{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 03 : Diode applications" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1, Page No 73" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vf=.7\n", "Rl=500.0\n", "Vi=22.0\n", "Vpi=1.414*Vi\n", "\n", "#Calculations\n", "Vpo=Vpi-Vf\n", "print(\" peak vouput voltage is %3.2fV \" %Vpo)\n", "Ip=Vpo/Rl\n", "\n", "#Results\n", "print(\"peak load current is %3.4fA \" %Ip)\n", "PIV=Vpi\n", "print(\"diode paek reverse voltage %3.2fV \" %PIV)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " peak vouput voltage is 30.41V \n", "peak load current is 0.0608A \n", "diode paek reverse voltage 31.11V \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2, Page No 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Vi=30.0\n", "Rl=300.0\n", "Vf=0.7\n", "\n", "#Calculations\n", "Vpi=1.414*Vi\n", "Vpo=Vpi-2*Vf\n", "print(\" peak output voltage %.3f V \" %Vpo)\n", "Ip=Vpo/Rl\n", "\n", "#Results\n", "print(\" current bridge is %.1f mA \" %(Ip*1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " peak output voltage 41.020 V \n", " current bridge is 136.7 mA \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 Page No 83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "C1=680.0*10**-6\n", "Eo=28.0\n", "Rl=200.0\n", "f=60.0\n", "\n", "#Calculations\n", "Il=Eo/Rl\n", "T=1/f\n", "t1=T\n", "Vr=(Il*t1)/C1\n", "\n", "#Results\n", "print(\"peak to peak ripple voltage is %.2f V \" %Vr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "peak to peak ripple voltage is 3.43 V \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4, Page No 84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Eo=20.0\n", "Rl=500.0\n", "f=60.0\n", "\n", "#Calculations\n", "Vr=(10*Eo)/100#10% of Eo\n", "Il=Eo/Rl\n", "T=1/f\n", "t1=T\n", "C1=((Il*t1)/Vr)*10**6\n", "\n", "#Results\n", "print(\"Reservior capacitance is %.2f uF \" %C1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reservior capacitance is 333.33 uF \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 Page No 85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Eo=20.0\n", "f=60.0\n", "Rl=500.0\n", "Il=Eo/Rl\n", "\n", "#Calculations\n", "Vr=(10.0*Eo)/100\n", "print(\"10percent of Eo is %.2f V \" %Vr)\n", "Eomin=Eo-0.5*Vr\n", "Eomax=Eo+0.5*Vr\n", "Q1=math.asin(Eomin/Eomax)\n", "Q1=65\n", "Q2=90-Q1\n", "T=1/f\n", "t2=(Q2*T)/360\n", "print(\" charging time is %.2fs \" %t2)\n", "t1=T-t2\n", "print(\"discharging time is %.2fs \" %t1)\n", "C1=((Il*t1)/Vr)*10**6\n", "\n", "#Results\n", "print(\"reservior capacitance is %.2f uF \" %C1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10percent of Eo is 2.00 V \n", " charging time is 0.00s \n", "discharging time is 0.02s \n", "reservior capacitance is 310.19 uF \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 Page No 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Eo=21.0\n", "Vf=0.7\n", "\n", "#Calculations\n", "t1=1.16*10**-3\n", "t2=15.54*10**-3\n", "Vp=Eo+Vf\n", "Vr=2*Vp\n", "Il=40*10**-4\n", "Ifrm=(Il*(t1+t2))/t2\n", "Ifsm=30.0\n", "Rs=Vp/Ifsm\n", "\n", "#Results\n", "print(\" surge limiting resistance is %3.2fohm \" %Rs)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " surge limiting resistance is 0.72ohm \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7, Page No 89 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vf=.7\n", "Eo=21.0\n", "\n", "#Calculations\n", "Il=40*10**-3\n", "Vp=115.0\n", "Vs=.707*(Vf+Eo)\n", "print(\" Vrms voltage is %3.3fV \" %Vs)\n", "Is=3.6*Il\n", "print(\" rms current is %.2f mA \" %(Is*1000))\n", "Ip=(Vs*Is)/Vp\n", "\n", "#Results\n", "print(\"primary