{ "metadata": { "name": "", "signature": "sha256:5a78eb3c7cc2f82cd21ccad707b4376bdb45f22452d4892c16308b1bdd58f45f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "chapter08:Multistage Amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 276" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Express the gain in decibel\n", "#given\n", "#Powere gain of 1000\n", "import math\n", "Pg1=1000.;\n", "Pgd1=10.*math.log10(Pg1);\n", "print '%s %.f %s' %(\"Power gain (in dB)=\",Pgd1,\"dB\\n\");\n", "\n", "#Voltage gain of 1000\n", "Vg1=1000.;\n", "Vgd1=20.*math.log10(Vg1);\n", "print '%s %.f %s' %(\"Voltage gain (in dB)=\",Vgd1,\"dB\\n\");\n", "\n", "#Powere gain of 1/100\n", "Pg2=1./100.;\n", "Pgd2=10.*math.log10(Pg2);\n", "print '%s %.f %s' %(\"Power gain (in dB)=\",Pgd2,\"dB\\n\");\n", "\n", "#Voltage gain of 1/100\n", "Vg2=1./100.;\n", "Vgd2=20.*math.log10(Vg2);\n", "print '%s %.f %s' %(\"Voltage gain (in dB)=\",Vgd2,\"dB\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power gain (in dB)= 30 dB\n", "\n", "Voltage gain (in dB)= 60 dB\n", "\n", "Power gain (in dB)= -20 dB\n", "\n", "Voltage gain (in dB)= -40 dB\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 276" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine power and voltage gain\n", "#given\n", "#For Gain = 10 dB\n", "G=10.;#dB\n", "Pg1=10.**(G/10.); #taking antilog\n", "Vg1=10.**(G/20.); #taking antilog\n", "print '%s %.f %s' %(\"For Gain\",G,\"dB\\n\")\n", "print '%s %.f %s' %(\"Power gain ratio =\",Pg1,\"\\n\");\n", "print '%s %.2f %s' %(\"Voltage gain ratio =\",Vg1,\"\\n\");\n", "\n", "#For Gain 3 dB\n", "G=3.;#dB\n", "Pg2=10.**(G/10.); #taking antilog\n", "Vg2=10.**(G/20.); #taking antilog\n", "print '%s %.f %s' %(\"For Gain\",G,\"dB\\n\")\n", "print '%s %.2f %s' %(\"Power gain ratio =\",Pg2,\"\\n\");\n", "print '%s %.3f %s' %(\"Voltage gain ratio =\",Vg2,\"\\n\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For Gain 10 dB\n", "\n", "Power gain ratio = 10 \n", "\n", "Voltage gain ratio = 3.16 \n", "\n", "For Gain 3 dB\n", "\n", "Power gain ratio = 2.00 \n", "\n", "Voltage gain ratio = 1.413 \n", "\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the overall voltage gain\n", "#given\n", "import math\n", "A1=80.\n", "A2=50.\n", "A3=30.\n", "Ad=20.*math.log10(A1)+20.*math.log10(A2)+20.*math.log10(A3);\n", "\n", "#Alternatively\n", "A=A1*A2*A3;\n", "Ad=20.*math.log10(A);\n", "print '%s %.2f %s' %(\"The Voltage gain is =\",Ad,\"dB\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Voltage gain is = 101.58 dB\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate quiescent output voltage and small signal voltage gain\n", "#given\n", "#At input Voltage =3V\n", "Vi1=3.##V #input voltage\n", "Vbe=0.7##V\n", "B=250.#\n", "Vcc=10.##V #Supply\n", "Re1=1.*10.**3.##ohm\n", "Rc1=3.*10.**3.##ohm\n", "Re2=2.*10.**3.##ohm\n", "Rc2=4.*10.**3.##ohm\n", "Vb1=Vi1# #Voltage at the base of transistor T1\n", "Ve1=Vb1-Vbe# #Voltage at the emitter of transistor T1\n", "Ie1=Ve1/Re1#\n", "Ic1=Ie1#\n", "Vc1=Vcc-Ic1*Rc1#\n", "Vb2=Vc1#\n", "Ve2=Vb2-Vbe#\n", "Ie2=Ve2/Re2#\n", "Ic2=Ie2#\n", "Vo1=Vcc-Ic2*Rc2#\n", "print '%s %.1f %s' %(\"The quiescent output voltage(At input Voltage = 3V) is =\",Vo1,\"V\\n\")#\n", "\n", "#At input Voltage =3.2 V\n", "Vi2=3.2##V #input voltage\n", "Vb1=Vi2# #Voltage at the base of transistor T1\n", "Ve1=Vb1-Vbe# #Voltage at the emitter of transistor T1\n", "Ie1=Ve1/Re1#\n", "Ic1=Ie1#\n", "Vc1=Vcc-Ic1*Rc1#\n", "Vb2=Vc1#\n", "Ve2=Vb2-Vbe#\n", "Ie2=Ve2/Re2#\n", "Ic2=Ie2#\n", "Vo2=Vcc-Ic2*Rc2#\n", "print '%s %.1f %s' %(\"The quiescent output voltage (At input Voltage =3.2 V) is =\",Vo2,\"V\\n\")#\n", "\n", "#Small Signal input and output voltage\n", "vi=Vi2-Vi1#\n", "vo=Vo2-Vo1#\n", "Av=vo/vi#\n", "print '%s %.f' %(\"The small signal voltage gain is =\",Av)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The quiescent output voltage(At input Voltage = 3V) is = 5.2 V\n", "\n", "The quiescent output voltage (At input Voltage =3.2 V) is = 6.4 V\n", "\n", "The small signal voltage gain is = 6\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 296" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the maximum voltage gain and bandwidth of multistage amplifier\n", "#FUNCTIONS\n", "#given\n", "def prll(r1,r2):\n", "\tz=r1*r2/(r1+r2)#\n", "\treturn z\n", "\n", "import math\n", "rin=10.*10.**6.;#ohm #input resistance of JFET\n", "Rd=10.*10.**3.;#ohm\n", "Rs=500.;#ohm\n", "Rg=470.*10.**3.;#ohm\n", "Rl=470.*10.**3.;#ohm\n", "Cc=0.01*10.**-6.;#Farad\n", "Csh=100.*10.**-12.;#Farad\n", "Cs=50.*10.**-6.;#Farad\n", "rd=100.*10.**3.;#ohm\n", "gm=2.*10.**-3.;#S\n", "Rac2=prll(Rd,Rl);\n", "Rac1=prll(Rd,Rg);\n", "Req=prll(rd,prll(Rd,Rl));\n", "Am=math.ceil(gm*Req);\n", "Am2=Am*Am; #Voltage gain of two stage amplifier\n", "print '%s %.f %s' %(\"Voltage gain of two stage amplifier=\",Am2,\"\\n\");\n", "R_=prll(rd,Rd)+prll(Rg,rin);\n", "f1=1./(2.*math.pi*Cc*R_); #lower cutoff frequency\n", "f1_=f1/(math.sqrt(math.sqrt(2.)-1.));\n", "f2=1./(2.*math.pi*Csh*Req); #upper cutoff frequency\n", "f2_=f2*(math.sqrt(math.sqrt(2.)-1.));\n", "BW=f2_-f1_;\n", "print '%s %.f %s' %(\"Bandwidth=\",BW/1000.,\"kHz\\n\");\n", "#There is a slight error in f1 due to use of R'(here R_)=479 kohm and in f2 due to approaximation of Req there is a slight variation\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage gain of two stage amplifier= 324 \n", "\n", "Bandwidth= 115 kHz\n", "\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the midband voltage gain and bandwidth of cascade amplifier\n", "#given\n", "import math\n", "Am=8.##midband voltage gain of individual MOSFET\n", "BW=500.*10.**3.#Hz\n", "f2=BW#\n", "n=4.#\n", "A2m=Am**n#\n", "f2_=f2*(math.sqrt((2.**(1./n))-1.))#\n", "print '%s %.f %s' %(\"Midband voltage gain =\",A2m,\"\\n\")#\n", "print '%s %.1f %s' %(\"Overall Bandwidth =\",f2_/1000,\"kHz\")#\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Midband voltage gain = 4096 \n", "\n", "Overall Bandwidth = 217.5 kHz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E7 - Pg 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the input and output impedance and voltage gain\n", "#FUNCTIONS\n", "\n", "def prll(r1,r2):\n", "\tz=r1*r2/(r1+r2)#\n", "\treturn z\n", "\n", "import math\n", "hie=1.1*10.**3.;#ohm=rin\n", "hfe=120.;#=B\n", "#the values of Rac2, Zi, Zo are as per diagram\n", "Rac2=prll(3.3*10**3,2.2*10**3);\n", "Rac1=prll(6.8*10**3,prll(56*10**3,prll(5.6*10**3,1.1*10**3)));\n", "Zi=prll(5.6*10**3,prll(56*10**3,1.1*10**3));\n", "Zo=prll(3.3*10**3,2.2*10**3);\n", "print '%s %.3f %s %s %.2f %s' %(\"Input Resistance =\",Zi/1000,\"kohm\\n\",\"\\nOutput Resistance =\",Zo/1000,\"kohm\");\n", "Am2=-hfe*Rac2/(hie);\n", "Am1=-hfe*Rac1/(hie);\n", "Am=Am1*Am2;\n", "Am=20.*math.log10(Am);\n", "print '%s %.2f %s' %(\"\\nThe Overall Voltage gain is\",Am,\"dB\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Input Resistance = 0.905 kohm\n", " \n", "Output Resistance = 1.32 kohm\n", "\n", "The Overall Voltage gain is 81.97 dB\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }