{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17 : Active filters" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1, Page No 716" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "rs=600.0\n", "R1=12.0*10**3\n", "Rl=100.0*10**3\n", "C1=0.013*10**-6\n", "\n", "#Calculations\n", "print(\"when Rl is not connected\")\n", "fc=1.0/(2*3.14*R1*C1)\n", "print(\" when Rl is connected\")\n", "fc=1.0/(2*3.14*((R1*Rl)/(R1+Rl))*C1)\n", "Attn=3#at fc attenuation is =3dB\n", "falloffrate=6\n", "print(\"attenuation at 2fc\")\n", "Attn=3+6\n", "print(\"attenuation at 2fc is %ddB \" %Attn)\n", "Attn=3+6+6\n", "\n", "#Results\n", "print(\" attenuation at 4fc is %ddB \" %Attn)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "when Rl is not connected\n", " when Rl is connected\n", "attenuation at 2fc\n", "attenuation at 2fc is 9dB \n", " attenuation at 4fc is 15dB \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.2, Page No 718" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Ib=500.0*10**-9\n", "f=1.0*10**3\n", "\n", "#Calculations\n", "R1=(70.0*10**-3)/Ib\n", "R1=140*10**3#use standard value\n", "R2=R1\n", "C1=(1/(2*3.14*R1*f))*10**12\n", "\n", "#Results\n", "print(\" capacitor used is of %.2f pF \" %C1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " capacitor used is of 1137.40 pF \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.3 Page No 719" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "print(\"first order high pass active filter\")\n", "f=5.0*10**3\n", "C1=1000.0*10**-12\n", "fu=1.0*10**6\n", "\n", "#Calculations\n", "R1=1.0/(2*3.14*f*C1)\n", "BW=fu-f\n", "print(\" bandwidth is %.2f kHz \" %(BW/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "first order high pass active filter\n", " bandwidth is 995.00 kHz \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.4, Page No 724" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f=1.0*10**3\n", "Ib=500.0*10**-9\n", "print(\"butterworth second order filter\")\n", "\n", "#Calculations\n", "R=(70.0*10**-3)/Ib\n", "R1=R/2.0\n", "R1=68.1*10**3#use standard value\n", "R2=R1 \n", "R3=2.0*R1\n", "Xc1=math.sqrt(2)*R2\n", "C1=1/(2*3.14*f*math.sqrt(2)*R2)\n", "C2=2*C1\n", "fc=1/(2*3.14*(math.sqrt(R1*R2*C1*C2)))\n", "\n", "#Results\n", "print(\"actual cutoff frequency is %d kHz \" %(fc/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "butterworth second order filter\n", "actual cutoff frequency is 1 kHz \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.5 Page No 725" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f=12.0*10**3\n", "C1=1000.0*10**-12\n", "print(\"butterworth second order filter\")\n", "C2=C1\n", "\n", "#Calculations\n", "R2=(math.sqrt(2))/(2*3.14*f*C1)\n", "R1=.5*R2\n", "R3=R2\n", "fc=1.0/(2*3.14*(math.sqrt(R1*R2*C1*C2)))\n", "\n", "#Results\n", "print(\"actual cutoff frequency is %d KHz \" %(fc/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "butterworth second order filter\n", "actual cutoff frequency is 11 KHz \n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.6 Page No 729" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "f=30.0*10**3\n", "C1=1000.0*10**-12\n", "print(\" third order low pass filter\")\n", "print(\"-20 dB per decade stage\")\n", "\n", "#Calculations\n", "fc1=f/.65\n", "R1=1.0/(2*3.14*fc1*C1)\n", "R2=R1\n", "print(\"-40dB per decade stage\")\n", "C3=1000*10**-12\n", "C2=2*C3\n", "fc2=f/.8\n", "R4=1/(2*3.14*fc2*C3*(math.sqrt(2)))\n", "R3=R4\n", "R5=R3+R4\n", "\n", "#Results\n", "print(\"The value of R5 is %.2f kohm\" %(R5/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " third order low pass filter\n", "-20 dB per decade stage\n", "-40dB per decade stage\n", "The value of R5 is 6.01 kohm\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.7, Page No 730" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f=20.0*10**3\n", "print(\"3rd order high pass filter\")\n", "print(\"-20dB per decade stage\")\n", "R1=121.0*10**3\n", "\n", "#Calculations\n", "fc1=.65*f\n", "C1=1/(2*3.14*fc1*R1)\n", "#this is so small it might be effected by stray capacitor.redesign %first choosing a suitable capacitance C1\n", "C1=100*10**-12\n", "R1=1/(2*3.14*f*C1)\n", "R2=R1\n", "print(\"-40dB per decade stage\")\n", "C3=1000*10**-12\n", "R4=(math.sqrt(2))/(2*3.14*.8*f*C3)\n", "C2=C3\n", "R3=.5*R4\n", "R5=R4\n", "\n", "#Results\n", "print(\"The value of R5 is %.2f kohm\" %(R5/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "3rd order high pass filter\n", "-20dB per decade stage\n", "-40dB per decade stage\n", "The value of R5 is 14.07 kohm\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.8 Page No 734" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "f1=300.0\n", "f2=30.0*10**3\n", "print(\" single stage band pass filter\")\n", "\n", "#Calculations\n", "C2=1000*10**-12\n", "R2=1/(2*3.14*f2*C2)\n", "R1=R2\n", "Xc1=R1#at voltage gain Av=1\n", "C1=1/(2*3.14*f1*R1)\n", "R3=R2\n", "\n", "#Results\n", "print(\"The value of R3 is %.2f kohm\" %(R3/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " single stage band pass filter\n", "The value of R3 is 5.31 kohm\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.9 Page No 736" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "\n", "f1=300.0\n", "f2=30.0*10**3\n", "\n", "#Calculations\n", "fo=math.sqrt(f1*f2)\n", "BW=f2-f1\n", "Q=fo/BW\n", "\n", "#Results\n", "print(\"The value of Q is %.2f \" %(Q))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Q is 0.10 \n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.10 Page No 737" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "\n", "R1=60.4*10**3\n", "R4=1.21*10**3\n", "C=.012*10**-6\n", "R2=121.0*10**3\n", "\n", "#Calculations\n", "Q=math.sqrt((R1+R4)/(2*R4))\n", "fo=Q/(3.14*C*R2)\n", "print(\" center frequency is %3.2fHz \" %fo)\n", "BW=fo/Q\n", "\n", "#Results\n", "print(\" bandwidth is %3.1fHz \" %BW)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " center frequency is 1106.68Hz \n", " bandwidth is 219.3Hz \n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.12, Page No 744" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "f1=10.3*10**3\n", "f2=10.9*10**3\n", "C1=1000.0*10**-12\n", "\n", "#Calculations\n", "C2=C1\n", "fo=math.sqrt(f1*f2)\n", "R5=1.0/(2*3.14*fo*C1)\n", "R1=R5\n", "Q=fo/(f2-f1)\n", "R2=R1*(2*Q-1)\n", "\n", "#Results\n", "print(\"The value of R2 is %.2f kohm\" %(R2/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R2 is 515.76 kohm\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.13, Page No 750" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f1=10.3*10**3\n", "f2=10.9*10**3\n", "Hobp=34\n", "\n", "#Calculations\n", "math.sqrt(f1*f2)\n", "Q=fo/(f2-f1)\n", "R3=120.0*10**3\n", "R2=R3/Q\n", "R1=R3/Hobp\n", "k=50*fo\n", "\n", "#Results\n", "print(\"The value of k is %.2f \" %(k/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of k is 529.79 \n" ] } ], "prompt_number": 27 } ], "metadata": {} } ] }