current is %.2f mA \" %(Ip*1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Vrms voltage is 15.342V \n", " rms current is 144.00 mA \n", "primary current is 19.21 mA \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.8 Page No 92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "Vr=2.0\n", "T=16.7*10**-3\n", "t2=1.16*10**-3\n", "\n", "#Calculations\n", "Il=40.0*10**-3#from example 3.5\n", "t1=(T/2.0)-t2\n", "C1=(Il*t1)/Vr\n", "\n", "#Results\n", "print(\" resrvior capacitor is %.2f mF \" %(C1*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " resrvior capacitor is 143.80 mF \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9 Page No 93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vr=2.0\n", "T=16.7*10**-3\n", "Il=40.0*10**-3\n", "\n", "#Calculations\n", "t1=T/2\n", "C1=(Il*t1)/Vr\n", "\n", "#Results\n", "print(\" reservior capacitance is %.1fF \" %(C1*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " reservior capacitance is 167.0F \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.10 Page No 93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Eo=21.0\n", "Vf=0.7\n", "Il=40.0*10**-3\n", "t1=7.19*10**-3\n", "t2=1.16*10**-3\n", "\n", "#Calculations\n", "Vp=Eo+(2*Vf)\n", "Vr=Vp\n", "If=Il/2\n", "Ifrm=Il*(t1+t2)/t2\n", "Ifsm=30\n", "Rs=Vp/Ifsm\n", "\n", "#Results\n", "print(\"surge limiting resistance is %.3fohm \" %Rs)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "surge limiting resistance is 0.747ohm \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11, Page No 93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Eo=21.0\n", "Vf=0.7\n", "Il=40*10**-3\n", "Vp=115.0\n", "\n", "#Calculations\n", "Vs=0.707*(Eo+2*Vf)\n", "Is=1.6*Il\n", "Ip=(Vs*Is)/Vp\n", "\n", "#Results\n", "print(\" supply current is %.1f mA \" %(Ip*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " supply current is 8.8 mA \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.12, Page No 97" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Eo=20.0\n", "Il=40.0*10**-3\n", "R1=22.0\n", "Vr=2.0\n", "C1=150*10**-6\n", "C2=C1\n", "fr=120\n", "\n", "#Calculations\n", "Vo=Eo-Il*R1\n", "vi=Vr/3.14\n", "Xc2=1/(2*3.14*fr*C2)\n", "vo=(vi*Xc2)/math.sqrt((R1**2) + (Xc2**2))\n", "print(\" dc output voltage is %.3fV \" %vo)\n", "Vpp=2*vo\n", "\n", "#Results\n", "print(\" peak to peak voltage is %.1fV \" %(Vpp*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " dc output voltage is 0.238V \n", " peak to peak voltage is 475.3V \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.13, Page No 98" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "C1=150*10**-6\n", "C2=C1\n", "vi=4.0\n", "vo=1.0\n", "f=120.0\n", "\n", "#Calculations\n", "Xc2=8.84 #FROM EXAMPLE 3.12\n", "Xl=Xc2*((vi/vo)+1)\n", "L1=Xl/(2*3.14*f)\n", "\n", "#Results\n", "print(\" suitable value of L1 is %.3fH \" %(L1*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " suitable value of L1 is 58.652H \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.14, Page No 101" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Edc=20.0\n", "vo=0.24\n", "Vo=20.0\n", "Il=40*10**-3\n", "fr=120.0\n", "\n", "#Calculations\n", "Eomax=(3.14*Edc)/2\n", "Epeak=(4*Eomax)/(3*3.14)\n", "vi=Epeak\n", "Rl=Vo/Il\n", "Xlc=(2*Rl)/3\n", "Lc=Xlc/(2*3.14*fr)\n", "L=1.25*Lc\n", "Xl=2*3.14*fr*L\n", "Xc=Xl/((vi/vo)+1)\n", "C1=1/(2*3.14*fr*Xc)\n", "\n", "#Results\n", "print(\"The value of c1 = %.2f mF \" %(C1*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of c1 = 180.11 mF \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.15, Page No 105" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Eo=20.0\n", "E0=20-19.7 #load effect\n", "\n", "#Calculations\n", "loadregulation =(E0*100)/Eo#percentage\n", "sourceeffect=20.2-20\n", "lineregulation =(sourceeffect*100)/Eo\n", "\n", "#Results\n", "print(\"Line regulation = %.1f percent \" %lineregulation)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Line regulation = 1.0 percent \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.16, Page No 108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vz=9.1\n", "Izt=20*10**-3\n", "Es=30.0\n", "\n", "#Calculations\n", "R1=(Es-Vz)/Izt\n", "Pr1=(Izt**2)*R1\n", "Es=27\n", "Iz=(Es-Vz)/R1\n", "\n", "#Results\n", "print(\"The circuit current is %.2f mA \" %(Iz*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The circuit current is 17.13 mA \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17, Page No 110" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vz=6.2\n", "Pd=400.0*10**-3\n", "Es=16.0\n", "\n", "#Calculations\n", "Izm=Pd/Vz\n", "R1=(Es-Vz)/Izm\n", "Pr1=(Izm**2)*R1\n", "Izmin=5.0*10**-3\n", "Izmax=Izm-Izmin\n", "\n", "#Results\n", "print(\"maximum current is %3.2f mA \" %(Izmax*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum current is 59.52 mA \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.18, Page No 112" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Zz=7.0\n", "Es=16.0\n", "Vo=6.2\n", "Il=59.5*10**-3\n", "\n", "#Calculations\n", "es=(10*Es)/100.0 #10% os Es\n", "Rl=Vo/Il\n", "print(\"es*Zz||Rl/R1+Zz||Rl\")\n", "V0=es*((Zz*Rl)/(Zz+Rl))/(R1+((Zz*Rl)/(Zz+Rl)))\n", "lineregulation=(V0*100)/Vo\n", "print(\"line regulation voltage is %3.3fpercentage \" %lineregulation)\n", "V0=Il*((Zz*R1)/(Zz+R1))\n", "loadregulation=(V0*100)/Vo\n", "print(\"loadregulation voltage is %3.3fpercentage \" %loadregulation)\n", "Rr=((Zz*Rl)/(Zz+Rl))/(R1+(Zz*Rl)/(Zz+Rl))\n", "\n", "#Results\n", "print(\"ripple rejection is %3.2f X 10^-2 \" %(Rr*10**2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "es*Zz||Rl/R1+Zz||Rl\n", "line regulation voltage is 1.068percentage \n", "loadregulation voltage is 6.422percentage \n", "ripple rejection is 4.14 X 10^-2 \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.19, Page No 114" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "E=9.0\n", "Vf=.7\n", "\n", "#Calculations\n", "If=1.0*10**-3\n", "Vo=E-Vf\n", "R1=Vo/If\n", "Vr=E\n", "\n", "#Results\n", "print(\"diode forward voltage is %3.2fohm \" %Vr)\n", "print(\"diode forward current is %3.1fA \" %(If*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diode forward voltage is 9.00ohm \n", "diode forward current is 1.0A \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.20, Page No 117" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "E=5.0\n", "Vo=4.5\n", "Il=2.0*10**-3\n", "\n", "#Calculations\n", "R1=(E-Vo)/Il\n", "print(\" suitable resistance is %dohm \" %R1)\n", "Vr=E\n", "print(\"when diode is forward baised\")\n", "If=(E-Vf)/R1\n", "\n", "#Results\n", "print(\" diode forward current is %3.2fA \" %(If*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " suitable resistance is 250ohm \n", "when diode is forward baised\n", " diode forward current is 17.20A \n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.21, Page No 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vo=2.7\n", "Vf=.7\n", "E=9.0\n", "If=1*10**-3\n", "\n", "#Calculations\n", "Il=If\n", "Vb=Vo-Vf\n", "R1=(E-Vo)/(Il+If)\n", "\n", "#Results\n", "print(\"resistance is %.2f kOhm \" %(R1/10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistance is 3.15 kOhm \n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.22, Page