c11=((((cds*cgs)/(cds+cgs))+1)*c1)/(((cds*cgs)/(cds+cgs))+1+c1)\n", "print \"resonanting capacitance = %0.2e\"%((c11))+\"farad\"\n", "#(2) frequency\n", "freque=((sqrt(2))/(2*3.14*sqrt(induct*c11)))\n", "print \"resonant frequency = %0.2e\"%((freque))+\"hertz\"\n", "#(3) frequency parallel\n", "\n", "freque=1/(2*3.14*sqrt(((induct*c*c1))/(c+c1)))\n", "print \"parallel resonant frequency = %0.2e\"%((freque))+\"hertz\"\n", "#frequency series\n", "freque=1/((2*3.14*sqrt(induct*c1)))\n", "print \"series resonant frequency = %0.2e\"%((freque))+\"hertz\"\n", "qualit=((induct/c1)**(0.5))/rse\n", "print \"quality factor = %0.2f\"%((qualit))\n", "#correction required in book\n", "#(4) loop gain\n", "abeta1=conduct*rd*cds/cgs\n", "print \"loop gain = %0.2f\"%((abeta1))\n", "#(5)\n", "w=r*(cds+cgs)\n", "print \"bias = %0.2e\"%((w))+\"second\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 519 example 7" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency = 1.23e+06hertz\n", "gain = 5.00\n" ] } ], "source": [ "from math import sqrt\n", "c=200*10**-12##farad\n", "c1=1000*10**-12##farad\n", "induct=100*10**-6##henry\n", "#(1) frequency\n", "ceq=(c*c1)/(c+c1)\n", "freque=1/(2*3.14*(sqrt(induct*ceq)))\n", "print \"frequency = %0.2e\"%((freque))+\"hertz\"##correction in the book\n", "gaimin=c1/c\n", "print \"gain = %0.2f\"%((gaimin))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 520 example 8" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inductance = 4.02e-05henry\n" ] } ], "source": [ "induc1=0.4*10**-3##henry\n", "c=0.004*10**-6##farad\n", "freque=120*10**3##hertz\n", "induct=((1/(4*3.14**2*freque**2*c)))-induc1\n", "print \"inductance = %0.2e\"%((induct))+\"henry\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PageNumber 520 example 9" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency = 1087243.22hertz\n", "ratio parallel series = 1.03\n", "quality factor = 409.67\n" ] } ], "source": [ "from math import sqrt\n", "induct=0.33##henry\n", "c=0.065*10**-12##farad\n", "c1=1*10**-12##farad\n", "r=5.5*10**3##ohm\n", "#(1) series resonant frequency\n", "freque=(1/(2*(3.14)))*sqrt(1/((induct)*c))\n", "print \"frequency = %0.2f\"%((freque))+\"hertz\"\n", "#(2)exceed of frequency\n", "ratio1=sqrt((1+(c/c1)))\n", "print \"ratio parallel series = %0.2f\"%((ratio1))\n", "#correction required in the book\n", "#(3) quality factor\n", "qualit=(1/r)*sqrt(induct/c)\n", "print \"quality factor = %0.2f\"%((qualit))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }