{
 "metadata": {
  "name": "",
  "signature": "sha256:9a7fe549367b746663f0b647c4096703a98ac7fb9574e6f135fdada17ce95d67"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "chapter11:Tuned Volatge Amplifiers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 401"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate frequency and impedance and current and voltage across each element at resonance\n",
      "#given\n",
      "import math\n",
      "R=12.;#ohm\n",
      "L=200.*10.**-6.;#H\n",
      "C=300.*10.**-12.;#F\n",
      "Vs=9.;#V\n",
      "fo=1./(2.*math.pi*math.sqrt(L*C));\n",
      "Z=R;#impedance\n",
      "print '%s %.1f %s' %(\"The Resonant frequency =\",fo/1000,\"kHz\\n\");\n",
      "print '%s %.f %s' %(\"The impedance Z =\",Z,\"ohm\\n\");\n",
      "\n",
      "Io=Vs/R;\n",
      "print '%s %.2f %s' %(\"The Source current =\",Io,\"A\\n\");\n",
      "\n",
      "Vl=Io*(2.*math.pi*fo*L);\n",
      "Vc=Io/(2.*math.pi*fo*C);\n",
      "Vr=Io*R;\n",
      "print '%s %.1f %s' %(\"The voltage across the inductor =\",Vl,\"V\\n\");\n",
      "print '%s %.1f %s' %(\"The voltage across the capacitor =\",Vc,\"V\\n\");\n",
      "print '%s %.f %s' %(\"The voltage across the resistor =\",Vr,\"V\\n\");\n",
      "#There is a slight variation in voltage across capacitor due to the approaximation\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Resonant frequency = 649.7 kHz\n",
        "\n",
        "The impedance Z = 12 ohm\n",
        "\n",
        "The Source current = 0.75 A\n",
        "\n",
        "The voltage across the inductor = 612.4 V\n",
        "\n",
        "The voltage across the capacitor = 612.4 V\n",
        "\n",
        "The voltage across the resistor = 9 V\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 401"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate frequency and impedance and current at resonance and current in coil and capacitor\n",
      "#given\n",
      "import math\n",
      "R=10.;#ohm\n",
      "L=100.*10.**-6.;#H\n",
      "C=100.*10.**-12.;#F\n",
      "Vs=10.;#V\n",
      "fo=1./(2.*math.pi*math.sqrt(L*C));\n",
      "Zp=L/(C*R);     #impedance\n",
      "print '%s %.3f %s' %(\"The Resonant frequency =\",fo/10**6,\"MHz\\n\");\n",
      "print '%s %.f %s' %(\"The impedance Z =\",Zp/1000,\"kohm\\n\");\n",
      "\n",
      "Io=Vs/Zp;\n",
      "print '%s %.f %s' %(\"The Source current =\",Io*10**6,\"uA\\n\");\n",
      "\n",
      "Xl=(2.*math.pi*fo*L);\n",
      "Xc=1./(2.*math.pi*fo*C);\n",
      "Z1=math.sqrt(Xl**2.+R**2.);\n",
      "Z2=Xc;\n",
      "Ic=Vs/Z2;\n",
      "Il=Ic;\n",
      "print '%s %.f %s' %(\"The current in the coil =\",1000,\"ohm\\n\");\n",
      "print '%s %.f %s' %(\"The current in the capacitor =\",Ic*1000,\"mA\\n\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Resonant frequency = 1.592 MHz\n",
        "\n",
        "The impedance Z = 100 kohm\n",
        "\n",
        "The Source current = 100 uA\n",
        "\n",
        "The current in the coil = 1000 ohm\n",
        "\n",
        "The current in the capacitor = 10 mA\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 402"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate impedance and quality factor and bandwidth\n",
      "#given\n",
      "import math\n",
      "R=10.;#ohm\n",
      "L=150.*10.**-6.;#H\n",
      "C=100.*10.**-12.;#F\n",
      "fo=1/(2.*math.pi*math.sqrt(L*C));\n",
      "Zp=L/(C*R);     #impedance\n",
      "print '%s %.f %s' %(\"The impedance Z =\",Zp/1000,\"kohm\\n\");\n",
      "\n",
      "Xl=(2.*math.pi*fo*L);\n",
      "Q=Xl/R;\n",
      "BW=fo/Q;\n",
      "print '%s %.1f %s' %(\"The Quality factor of the circuit =\",Q,\"\\n\");\n",
      "print '%s %.1f %s' %(\"The Band width of the circuit =\",BW/1000,\"kHz\\n\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The impedance Z = 150 kohm\n",
        "\n",
        "The Quality factor of the circuit = 122.5 \n",
        "\n",
        "The Band width of the circuit = 10.6 kHz\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}