No 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vo=5.0\n", "Vf=0.7\n", "Iz=5.0\n", "Il=1.0\n", "E=20.0\n", "\n", "#Calculations\n", "Vz=Vo-Vf\n", "R1=(E-Vo)/(Il+Iz)\n", "\n", "#Results\n", "print(\"zener diode resistance si %.2f ohm \" %R1)\n", "#Answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "zener diode resistance si 2.50 ohm \n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.23, Page No 122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "E=10.0\n", "R1=56.0*10**3\n", "f=1000.0\n", "C1=1.0*10**-6\n", "\n", "#Calculations\n", "Vo=2*E\n", "Ic=Vo/R1\n", "t=1/(2*f)\n", "Vc=(Ic*t)/C1\n", "\n", "#Results\n", "print(\" tilt output voltage is %3.2fV \" %(Vc*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " tilt output voltage is 178.57V \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.24, Page No 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f=500.0\n", "Rs=600.0\n", "E=8.0\n", "\n", "#Calculations\n", "t=1.0/(2*f)\n", "PW=t\n", "C1=PW/Rs\n", "Vo=2.0*E\n", "Vc=(1*Vo)/100#1% of the Vo\n", "Ic=(Vc*C1)/t\n", "R1=(2*E)/(Ic*1000)\n", "\n", "#Results\n", "print(\"suitable value of R1 is %.2f ohm \" %R1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "suitable value of R1 is 60.00 ohm \n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.25, Page No 125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Vf=0.7\n", "E=6.0\n", "Vb1=3.0\n", "\n", "#Calculations\n", "Vc=Vb1-Vf-(-E)\n", "Vo=Vb1-Vf\n", "print(\"when input is -E\")\n", "Vo=E+Vc\n", "Vo=Vb1+Vf\n", "print(\"Capicitor voltage is %.2f ohm \" %Vc)\n", "print(\"when input is +E\")\n", "Vo=E+(Vc)\n", "\n", "#Results\n", "print(\"Capicitor voltage is %.2f ohm \" %Vo)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "when input is -E\n", "Capicitor voltage is 8.30 ohm \n", "when input is +E\n", "Capicitor voltage is 14.30 ohm \n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.26, Page No 130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "E=12.0\n", "Vf=0.7\n", "Rl=47*10**3\n", "f=5000.0\n", "\n", "#Calculations\n", "Vo=2*(E-Vf)\n", "Il=Vo/Rl\n", "print(\" capacitor discharge time\")\n", "t=1.0/(2*f)\n", "print(\" for 1% ripple allow .5% due to discharge of C2 %.5%due to discharge of C1\")\n", "Vc=(.5*Vo)/100\n", "C2=((Il*t)/Vc)*10**6\n", "print(\" value of capacitor C2 is %3.2fuF \" %C2)\n", "C1=2*C2\n", "\n", "#Results\n", "print(\"value of capacitor C1 is %3.2fuF \" %C1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " capacitor discharge time\n", " for 1% ripple allow .5% due to discharge of C2 %.5%due to discharge of C1\n", " value of capacitor C2 is 0.43uF \n", "value of capacitor C1 is 0.85uF \n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.27, Page No 133" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "Vcc=5.0\n", "Vf=.7\n", "R1=3.3*10**3\n", "\n", "#Calculations\n", "print(\"A)\")\n", "Ir1=(Vcc-Vf)/R1\n", "print(\"diode forward current when all input are low is %3.4fA \" %Ir1)\n", "print(\"for each diode\")\n", "If=Ir1/3\n", "print(\"B)\")\n", "If2=Ir1/2\n", "If3=If2\n", "print(\" forward current when input A is high is %3.5fA \" %If3)\n", "print(\"C)\")\n", "If3=Ir1\n", "\n", "#Results\n", "print(\" forward current when input A and B are high and C is low %3.2fA \" %(If3*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "A)\n", "diode forward current when all input are low is 0.0013A \n", "for each diode\n", "B)\n", " forward current when input A is high is 0.00065A \n", "C)\n", " forward current when input A and B are high and C is low 1.30A \n" ] } ], "prompt_number": 27 } ], "metadata": {} } ] }